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A B S T R A C T   

Background: Despite decades of research, there is continued uncertainty regarding whether autism is associated with a specific profile of gray matter (GM) structure. 
This inconsistency may stem from the widespread use of voxel-based morphometry (VBM) methods that combine indices of GM density and GM volume. If GM 
density or volume, but not both, prove different in autism, the traditional VBM approach of combining the two indices may obscure the difference. The present study 
measures GM density and volume separately to examine whether autism is associated with alterations in GM volume, density, or both. 
Methods: Differences in MRI-based GM density and volume were examined in 6–25 year-olds with a diagnosis of autism spectrum disorder (n = 213, 80.8% male, IQ 
47–154) and a typically developing (TD) sample (n = 190, 71.6% male, IQ 67–155). High-resolution T1-weighted anatomical images were collected on a single MRI 
scanner. Regional density and volume were estimated via whole-brain parcellation comprised of 1625 parcels. Parcel-wise analyses were conducted using generalized 
additive models while controlling the false discovery rate (FDR, q < 0.05). Volume differences in the 68-region Desikan-Killiany atlas derived from Freesurfer were 
also examined, to establish the generalizability of findings across methods. 
Results: No density differences were observed between the autistic and TD groups, either in individual parcels or whole brain mean density. Increased volume was 
observed in autism compared to the TD group when controlling for Age, Sex, and IQ, both at the level of the whole brain (total volume) and in 45 parcels (2.8% of 
total parcels). Parcels with greater volume included inferior, middle, and superior temporal gyrus, inferior and superior frontal gyrus, precuneus, and fusiform gyrus. 
Converging evidence from a standard Freesurfer pipeline also identified greater volume in a number of overlapping regions. 
Limitations: The method for determining “density” is not a direct measure of neuronal density, and this study cannot reveal underlying cellular differences. While this 
study represents possibly the largest single-site sample of its kind, it is underpowered to detect very small differences. 
Conclusions: These results provide compelling evidence that autism is associated with regional GM volumetric differences, which are more prominent than density 
differences. This underscores the importance of examining volume and density separately, and suggests that direct measures of volume (e.g. region-of-interest or 
tensor-based morphometry approaches) may be more sensitive to autism-relevant differences in neuroanatomy than concentration/density-based approaches.   

1. Introduction 

The search for neuroanatomical differences associated with autism 
spectrum condition has produced a wide range of disparate and often 
contradictory findings. It is widely recognized that inconsistent results 
in this literature relate to small sample sizes (Sacco et al., 2007), sub
stantial clinical and etiological heterogeneity (Jeste & Geschwind, 
2014), difficulty adequately accounting for individual differences with 
known relationships to brain structure, including age, sex, and IQ 
(Bedford et al., 2020), and variability in neuroimaging methods (Carp, 
2012). Though the field is approaching agreement about neural systems 
involved in the neurobiology of autism through a combination of 

functional and structural imaging modalities (e.g., see Ecker, 2017), 
there is not a precise understanding of regional alterations in gray 
matter (GM) structure in autism. 

At least 9 meta-analyses of GM differences in autism have been 
published within the past 10 years (Carlisi et al., 2017; Cauda et al., 
2011; DeRamus & Kana, 2014; Duerden et al., 2012; Liu et al., 2017; 
Lukito et al., 2020; Nickl-Jockschat et al., 2012; Via et al., 2011; Yang 
et al., 2016). The fact that there have been so many meta-analyses on 
this topic is itself evidence that it is difficult to synthesize and summarize 
findings about GM in autism. There are fairly consistent reports of 
enlargement in inferior, middle, or superior temporal cortex (Carlisi 
et al., 2017; Cauda et al., 2011; DeRamus & Kana, 2014; Duerden et al., 
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2012; Liu et al., 2017; Lukito et al., 2020; Yang et al., 2016), middle or 
superior frontal cortex (DeRamus & Kana, 2014; Duerden et al., 2012; 
Liu et al., 2017; Lukito et al., 2020; Via et al., 2011), and precuneus or 
posterior cingulate cortex (Cauda et al., 2011; Duerden et al., 2012; 
Lukito et al., 2020; Nickl-Jockschat et al., 2012), as well as reductions in 
hippocampus (DeRamus & Kana, 2014; Duerden et al., 2012; Lukito 
et al., 2020; Nickl-Jockschat et al., 2012; Via et al., 2011) and amygdala 
(Cauda et al., 2011; Duerden et al., 2012; Nickl-Jockschat et al., 2012). 
However, even these broad findings are not reported by every meta- 
analysis, and the precise location – and even hemisphere – of findings 
varies. These findings also occur in the context of structures which have 
alternatively been reported as significantly increased or decreased in 
GM across different meta-analyses, including insula, anterior cingulate 
cortex, and the cerebellum. Furthermore, there is controversy over the 
developmental course of GM structural changes (Courchesne, 2004; 
Yankowitz et al., 2020), with some studies indicating that structural 
changes are only apparent at specific ages (e.g., Duerden et al., 2012). 
The lack of a precise understanding of gray matter (GM) alterations in 
autism diminishes its potential to increase understanding of the etiology 
of autism or serve as a clinically useful biomarker. 

While the importance of increasing sample sizes and understanding 
heterogeneity are increasingly recognized in autism research, less 
attention has been paid to key MRI methodological differences that can 
have a major impact on study findings. Many studies use voxel-based 
morphometry, a technique that quantifies differences in GM structure 
at the voxel level (Ashburner & Friston, 2000). At a high level, voxel- 
based morphometry essentially quantifies how much gray matter is 
present in an area of the brain, and statistically examines whether this 
value varies with an important characteristic, such as diagnosis. Voxel 
based morphometry typically consists of 1) segmentation of T1 images 
resulting in probability maps of GM at each voxel, 2) spatial normali
zation to a group template, 3) modulation (scaling) of probability maps 
to preserve local volumes, 4) spatial smoothing, and 5) statistical anal
ysis (for example, voxelwise t-tests for group differences in modulated 
segmentation values). Researchers may or may not include step 3 – 
modulation – and the decision of whether to report modulated or un
modulated values is controversial (Eckert et al., 2006; Radua et al., 
2014). An intuitive justification for using modulation is that performing 
spatial normalization to a group template – necessary for conducting 
analyses in the same region across individuals – artificially expands 
some regions and shrinks others, resulting in the need to correct 
(modulate) the probability values to preserve original volumes. Analysis 
of unmodulated values are said to reflect regional concentration dif
ferences, whereas modulated values are thought to reflect volume dif
ferences (Ashburner & Friston, 2000; Good et al., 2001). 

