
����������
�������

Citation: Labed, M.; Sengouga, N.;

Rim, Y.S. Control of Ni/β-Ga2O3

Vertical Schottky Diode Output

Parameters at Forward Bias by

Insertion of a Graphene Layer.

Nanomaterials 2022, 12, 827. https://

doi.org/10.3390/nano12050827

Academic Editors: Filippo

Giannazzo, Leonard Atanase and

Antonio Di Bartolomeo

Received: 29 January 2022

Accepted: 26 February 2022

Published: 1 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Article

Control of Ni/β-Ga2O3 Vertical Schottky Diode Output
Parameters at Forward Bias by Insertion of a Graphene Layer
Madani Labed 1, Nouredine Sengouga 1 and You Seung Rim 2,*

1 Laboratory of Semiconducting and Metallic Materials (LMSM), University of Biskra, Biskra 07000, Algeria;
madani.labed@univ-biskra.dz (M.L.); n.sengouga@univ-biskra.dz (N.S.)

2 Department of Intelligent Mechatronics Engineering and Convergence Engineering for Intelligent Drone,
Sejong University, Seoul 05006, Korea

* Correspondence: youseung@sejong.ac.kr

Abstract: Controlling the Schottky barrier height (φB) and other parameters of Schottky barrier diodes
(SBD) is critical for many applications. In this work, the effect of inserting a graphene interfacial
monolayer between a Ni Schottky metal and a β-Ga2O3 semiconductor was investigated using
numerical simulation. We confirmed that the simulation-based on Ni workfunction, interfacial trap
concentration, and surface electron affinity was well-matched with the actual device characterization.
Insertion of the graphene layer achieved a remarkable decrease in the barrier height (φB), from 1.32
to 0.43 eV, and in the series resistance (RS), from 60.3 to 2.90 mΩ.cm2. However, the saturation
current (JS) increased from 1.26× 10−11 to 8.3× 10−7(A/cm2). The effects of a graphene bandgap
and workfunction were studied. With an increase in the graphene workfunction and bandgap, the
Schottky barrier height and series resistance increased and the saturation current decreased. This
behavior was related to the tunneling rate variations in the graphene layer. Therefore, control of
Schottky barrier diode output parameters was achieved by monitoring the tunneling rate in the
graphene layer (through the control of the bandgap) and by controlling the Schottky barrier height
according to the Schottky–Mott role (through the control of the workfunction). Furthermore, a zero-
bandgap and low-workfunction graphene layer behaves as an ohmic contact, which is in agreement
with published results.

Keywords: SBD; β-Ga2O3; electron-beam evaporation; interfacial traps; graphene; workfunction;
bandgap

1. Introduction

Gallium oxide (Ga2O3) is a new oxide semiconductor material with a long and rich
history [1,2]. Pioneer studies were performed in the 1960s but were almost forgotten for
about three decades. However, in the last two decades, its ultra-wide bandgap (UWBG)
of ~4.8 eV, high breakdown electric field of ~8 MV/cm, and high saturation velocity of
1× 107cm/s have brought Ga2O3 to the fore again [3–5]. Ga2O3 has six polymorphs: α,
β, γ, δ, ε and k, with β-Ga2O3 being the most stable [4]. Furthermore, it can be grown
directly from the melt at a low cost and allows for large-scale production compared with
GaN, InGaN, and SiC [1,2,4]. However, this material has a problem with developing a
stable p-type [2,5–7]. As a result, its use in bipolar devices is limited to a heterojunction
with other p-type materials such as NiO [8,9] and Cu2O [10]. β-Ga2O3 is therefore mainly
used in unipolar devices (SBD [4,11], MOSFET [12], Thin-Film Transistor (TFT) [13], and
field emission [14] devices). The SBD device based on a UWBG semiconductor is of great
interest and, aimed to improve the thermal stability and decrease the series resistance
(Rs), ideality factor (n), and leakage current. A low threshold voltage (VTh) is preferred
in order to minimize heating during prolonged device operation [15]. In addition to the
above-mentioned characteristics, researchers aimed to develop SBDs with a controllable
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Schottky barrier height (φB), with the aim of developing SBD-based switching devices
for special applications. According to the Schottky–Mott relation [16], the linear relation
between the metal workfunction (φM) and φB can be set to ( ∂φB