In autism research, these modulated values are inconsistently re
ported as reflecting GM volume (Rojas et al., 2006), GM concentration 
(Boddaert et al., 2004), or GM density (Mei et al., 2020). Mathematically, 
modulated GM maps represent a multiplication of two sources of vari
ation: concentration/density differences and volume differences. This 
multiplicative effect may result in decreased sensitivity to detect dif
ferences in either of these sources of variance (Eckert et al., 2006; Radua 
et al., 2014). While most autism researchers are interested in identifying 
specific brain regions that differ in GM, the ability to create distinct GM 
volume and GM density measures at this regional scale has been 
difficult. 

Recent work that has successfully dissociated GM density and vol
ume on the regional scale has also demonstrated that these GM prop
erties vary independently with age and sex. In a sample of 1,189 8–23 
year-old typically developing individuals, GM density was found to in
crease with age, while GM volume decreased across adolescence (Gen
natas et al., 2017). Additionally, females had greater GM density but 
smaller GM volume than males. Finally, when these measures were 
multiplied by each other (in rough imitation of modulated VBM), the 
resulting quality (‘GM mass’) largely resembled volume, but showed 
sometimes weaker and occasionally opposite relationships with age and 

sex as volume did. Given that density and volume vary in opposing di
rections with both age and sex, it is possible that combining these 
measures obscures true differences in either metric, and this problem 
may contribute to inconsistent GM findings in autism. While the issue of 
multiplicative error is problematic in any research context, the problem 
may be particularly pronounced in autism research, where it is common 
to have imbalanced sex ratios between groups and narrow age bands 
that vary between studies. 

The goal of this study is to use the analytic pipeline developed by 
Gennatas et al, (2017) to investigate whether differences in GM density, 
volume, or both are apparent in autism as compared to a typically 
developing (TD) comparison group. Following Gennatas et al., we use 
the terminology of “density” and “volume.” Crucially, density is not a 
measure of neuronal density, which cannot be obtained from conven
tional structural MR images. Here, density is used to refer to the con
centration of GM within a region, which is derived from probability 
value from the probabilistic segmentation, which in turn reflects his
tology and partial volume effects. Volume intuitively refers to absolute 
volume. The biological interpretation of density is less straightforward 
than volume. The probabilistic segmentation assigns a probability of 
tissue class membership based on signal intensity. Signal intensity in a 
T1 image is influenced by a number of factors, including histological 
properties, partial volume effects, and other influences. Regarding his
tology, work comparing T1 images to post-mortem staining indicates 
that T1 images largely reflect a mix of cytoarchitecture and mye
loarchitecture, meaning that signal intensity (and therefore density) 
reflects a mix of neuronal density and myelination (Eickhoff et al., 
2005). Regarding partial volume, voxels in the brain may fall entirely 
within GM, entirely within white matter, or span the gray-white 
boundary. A voxel that is entirely comprised of GM is likely to be 
assigned a very high posterior probability for the tissue class label of 
GM, whereas a voxel entirely within white matter would receive a very 
low probability value. A voxel that spans the gray-white boundary 
(‘partial volume’) would receive an intermediate density value, 
reflecting the fact that the concentration or density of GM within that 
voxel is lower than a voxel entirely comprised of GM. T1 could also be 
affected by other sources of noise or unmeasured variance, for example 
hydration levels, which affect GM volume (Nakamura et al., 2014), as 
well as tissue perfusion, cholesterol levels, unmeasured head motion, 
steroid levels, time of day, exercise, and mental activities (Weinberger 
and Radulescu, 2020). Overall, the GM density measure represents how 
confident an algorithm is that a voxel is GM, and this confidence is 
driven primarily by the concentration of GM within a voxel and the 
histology of the voxel. 

The present study had two major aims: (1) to replicate the Age and 
Sex effects of GM density and volume reported in (Gennatas et al., 2017) 
in our typically developing sample, (2) to separately examine the con
tributions of GM density and volume in autism. The purpose of per
forming the replication of (Gennatas et al., 2017) was two-fold. First, 
because this is a novel analytic technique, this replication served as a 
check that the method was performing as expected. Second, direct 
replication is often crucially lacking in neuroscience (Button et al., 
2013). We sought to combat this by providing an independent replica
tion attempt of the novel findings presented by Gennatas et al. (although 
our sample is smaller, it is very similar in age range). We addressed the 
second aim (GM density and volume differences in autism) using one of 
the largest single-site, single-scanner cohorts collected in autism 
research to date. By leveraging the power of this large, methodologically 
homogenous and well-characterized sample, we address an important 
question about GM in autism - the contributions of GM volume and 
density to regional structural differences. Finally, as a reliability check, 
we examined our aims in the context of two software pipelines that 
provide volumetric information - the Advanced Normalization Toolkit 
(ANTs, our primary analysis pipeline; Avants et al., 2011) and Freesurfer 
(another widely used structural pipeline; http://surfer.nmr.mgh. 
harvard.edu/). 
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2. Material and methods 

2.1. Sample 

Data from this study came from several neuroimaging projects con
ducted at the Center for Autism Research at the Children’s Hospital of 

Philadelphia – all using the same structural imaging sequence (Yanko
witz et al., 2020). For individuals on the autism spectrum, final autism 
spectrum disorder diagnosis was made by expert clinical judgment using 
DSM-IV-TR criteria using results from the Autism Diagnostic Observa
tion Schedule (Lord et al., 2000) and the Autism Diagnostic Interview- 
Revised (Rutter et al., 2005). All diagnostic subcategories (autism, 

Fig. 1. Processing pipeline for neuroimaging data. T1-weighted images were bias-corrected and skull-stripped. The parcellation described in Gennatas et al., 2017 
(1625 parcels) was warped from MNI space to subject-native space. Each subject’s own binary (or deterministic) gray matter segmentation was applied as a mask, 
resulting in the final parcels. The size of each (warped) parcel represents gray matter volume within that parcel. Each skull-stripped image was also subjected to 
probabilistic (or “soft”) segmentation. The mean of these soft segmentation values was extracted from each parcel, masked by the binary segmentation, as gray 
matter density. 
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Asperger’s, PDD-NOS) were pooled into a single “autism” group in this 
study, in keeping with DSM-5. Typically developing (TD) participants 
were excluded if parents reported that their child had any known trau
matic brain injury, genetic, medical, or neurological condition which 
affects cognitive functioning; extreme premature birth; any first- or 
second degree relative with autism spectrum disorder; or if the child had 
significant reported symptoms of affective disorders, anxiety, or 
attention-deficit/hyperactivity disorder. Participants ranged from 6 to 
25 years of age. Maternal educational attainment (measured on a 6- 
point scale), a proxy for socio-economic status (which is known to 
correlate with brain structure; Noble et al., 2015), did not significantly 
differ between groups (Fisher’s Exact Test, p = 0.225). 

2.2. Image acquisition 

Anatomical images were acquired on a research-dedicated Siemens 
3 T wide-bore Magnetom Verio TIM scanner with a 12-channel head coil 
and a Siemens MPRAGE sequence (voxel size = 0.9 × 0.41 × 0.41 mm, 
TR = 1900, TE = 2.54, flip angle = 9). 

2.3. Image Preprocessing and quality assurance 

Fig. 1 provides an overview of the processing pipeline. We aimed to 
replicate, as directly as possible, the processing and analytic pipeline 
described in Gennatas et al. (2017). The following multi-step processing 
and quality control procedure was applied to the sample reported in 
Yankowitz et al., 2020 (n = 456), in order to apply more stringent 
criteria to support the regional analyses presented in this paper, as well 
as to emulate the quality assurance (QA) pipeline used by (Gennatas 
et al., 2017). All images were rated for motion quality on a 1–6 scale by a 
reliable rater (Intraclass correlation ICC(2,1) = 0.95 for a subset of 
images double-coded with an expert rater), with 1 indicating no visible 
motion artifacts and 6 indicating significant widespread quality issues. 
Images were N3 bias corrected with Advanced Normalization Tools 
(ANTs, Tustison et al., 2010) and brain extracted with LABEL (Shi et al., 
2012). Brain extractions were visually inspected, and manually edited 
with ITK-SNAP (Yushkevich et al., 2006) if imperfections were identi
fied, ensuring no cortex or cerebellum was excluded. Images with rat
ings of 5 or 6 were excluded (n = 4). Images with ratings of 3 or 4 were 
reviewed for inclusion by LDY and/or BEY, with final decisions made by 
consensus, resulting in 42 additional exclusions. The 410 remaining 
images were subjected to the automated QA procedure used by Gennatas 
et al. (2017), which attempts to identify outliers by examining correla
tions of T1 images and density images with other subjects, as described 
next. Each image was normalized to MNI space using nonlinear (dif
feomorphic) warping using ANTs. Normalized images were converted to 
1D vectors. Each of these was correlated with the remaining partici
pants’ MNI-normalized vectors, and the mean of each participant’s 
correlations was taken. Participants with a mean correlation of > 2 SD 
from the mean were excluded (n = 7). In practice, this resulted in the 
exclusion of images with skull stripping that resulted in excess non-brain 
matter left in the neck area. After QA, our sample consisted of 403 
participants (213 autism, 190 TD). Demographic and clinical informa
tion for these participants is shown in Table 1. 

3-class (GM, white matter, and CSF) segmentation was performed 
using Atropos (Avants et al., 2011). Briefly, Atropos was initialized with 
no template priors, and performed K-means clustering on the first iter
ation to provide an initial segmentation. This output was updated with 
two additional iterations, with the segmentation output of the previous 
iteration used as the initialization to optimize the posterior probabilities 
of tissue class labels. This results in two outputs: the deterministic 
(“binary” or “hard”) class labels for GM, white matter, and CSF, and the 
probabilistic (or “soft”) segmentation values. 

2.4. Parcellation warping and data extraction 

For each subject, the GMD1625 parcellation (Gennatas et al., 2017) 
was warped to subject native space by applying the inverse of the 
subject-to-MNI transformation. This high-resolution parcellation in
cludes 1625 parcels, which represent GM density “peaks” (i.e., cortical 
gyri and subcortical nuclei) derived from an Age- and Sex-matched 
sample of 240 individuals from the Philadelphia Neurodevelopmental 
Cohort (Gennatas et al., 2017). These parcellations in native space were 
masked by the subject’s binary GM mask, as derived from the deter
ministic segmentation, to ensure that only GM was included in the 
analysis of volume and density. In subject native space, two values were 
extracted for each parcel: GM volume and GM density. GM volume was 
the number of voxels in the parcel in subject space, multiplied by the 
voxel size to provide volume in cubic centimeters. Total GM volume was 
calculated by summing the volume of all parcels. Thus, the biological 
interpretation of volume is straightforwardly the size of the parcels – 
with the caveat that because of individual differences in morphology, 
the parcellation may not cover all voxels labelled as GM by deterministic 
segmentation, thereby slightly underestimating overall GM volume (see 
Limitations for further discussion of this point). The advantage of this 
approach is that it is able to estimate GM volume at smaller spatial scales 
than methods that more accurately capture the whole brain (i.e., 1625 
parcels, as compared to the 68 regions of interest (ROIs) in the Desikan- 
Killiany atlas (Desikan et al., 2006)). 

GM density was the mean of the probabilistic segmentation values 
across voxels within each parcel, masked by the binary GM segmenta
tion (Gennatas et al., 2017). Extraction of these density data in subject- 
native space eliminates the need to account for warping of the data 
during spatial registration, and allows for regionally specific analysis 
without interpolation (Gennatas et al., 2017). Whole brain mean GM 

Table 1 
Participant characteristics.   