∂φM
= 1). However, in most

materials, this relation is not realistic due to unexpected effects such as the formation of
interface states or an interface dipole [16]. Farzana et al. [17] studied the influence of the
choice of metal in a (010) β-Ga2O3 SBD. They used different metals, namely Pd, Ni, Pt,
and Au, with a workfunction of 5.20, 5.25, 5.65, and 5.30 eV, respectively, and obtained
for each metal an φB of 1.27, 1.54, 1.58, and 1.71 eV, respectively. After linking the metal
workfunction values and the obtained φB, a modified Schottky–Mott relation for Au was
obtained. Yao et al. [18] used W, Cu, Ni, Ir, and Pt with workfunctions of 4.55, 4.65, 5.15, 5.27,
and 5.65 eV, respectively, and the corresponding φB values from the capacitance voltage
were 1.94, 1.61, 1.61, 2.3, and 1.9 eV, respectively. It was also observed that φB does not
show a universal trend with the metal workfunction, indicating that surface/interface
states can play a very important role in determining an effective φB value. This is due to
defects and the crystal orientation, crystal quality, and passivation with different types
of surface treatments or metal deposition techniques. Among the different solutions that
have been proposed to address these issues is depositing a layer with known properties
between the metal and the β-Ga2O3 that can improve the SBD’s performance and allow for
better φB control. Bhattacharyya et al. [19] studied the modulation and enhancement of
φB for different β-Ga2O3 orientations and metals when an ultra-thin SiO2 layer is inserted
at the metal–β-Ga2O3 interface. Harada et al. [15] reported systematic variations in φB in a
metal/PdCoO2/β-Ga2O3 SBD while increasing the thickness of the inserted PdCoO2 layer;
the obtained results demonstrated good control of φB in a wide range (0.7 to 1.9 eV).

In this article, a new approach is proposed to improve and control the Schottky barrier
height and other parameters of Ni/β-Ga2O3 by inserting a graphene layer at the interface
between the Ni and the β-Ga2O3 so that the outputs of the SBD are controlled by the
tunneling rate through the graphene layer (by tuning the graphene bandgap) and by the
barrier between the graphene and the β-Ga2O3 (by tuning the graphene workfunction).

2. Experimental

A β-Ga2O3 Schottky barrier diode (SBD) based on an epitaxial Si-doped (001) β-Ga2O3
drift layer was deposited on a Sn-doped (001) β-Ga2O3 substrate by halide vapor-phase
epitaxy (HVPE). A nickel film was deposited on the drift layer using an electron-beam
evaporation method followed by annealing at 400 ◦C. A schematic illustration of the SBD
structure is shown in Figure 1. The thickness of the nickel, Si-doped β-Ga2O3, and Sn-
doped β-Ga2O3 was 0.3, 10, and 650 µm, respectively, while the doping was 1× 1018 and
3× 1016 cm−3, respectively. For more details, see our previous publication [20].
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3. Simulation Methodology

SILVACO ATLAS TCAD software (License Number 14556 License Period 18-3-21 to
17-3-22, Biskra Université Laboratory of Metallic and Semiconducting Materials FSESNV,
Biskra, Algeria) was used in this simulation to solve the basic drift-diffusion semiconductor
equations, which are the Poisson and continuity equations.

The Poisson equation is given by [2,21]:

div(ε∇ψ) = −q
(

p− n + Nd ± N±t
)

(1)

where ψ is the electrostatic potential, ε is the permittivity, p and n are the free holes and
electron concentrations, respectively, and N±t is the trap’s ionized density (cm−3).

The continuity equations for electrons and holes are defined in steady states by [2,21]:

0 =
1
q

div
→
Jp + Gn − Rn (2)

0 = −1
q

div
→
Jp + Gp − Rp (3)

where Gn and Gp are the generation rates for electrons and holes, respectively, Rn and Rp

are the recombination rates for electrons and holes, respectively,
→
Jn and

→
Jp are the electron

and hole current densities, respectively, which are given in terms of the quasi-Fermi level
(φn and φp) and mobility (µn and µp) as [2,21]:

→
Jn = −qµnn∇φn (4)

→
Jp = −qµp p∇φp (5)