TD (N = 190) Autism (N =
213) 

P-value 

Sex    
Male 136 (71.6%) 172 (80.8%)  0.0406 
Female 54 (28.4%) 41 (19.2%)  
Age    
Mean (SD) 13.4 (4.23) 13.1 (3.58)  0.49 
Median [Min, Max] 12.4 [6.35, 

25.6] 
12.6 [6.36, 
25.9]  

IQ    
Mean (SD) 114 (15.9) 101 (20.2)  <0.001 
Median [Min, Max] 114 [67.0, 

155] 
101 [47.0, 
154]  

Motion Rating    
Mean (SD) 2.66 (0.496) 2.69 (0.528)  0.535 
Median [Min, Max] 3.00 [1.00, 

4.00] 
3.00 [1.00, 
4.00]  

ADOS-CSS  N = 210  
Mean (SD)  6.88 (2.26)  
Median [Min Max]  7.00 [1.00, 

10.0]  
Maternal Educational Attainment    
Some high school 15 (7.9%) 13 (6.1%)  0.225 
High school 0 (0%) 0 (0%)  
Some college / 2 year degree / 

Associate’s degree 
22 (11.6%) 37 (17.4%)  

4 year college degree, Bachelor’s 
degree 

46 (24.2%) 66 (31.0%)  

Master’s degree / Graduate degree- 
NOS 

41 (21.6%) 36 (16.9%)  

Doctoral degree 8 (4.2%) 6 (2.8%)  
Not Reported 58 (30.5%) 55 (25.8%)  

Note. Differences were assessed by t-tests (Age, IQ, Motion Rating, ADOS-CSS), 
chi-squared test (Sex), or Fisher’s exact test (Maternal Educational Attain
ment). Motion was rated on a 1–6 scale with 1 indicating no visible motion 
artifacts and 6 indicating significant widespread quality issues. 

L.D. Yankowitz et al.                                                                                                                                                                                                                           



NeuroImage: Clinical 32 (2021) 102888

5

density was calculated as the average of each parcel density, weighted 
by the size of the parcel in voxels in the GMD1625 atlas. 

Labels for parcels were extracted from two atlases (MNI and Talair
ach Daemon) using the atlasquery function of FSL (Jenkinson et al., 
2012), assigning the label with the highest probability averaged across 
voxels within the parcel. Functional network labels were assigned using 
a 7-network solution (Yeo et al., 2011) by assigning the modal network 
label assigned to voxels within the parcel. 

As a reliability check on our method of estimating volume and to 
ensure that volume-based results were not specific to our processing 
pipeline, regional volumes were calculated through a separate pipeline 
in Freesurfer (http://surfer.nmr.mgh.harvard.edu/). Freesurfer is a 
widely used and freely available cortical reconstruction and volumetric 
segmentation tool. Additional Freesurfer quality control steps were 
taken as described elsewhere (Yankowitz et al., 2020). Volumes for 68 
ROIs were calculated using the Desikan-Killiany atlas (Desikan et al., 
2006), 

2.5. Clinical measures 

Participants’ cognitive ability (“IQ”) was assessed with one of four 
standard instruments: the General Cognitive Ability score of the Dif
ferential Abilities Scale, Second Edition (Elliot, 2007), the Full Scale IQ 
of the Wechsler Intelligence Scale for Children, Fourth Edition (Wechsler 
et al., 2003), and the Wechsler Abbreviated Scale of Intelligence, First or 
Second Edition (Wechsler, 1999, 2011). IQ in the autism group (M =
101, SD = 20.2) was significantly lower than the TD group (M = 114, SD 
= 15.9, t = 7.0, p < 0.001), and is included in all models examining 
Group or Severity as a covariate. Clinical severity was assessed with the 
Autism Diagnostic Observation Schedule Calibrated Severity Score 
(Gotham et al., 2009), which is derived from clinician ratings and is 
hereafter referred to as “Severity.” 

2.6. Statistical approach 

Whole-brain and voxel-wise comparisons were conducted using 
Generalized Additive Models (GAMs). GAMs are similar to general linear 
models, with the additional feature that predictors are replaced by 
smooth functions of themselves (indicated by s(predictor) in the model 
specifications). By using penalized splines with smoothing parameters 
selected by restricted maximum likelihood, nonlinear effects are effi
ciently estimated. 

First, we attempted to replicate the findings of (Gennatas et al., 
2017) using our TD sample. Within the TD sample only, to examine the 
effect of Age, models were fit separately for each sex with the form: 

{total volume, mean density} ~ s(Age) (form 1) 

To examine the effects of Sex, models were of the form: 

{total volume, mean density} ~ Sex + s(Age) (form 2) 

To examine Age-by-Sex interactions, models were fit of the form: 

{total volume, mean density} ~ Sex + s(Age) + s(Age*Sex) (form 3) 

To examine the effect of autism Group, two models were fit for the 
whole brain: one for volume, using the sum of GM voxels across all 
parcels, and one for density, using the mean GM density of all parcels 
(weighted by parcel size): 

{total volume, mean density} ~ Group + Sex + IQ + s(Age) (form 4) 

Similarly, two models were fit for each individual parcel, one for 
volume and one for density. These models were corrected for multiple 
comparisons using FDR correction (Benjamini and Hochberg method 

(Benjamini & Hochberg, 1995)) separately for volume and density an
alyses, with q < 0.05 considered significant. To examine effects of 
autism symptom severity, models were fit using only the autism Group, 
with Severity replacing the Group term. Additionally, this model was fit 
for the volume of each Desikan-Killiany parcel. 

To examine potential effects of head motion on findings, models 
were re-examined with motion ratings (visual ratings from 1 to 6, with 
details provided in section 2.3 Image Preprocessing and Quality Assur
ance) included as a covariate. Additionally, because the sex-ratio in the 
diagnostic Groups is particularly unbalanced in the oldest segment of 
our sample (i.e., there are no females over 20 in the autism group), all 
analyses of Group were re-run in only individuals under Age 20 as a 
sensitivity analysis. Finally, exploratory models testing the effect of 
Group separately by sex, and the effects of Age, Sex, and IQ in the autism 
group only are presented in Supplementary Material, Supplementary 
Figs. 1 and 2. 

3. Results 

3.1. Replication of previous Age and Sex effects 

Our data were broadly consistent with prior reports of the effects of 
Age and Sex on GM. In the replication model for GM density (form 1), 
there was a significant effect of Sex (p = 0.006, with females having 
increased density relative to males, Fig. 2). Within both the males-only 
and females-only models of GM density (form 2), there was a significant 
effect of Age (pmale = 0.042, pfemale = 0.047) with density increasing with 
Age in both sexes. There was not a significant Age-by-Sex interaction 
(form 3, p = 0.9). 

In the replication model for GM volume (form 1), there was a sig
nificant effect of Sex (p < 0.001, with females having reduced volume 
relative to males). Within both the males-only and females-only models 
of GM volume (form 2), there was a significant effect of Age (pmale <

0.001, pfemale = < 0.001), with volume decreasing with Age in both 
sexes. All of these findings are a direct replication of the main findings of 
(Gennatas et al., 2017), and support the overall conclusions of that 
paper: that GM density increases while volume decreases with Age, and 
that females show higher density but lower volume than males. There 
was not a significant Age-by-Sex interaction (form 3, p = 0.13). 

3.2. Replication of previous Age and Sex findings within parcels 

In a direct replication attempt of (Gennatas et al., 2017), models of 
forms 1, 2, and 3 were conducted for each parcel in the brain and cor
rected for multiple comparisons (FDR q = 0.05), to examine the effects 
of Age, Sex, and the interaction of Age and Sex on regional brain 
structure (Supplementary Material, Supplementary Tables 1, specific 
parcels listed in Supplementary Tables 6–9). There were significant Sex 
effects (form 2) on density in 71.7% of parcels and on volume in 67.6% 
of parcels. Gennatas et al. (2017) similarly report widespread Sex effects 
on both measures in all MNI structures, though they report a higher 
number of significant parcels throughout the brain. 

There was a significant effect of Age on density (form 1) in 35.3% of 
parcels in males and 17.7% in females. For volume, the Age effect was 
significant for 30.5% of parcels in males and 38.6% in females. Notably, 
while modeling the effects of Age separately by sex theoretically gives a 
more precise estimate of the effect of Age for each sex, it also signifi
cantly reduces power (by splitting the sample roughly in half). 
Extracting the effects of Age from models in form 2 instead (that is, the 
effect of Age statistically controlling for Sex in the entire sample) results 
in a significant Age effect on density for 75.8% parcels, and on volume 
for 53.4% parcels. This pattern more closely mirrors the results reported 
by Gennatas et al., which found Age effects for nearly all parcels for 
density, but only 52% and 65% for volume (in males and females, 
respectively). In contrast to Gennatas et al.’s findings, there were no 
significant Sex-by-Age interactions predicting either density or volume 
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Fig. 2. Whole brain gray matter density and volume by Age and Sex in typical development. Whole brain mean gray matter density (a) increases with Age, and is 
higher in females than males. Whole brain mean gray matter volume (b) decreases with Age, and is higher in males than females. 

Fig. 3. Autism and whole brain gray matter density and volume. (a) There is no significant effect of Group on whole-brain gray matter density. (b) Autism is 
associated with larger gray matter volume. (c) Age is positively associated with mean density, with no significant Age-by-Group Interaction. (d) Age is negatively 
associated with total volume, with no significant Age-by-Group Interaction. 
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(form 3) in any parcels after correcting for multiple comparisons. Thus, 
we largely replicate the main findings reported in (Gennatas et al., 
2017), namely widespread Sex effects on both density and volume, and 
Age effects on both measures which are more prominent in density, 
though we fail to replicate Age-by-Sex interaction effects, perhaps due to 
lower power. This replication provides evidence for the robustness of an 
analytic framework considering volume and density distinctly in anal
ysis, and supports the use of this framework in examining differences 
related to autism. 

3.3. Motion effects in the replication of previous Age and Sex effects 

To confirm that Age- and Sex-effects in the TD sample were not 
driven by motion artifact, we re-ran analyses with motion ratings (visual 
ratings on a 1–6 scale) added as a covariate. When motion was added as 
a covariate in whole-brain replication models, Age remained a signifi
cant predictor of total volume in both sexes (form 1), Sex remained a 
significant predictor of volume and density (form 2), and the Sex-by-Age 
interaction remained a non-significant predictor of volume and density 
(form 3). The only notable changes were that in models of form 2, Age 
became a non-significant predictor of density with p-values just above 
the alpha level (pmale = 0.071, pfemale = 0.079). Regional analyses were 
also conducted with motion as a covariate. TD results are shown in 
Supplementary Material, Supplementary Table 2. Similar to the whole 
brain results, the inclusion of motion ratings as a covariate resulted in 
reductions in the number of parcels showing significant effects of Age on 
density, particularly in the separate sex models. Findings were otherwise 
largely preserved, indicating that main findings are not the result of 
motion artifact. 

3.4. Whole brain effect of Autism: 

Our next set of analyses included effects of Group (autism versus TD). 
In the model predicting GM density (form 4), neither Group nor IQ were 
significant predictors (p = 0.65 and 0.30, respectively). There were 
significant effects of Sex (p = 0.006) and Age (p < 0.001). Female sex 
and older age was associated with increased GM density. 

In the model predicting GM volume (form 4), there were significant 
effects of Group (p = 0.009), Sex (p < 0.001), Age (p < 0.001), and IQ (p 
< 0.001). Autism, male sex, younger age, and greater IQ were all asso
ciated with increased GM volume (Fig. 3). Because visual inspection of 
the data suggests a possible Age-by-Group interaction, a post-hoc test 
was conducted with an Age-by-Group interaction term added, which 
was not significant (p = 0.25). Additional post-hoc tests exploring Sex- 
by-Group and Age-by-Sex-by-Group on both volume and density 
revealed no significant interactions (see Supplementary Material). 
Within-sex effects of group are also shown in the Supplementary 
Material. 

3.5. Regional effects of autism 

Parallel analyses were conducted to examine region-specific differ
ences in density and volume. Models (form 4) were fit for each parcel, 
testing the effect of Group controlling for Age, Sex, and IQ, and cor
recting for multiple comparisons. No parcels showed significant effects 
of Group on GM density. Conversely, there were 45 parcels with 
significantly increased GM volume in the autism group (Table 2 and 
Figs. 4 and 5, additional views in Supplementary Fig. 3). Of these, 26 fall 
in the temporal lobe (8.3% of parcels labelled as temporal lobe), 10 in 
the frontal lobe (1.9%), 5 in the parietal lobe (1.7%), 3 in the occipital 
lobe (1.6%), and 1 in the cerebellum (0.5%). With regard to functional 
networks, 19 parcels were labelled as Default (5.6% of parcels labelled 
as Default), 10 Somatomotor (5.6%), 6 Dorsal Attention (3.8%), 4 Visual 
(3.3%), 2 Frontoparietal (1.6%), 1 Limbic (0.7%), 1 Ventral Attention 
(0.7%), and 2 unlabeled (0.6%). To explore the general trend of the 
direction of volume differences among all parcels, even those not 

reaching statistical significance, a sign test was applied. This test indi
cated that a significantly greater number of parcels showed larger GM 
volume in autism compared to TD (number of parcels larger in autism =
1375, p < 0.001). 