Traps are represented by their ionized density N±t . The sign ± depends on whether
the trap is an acceptor or a donor so that N+

t = f Nt and N−t = (1− f )Nt, where f is the oc-
cupancy function given by f =

σnn+σp p
σn(n+nt)+σp(p+pt)

and σn(p) is the trap capture cross-section
for electrons (holes). Furthermore, the recombination rate is related to traps through the

well-known SRH formula Rn,p =
pn−n2

i
τ0n(p+pt)+τ0p(n+nt)

with nt = niexp(−(Ei − Et)/kT) and

pt = niexp(−(Et − Ei)/kT). τ0n and τ0p are the minority carrier lifetimes, which are also re-
lated to traps through τ0n(p) =

1
vthn(p)σn(p)Nt

, where vthn(p) is the thermal velocity of electrons

(holes). The external generation rate Gn,p is neglected since the forward bias is within low
injection levels [2]. The tunneling mechanism through graphene, which has an important
effect [22,23], has to be considered together with thermionic emissions, Shockley–Read–Hall
and Auger recombination, Klassen’s concentration and mobility-dependent temperature,
and a reduction in the image force in the simulation. For the graphene layer’s simulation,
we considered this layer to be an ultra-thin (0.34 nm thickness) semiconductor with high
mobilities, a low tunneling mass, and a low bandgap (0–0.45 eV). The dominant transport
mechanism of electrons from Ni to graphene is a tunneling mechanism. Tunnelling was
considered by using the Universal Schottky Tunnelling (UST) model and the tunnelling
current is given by [7]:

JT =
A∗TL

KB

∞∫
ε

Γ
(
E′
)

ln
(

1 + Fs(E′)
1 + Fm(E′)

)
dE′ (6)

where A∗, TL, KB, ε, Fs(E′), and Fm(E′) are the effective Richardson’s coefficient
(41.1 Acm−2K−2 for β-Ga2O3 [2]), the lattice temperature, the Boltzmann constant, the
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electron energy, and the Maxwell–Boltzmann distribution in the semiconductor and metal,
respectively, and Γ(E′) is the tunnelling probability given by [7]:

Γ(ε) = exp

[
−2

√
2m∗

}

∫ x2

x1

√
Ec(x)− εdx

]
(7)

where Ec(x), (x1, x2), and m∗ are the potential energy distribution of the Schottky barrier
diode, the classical turning points, and the tunnelling mass in graphene (m∗ = 0.012m0
where m0 is the free electron mass [24]), respectively. In addition, the thermionic emission
plays an important role in this type of device. The properties and traps related to each layer
are presented in Tables 1 and 2, respectively.

Table 1. Properties of each layer of the studied SBD [2,25].

Parameters Sn: β-Ga2O3 Si: β-Ga2O3 Graphene

Bandgap (eV) 4.8 4.8 0–0.45

Affinity (eV) 4 4 4–4.8

Hole mobility (cm2 V−1 s−1) 10 10 9000

Electronmobility (cm2 V−1 s−1) 172 300 9000

Relative permittivity 12.6 11 6.9

Nc (cm−3) 3.7× 1018 3.7× 1018 1× 1019

Nv (cm−3) 5× 1018 5× 1018 1× 1019

Nd (cm−3) 1× 1018 3× 1016 /

Thickness (µm) 650 10 0.34 × 10−3

Table 2. Traps related to β-Ga2O3 layers [2,4,26].

Traps Trap Level
(Ec−E) (eV)

Trap Concentration
(cm−3)

Capture Cross-Section
σn (cm2) σn/σp

Sn-doped
β-Ga2O3 Bulk

layer

0.55
0.74
1.04

3× 1013

2× 1016

4× 1016

2× 10−14

2× 10−14

2× 10−14

100
100
10

Si-doped β-Ga2O3
thin layer

0.60
0.75
0.72
1.05

3.6× 1013

4.6× 1013

4.6× 1013

1.1× 1014

2× 10−14

2× 10−14

2× 10−14

2× 10−14

100
100
100
10

4. Results

As presented in Figure 2, a good comparison between the simulation data and the
experimental measurements was obtained. The extracted Ni workfunction, interfacial trap
concentrations, and surface electron affinity from SILVACO ATLAS software were 5 eV,
8× 1015 cm−3 for all traps (E2 (Ec − 0.75), E∗2 (Ec − 0.72), and E3 (Ec − 1.05)), and 3.89 eV,
respectively.
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Figure 2. Comparison between the simulation data and experimental measurements. The inset is a
linear representation of the J-V characteristics.