3.6. Autism symptom Severity 

Within the autism group, the effects of autism symptom severity 
(ADOS-CSS) were explored. These models were fit using models of form 
4, except that they included only autistic participants, and Severity was 
entered in place of Group. At the whole brain level, Severity did not 
significantly predict either density (p = 0.61) or volume (p = 0.73). 
Similarly, at the regional level, no parcels showed significant effects of 
symptom Severity predicting either volume or density after multiple 
comparison correction. 

Table 2 
Parcels showing significant volume effect of Group, controlling for Age, Sex, and 
IQ.  

GMD1625 Parcel Brain Region Functional Network 

84 Cerebellar Tonsil * 
183 Middle Temporal Gyrus Default 
185 Superior Temporal Gyrus Limbic 
221 Superior Temporal Gyrus Default 
249† Inferior Temporal Gyrus Default 
261 * Default 
263 Superior Temporal Gyrus Default 
283 Fusiform Gyrus Visual 
298 Middle Temporal Gyrus Default 
351 Declive Visual 
358 Inferior Frontal Gyrus Default 
376 Middle Temporal Gyrus Default 
385 Declive Visual 
421 Inferior Frontal Gyrus Default 
423 Middle Temporal Gyrus Default 
425 Middle Temporal Gyrus Default 
427 Superior Temporal Gyrus Default 
473 Inferior Frontal Gyrus Default 
480 Middle Temporal Gyrus Default 
484 Sub-Gyral Ventral Attention 
544 Middle Frontal Gyrus Default 
563 Middle Temporal Gyrus Default 
564 Middle Temporal Gyrus Default 
595 Middle Occipital Gyrus Visual 
602 Sub-Gyral Default 
645† Culmen * 
731 Superior Temporal Gyrus Somatomotor 
806 Superior Temporal Gyrus Somatomotor 
807 Superior Temporal Gyrus Somatomotor 
862 Superior Temporal Gyrus Somatomotor 
876† Superior Temporal Gyrus Somatomotor 
878† Superior Temporal Gyrus Somatomotor 
891† Superior Temporal Gyrus Somatomotor 
981 Superior Temporal Gyrus Somatomotor 
1158 Precentral Gyrus Dorsal Attention 
1161 Inferior Frontal Gyrus Dorsal Attention 
1193 Precentral Gyrus Dorsal Attention 
1287 Postcentral Gyrus Somatomotor 
1308 Cingulate Gyrus Frontoparietal 
1318 Cingulate Gyrus Frontoparietal 
1435† Precuneus Dorsal Attention 
1455 Superior Frontal Gyrus Default 
1502 Precuneus Dorsal Attention 
1549 Superior Parietal Lobule Dorsal Attention 
1608 Sub-Gyral Somatomotor 

Note. Brain region assignments come from the Talairach Daemon using the 
atlasquery function of FSL, and functional networks were assigned by the modal 
label for all the voxels within each parcel from the (Yeo et al., 2011) 7-Network 
Parcellation. * No label was assigned to the parcel. † Parcel is no longer signif
icant when motion ratings are included as a covariate in the model. 
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3.7. Motion 

There was no difference in motion ratings between the autism (M =
2.69, SD = 0.53) and TD (M = 2.66, SD = 0.50) groups t(400) = − 0.62, 

p = 0.54. Worse motion ratings were associated with younger age (r =
− 0.29, p < 0.001), reduced mean density (r = − 0.13, p = 0.008), and 
increased GM volume (r = 0.1, p = 0.036). To explore the effect of 
motion on our findings, all results described above were re-run with 

Fig. 4. Parcels showing a significant effect of larger volume in autism compared to TD, expressed as the percentage of significant parcels per MNI label (a) or per 
network as defined by the 7-network (Yeo et al., 2011) solution (b). 

Fig. 5. Regional effects of autism on gray matter volume. Parcels showing significant effects of Group on gray matter volume, controlling for Age, Sex, and IQ, 
corrected for multiple comparisons (q < 0.05). The color of each parcel represents the estimate of the Group term from the GAM for that parcel, with more yellow 
values indicating larger effects. MNI coordinates shown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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motion ratings included as a covariate. In whole brain models examining 
effects of autism, the effect of Group remained a significant predictor of 
volume and not density (form 4), and autism Severity remained a non- 
significant predictor within the autism group (form 4). In regional 
models examining the effect of Group including a motion covariate, 
there continued to be no significant differences in parcel-wise density; 
39 parcels continued to show a significant effect of Group on volume 
(meaning that 6 parcels [249, 645, 876, 878, 891, 1435, see Table 2 for 
labels] lost significance when including motion in the model). Broadly, 
including motion as a covariate reduced the significance of the Age/GM 
density relationship, likely related to the correlation of motion and Age 
in this sample. Motion did not have substantial impact on Sex, Group, or 
autism Severity findings. 

3.8. Age 

Age-related sensitivity analyses were primarily focused on identi
fying whether Group differences were consistent across the age span of 
our sample (i.e., not driven by children/adolescents or adults alone). In 
the participants under age 20, as in the full sample, there was a signif
icant effect of Group on total GM volume (p = 0.0048) but not mean GM 
density (p = 0.44) when controlling for Age, Sex, and IQ. In regional 
analyses, 0 parcels showed a significant effect of Group on GM density, 
while 67 showed a significant effect of Group on GM volume, again 
controlling for Age, Sex, and IQ. Of these, 43 overlapped with the parcels 
that were significant in the main analysis, and 24 newly emerged as 
significant. One parcel (794, in the insula) was significantly smaller in 
autism. All results are displayed in Supplementary Material, Supple
mentary Tables 3-4 and Supplementary Figs. 4-6. As in the whole- 
sample analysis, autism Severity was not a significant predictor of 
whole-brain or regional GM density or volume. Overall, the Age sensi
tivity analysis found similar results in the participants only under age 20 
as the full sample, with additional parcels showing significant increases 
in volume in the autism group in the restricted sample. 

3.9. Freesurfer volume measures 

To establish that the primary findings of increased volume in autism 
are robust to differences in methodology and not specific to the 

processing pipeline, follow-up analyses were conducted examining 
regional volume as derived by Freesurfer. This approach yielded 23 
significant regions, shown in Fig. 6 and Table 3. 

4. Discussion 

This is the first study to measure GM density and GM volume sepa
rately in autistic youth to uncover which metric drives GM structural 
differences observed between autistic and TD youth. Our results show 
that at both the level of the whole brain and in specific brain regions, GM 
volume is significantly increased in autism. Notably, many of the regions 
showing increased GM volume in autism have been implicated in prior 
brain imaging studies of autism, including studies of structural differ
ences, task-based functional differences, and intrinsic functional con
nectivity differences (Ecker, 2017). For example, enlargement was 
detected in inferior, middle, and superior, temporal gyri, as well as 
inferior and superior frontal gyri, all of which have been previously 
reported to show enhancement across meta-analyses of GM structure in 
autism (Carlisi et al., 2017; Cauda et al., 2011; DeRamus & Kana, 2014; 
Duerden et al., 2012; Liu et al., 2017; Lukito et al., 2020; Yang et al., 
2016). While sensitivity analyses (i.e., including a covariate for motion 
or restricting the age of the sample) affected the exact number of sig
nificant parcels, the general pattern of enlargement remained consistent. 
These findings are supported by ROI-based analyses using a standard 
Freesurfer processing pipeline, which identified enlargement in similar 
regions. 

In the context of significantly increased GM volume in autism, there 
were no differences detected between Groups in GM density. These re
sults suggest that when previous studies of modulated VBM values have 
reported differences related to autism, these differences were likely 
driven more by volume than by density. 

The findings of increased GM volume but not density in autism have 
implications for how future structural imaging studies of autism should 
be conducted. First, these findings suggest against using modulated SPM 
VBM values as an indicator of GM alterations in autism. While modu
lated VBM values are often reported as reflecting volume differences, 
these values incorporate the qualities described as density and volume in 
the present study. The utility of these modulated values has been pre
viously criticized, as the multiplicative effects of combining these two 
properties appears to dilute effects that may be present in only one 
property (Eckert et al., 2006; Radua et al., 2014). The present study 
underscores that density and volume are separable properties which 
capture unique variance in autism, and thus support the recommenda
tion not to combine them through modulation in VBM. Furthermore, 
these findings also indicate that volume, and not density, is the more 
sensitive measure for autism-related differences. Unmodulated VBM 
values, often described as concentration or density, are most similar to 
the metric reported as density in the current study. Thus, these findings 
hint that neither modulated nor unmodulated VBM values are optimal 
GM measures for sensitive and replicable autism research, relative to the 
direct measurement of regional GM volume. The reliance on these 
measures in prior VBM studies may contribute to inconsistencies of re
ports of gray matter structural differences in autism, as reporting on a 
weak signal (i.e. density/unmodulated VBM) or a signal rendered 
weaker or less reliable through multiplication (i.e. volume and density/ 
modulated VBM) increases the likelihood of spurious or inconsistent 
results. 

There are two main methods for measuring regional volume directly: 
region-of-interest approaches and tensor-based morphometry. A region- 
of-interest approach, such as the volumes reported by FreeSurfer, pro
vides the volume of anatomically meaningful subunits of the brain. As 
demonstrated in this paper, the FreeSurfer ROI approach can identify 
areas of increased volume in autism. The FreeSurfer pipeline has the 
advantages of being free, popular, and easy to implement, and addi
tionally breaks GM volume into its constituent parts: cortical thickness 
and surface area. Cortical thickness and surface area can have 

Table 3 
Regions of the Desikan-Killiany atlas showing greater volume for autism 
compared to no autism, controlling for Age, Sex, and IQ, surviving multiple 
comparison correction.  

Hemisphere Region T-value Q-value 

R Banks of the Superior Temporal Sulcus  2.66 0.031 
L Caudal Anterior Division of Cingulate Cortex  2.55 0.038 
R Cuneus  2.97 0.015 
R Inferior Temporal Gyrus  3.01 0.015 
R Insula  2.59 0.036 
L Lateral Orbitofrontal Cortex  2.97 0.015 
R Lateral Orbitofrontal Cortex  2.98 0.015 
L Middle Temporal Gyrus  3.73 0.002 
R Middle Temporal Gyrus  4.04 0.002 
L Postcentral Gyrus  2.65 0.031 
R Postcentral Gyrus  2.42 0.048 
L Posterior Cingulate  2.44 0.047 
L Precentral Gyrus  2.43 0.047 
R Precentral Gyrus  3.92 0.002 
L Rostral Anterior Cingulate  3.6 0.003 
R Superior Frontal Gyrus  2.69 0.031 
L Superior Parietal Cortex  3.24 0.01 
R Superior Parietal Cortex  4.76 0 
L Superior Temporal Gyrus  2.86 0.02 
R Superior Temporal Gyrus  3.87 0.002 
L Supramarginal Gyrus  3.61 0.003 
R Supramarginal Gyrus  3.07 0.015 
L Transverse Temporal Cortex  3.78 0.002 

Note. No regions showed reduced volume in autism. 
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independent associations with autism, though evidence remains mixed. 
For example, cortical thickness has been reported to be both increased 
(e.g., van Rooij et al., 2017) and decreased (e.g., Ecker et al., 2014) in 
autism, with potentially altered developmental trajectories (e.g., Zie
linski et al., 2014). Increased surface area in autism has also been re
ported in some (Ohta et al., 2016) but not all (Raznahan et al., 2013) 
studies. Further study of cortical thickness and surface area can help 
elucidate differences in volume. The disadvantage of an ROI approach is 
the relatively large scale of the regions of interest (e.g., FreeSurfer 
commonly reports only 68 ROIs (Desikan et al., 2006)). Of course, a 
different set of ROIs can be used (e.g., the 1625 parcels used in this 
study), although doing so requires additional processing steps and ren
ders comparison across studies challenging, to the degree that different 
researchers use different parcellations. 

The second volumetric method, tensor-based morphometry (TBM, e. 
g., Hua et al., 2008), is a voxel-wise approach that measures volume 
directly. This method is roughly equivalent to directly analyzing the 
Jacobian determinant of the deformation matrix produced in VBM, 
rather than using this deformation to modulate the segmentation values. 
Though less common than SPM’s VBM, TBM methods have been used in 
autism research (Brun et al., 2009), and publicly available software 
exists to implement these methods (e.g. RAVENS maps (Davatzikos 
et al., 2001) or Tensor Based Morphometry Analysis in BrainSuite, 
http://brainsuite.org/). Focus on volumetric region-of-interest or TBM 
approaches may provide more sensitivity and insight into the nature of 
GM alterations in autism. 

The underlying mechanisms of GM volume alterations in autism 
cannot be determined by in vivo neuroimaging, but can be informed by 
other lines of research. Increased cortical surface area (Ohta et al., 2016) 
and increased cortical thickness (Ecker et al., 2014; Khundrakpam et al., 
2017; Raznahan et al., 2013; Smith et al., 2016), have both previously 
been reported in autism. Cortical surface area and thickness, which 
multiply to produce cortical volume, are independently heritable with 
unique mechanistic underpinnings, implying that there are multiple 

underlying genetic influences on GM enlargement (Panizzon et al., 
2009). An increased neuronal number has been found in post-mortem 
prefrontal cortex of autistic children (Courchesne et al., 2011). 
Increased dendritic spine density and decreased synaptic pruning has 
also been reported in post-mortem autistic brains (Tang et al., 2014). 
This has been linked with hyperactive mammalian target of rapamycin 
(mTOR) kinase, which has in turn been linked with a number of autism- 
linked genes, including tSC1/TSC2, NF1, and PTEN (Bourgeron, 2009). 
Additional evidence implicates genes regulating prenatal neural pro
genitor cells, including CHD8 (Sugathan et al., 2014), which has been 
linked to both autism and macrocephaly (Bernier et al., 2014), and 
WDFY3 (Orosco et al., 2014). Additionally, approaches examining 
structural covariance suggest that connectivity plays a role in morpho
logical differences in autism (e.g., Mei et al., 2020; Zielinski et al., 2012) 

We also broadly replicate the findings of (Gennatas et al., 2017) with 
regard to the differential effects of Age and Sex on GM density and 
volume. We find that while whole brain volume is larger in males than 
females, mean density is greater in females than males. We additionally 
confirm that while volume decreases during this age range, density in
creases. In addition to contributing to the literature on age and sex ef
fects on brain volume, these results suggest that these study methods are 
sensitive and robust – and support their application to the autism data. 

Across all effects (Age, Sex, and their interaction) and both outcome 
measures (density and volume), we find a lower percentage of signifi
cant parcels than Gennatas et al. (2017), and fail to detect significant 
Age-by-Sex interactions surviving multiple comparison correction. This 
is likely due to our smaller sample size (n = 190 vs. n = 1189) and 
reduced power. Notably, we nonetheless find evidence to support two of 
the main patterns of their regional results. Specifically, we find: 1) sig
nificant effects of Age on both density and volume, which are more 
widespread for density than volume, and 2) more widespread Sex effects 
than Age effects on volume. Thus, despite our smaller sample size, our 
results support the interpretation that density and volume develop 
differently by sex across adolescence. 

Fig. 6. Regions showing increased volume in autism relative to TD. Volume of Desikan-Killiany regions was calculated with Freesurfer. No regions were reduced in 
volume in autism. 
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It should be noted that although the term “GM density” is used here 
to describe the values from the probabilistic segmentation following 
Gennatas et al., 2017, this measure does not literally refer to the density 
of tissue. Neuronal density is not currently measurable by MRI or any in 
vivo measure, and this study cannot determine whether there are dif
ferences in neuronal count, size of neurons, myelination, or other mo
lecular features that contribute to differences in tissue contrast 
(Weinberger and Radulescu, 2020). Rather, the aim of the study was to 
determine, of possible features which can be extracted from structural 
MRI, which are most sensitive to underlying differences associated with 
autism. 

A limitation of this study is that when warped to individual subject 
space, the GM density parcellation does not cover all voxels labelled as 
GM by binary segmentation due to individual variability in morphom
etry. This issue is not unique to this method, and registration quality 
affects any regionally-specific measure of brain structure (Crum et al., 
2003). Controlling for Age, sex, and IQ, the percentage of GM from the 
binary segmentation excluded by the parcellation is not significantly 
different between Groups (8.6% in TD vs. 8.8% in autism), although this 
percentage varies by Age and Sex (see Supplementary Material, Sup
plementary Figure 7 and Supplementary Table 5). No single value can 
capture all possible individual or group variation in brain structure. Our 
work indicates that volume is greater in a number of brain regions in 
autism, which we confirm using ROIs derived from Freesurfer, which 
does not suffer this issue. 

While this study benefits from possibly the largest single-site, single- 
scanner sample of structural MRI of autistic and TD participants, it is not 
powered to detect small effect sizes. Thus, it is possible that GM density 
is altered in autistic individuals to a smaller degree than GM volume. 
This possibility could be explored in larger, multi-site datasets (e.g., 
ENIGMA (van Rooij et al., 2017) or ABIDE (Di Martino et al., 2017)). 
Independent replication of our autism findings in such samples would be 
important to demonstrate the robustness and generalizability of these 
results. 

This case-control design was employed to address the question of 
whether GM density, volume, or both are associated with autism 
regionally when broken into constituent parts, but has limitations. The 
case-control design does not address the significant heterogeneity of 
autism, which certainly contributes to the lack of replicability in autism 
GM research (Jeste & Geschwind, 2014), and is better addressed by 
examining potential subgroups or subtypes. Additionally, though we 
examined the effects of Age statistically, other approaches including 
longitudinal designs and age normative modeling (e.g., Tunç et al., 
2019) are better suited to assess the developmental course of structural 
differences in autism. 

5. Conclusions 

These findings indicate that GM volume, but not GM density, is 
related to autism at the whole brain level, and in regions with previously 
reported structural differences, including inferior, middle, and superior 
temporal gyrus, inferior and superior frontal gyrus, precuneus, and 
fusiform gyrus. These findings suggest research on brain structural dif
ferences in autism should focus on direct measures of morphometry, 
including volume, cortical thickness, and surface area to maximize the 
likelihood of identifying meaningful differences. These findings also 
confirm through replication that GM density and GM volume are 
dissociable at the regional level, and vary differentially with Age and 
Sex. Our replication of the dissociation of Age and Sex effects on density 
and volume, along with our new findings indicating an effect of autism 
on volume but not density, indicate the importance of considering these 
measures separately. 
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Brun, C.C., Nicolson, R., Leporé, N., Chou, Y.-Y., Vidal, C.N., DeVito, T.J., Drost, D.J., 
Williamson, P.C., Rajakumar, N., Toga, A.W., Thompson, P.M., 2009. Mapping brain 
abnormalities in boys with autism. Hum. Brain Mapp. 30 (12), 3887–3900. https:// 
doi.org/10.1002/hbm.20814. 

Button, K.S., Ioannidis, J.P.A., Mokrysz, C., Nosek, B.A., Flint, J., Robinson, E.S.J., 
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