4.1. Effect of Insertion of a Graphene Layer

The main goal of the present work was to study the effect of inserting a graphene
monolayer between the Ni and the Ga2O3. This monolayer has the potential ability to
come into contact with the Ga2O3 at a low Schottky barrier height. As shown in Figure 3, a
strong effect on the forward current and a reduction in the Schottky barrier height from
1.32 to 0.43 eV were obtained. These results are in agreement with those of Yuan et al. [27],
where a very low φB was obtained. The results are also in agreement with those of Zhong
et al. [28], who found a decrease in φB when a graphene layer was inserted into a GaN SBD.
According to Courtin et al. [22], a similar variation for a graphene–silicon interface was
obtained. Inaba et al. [29] also found a very low φB at a CNT–SiC interface. In addition, a
decrease in the series resistance (Rs) from 60.3 to 2.90 mΩ cm2 was obtained. However, an
increase in the saturation current from 1.26× 10−11 to 8.3× 10−7(A/cm2) was observed
after the insertion of this graphene layer. This decrease in φB and Rs along with the increase
in the saturation current when the graphene monolayer was inserted can be explained
by the increase in the tunneling rate, especially at the interface between the Ni and the
graphene as shown in Figure 4. Accordingly, for the electron transport from the Ni to
the graphene layer (assuming sufficient energy to overcome the barrier), the thermionic
emission dominated. Otherwise, when the electron energy was lower than the barrier
energy, tunneling played an important role, especially at the Ni–graphene interface.
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With the graphene layer, the tunneling mechanism increased the density of the ex-
tracted free electrons from the Ni to the graphene and then to the β-Ga2O3 by the thermionic
emission and tunneling. This led to a large decrease in Rs. In addition, electron tunneling
through the formed barriers between Ni/graphene and graphene/β-Ga2O3 affected the
SBD parameters.

4.2. Graphene Bandgap Effect

We demonstrated that a graphene monolayer can enhance the SBD outputs by increas-
ing the tunneling rate. Experimentally, the graphene bandgap can be controlled by several
methods. Takahashi et al. [30] found that the bandgap gradually increases with oxygen
adsorption to as high as 0.45 eV upon exposure to 2000 L of oxygen. Additionally, the
bandgap can be increased by atomic and molecular doping control, such as the simultane-
ous insertion of holes and electrons at hetero sites [31]. Altering the number of graphene
layers is another way of tuning the graphene bandgap [32]. Bearing in mind these facts, the
effect of the graphene bandgap was investigated and, as shown in Figure 5, as the graphene
bandgap increased from 0 to 0.45 eV, the output current was affected.
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The φB value increased from 0.43 eV to 0.69 eV and the series resistance increased
from 2.90 to 5.90 mΩ cm2 as shown in Figure 6. This result can be interpreted as a
decrease in the tunneling rate, as shown in Figure 7. This decrease in the tunneling rate is
related to the increase in the potential energy distribution of the Schottky barrier diode as
presented in Figure 8. A high tunneling rate was obtained in most cases at the Ni–graphene
interface that was higher than that at the graphene–β-Ga2O3 interface. The obtained values
demonstrate the possibility of tuning the Schottky barrier height of a Ni–β-Ga2O3 Schottky
diode through the control of the tunneling rate in the graphene layer. Figure 8 shows the
conduction band variation for the Ni/graphene/β-Ga2O3 SBD with an increasing graphene
bandgap. The barrier between the Ni and the graphene increased and this affected the
electron tunneling from the Ni to the graphene. In addition, a small increase in the barrier
between the graphene and the β-Ga2O3 was observed and this led to an increase in φB.

This decrease in the tunneling rate led to a decrease in the saturation current as
presented in Figures 5 and 6.
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4.3. Graphene Workfunction Effect

The effect of the graphene workfunction on SBD parameters was investigated. In this
study, a zero-bandgap graphene layer was considered. As the graphene workfunction
increased from 4 to 4.8 eV, the output current was affected (Figure 9) and φB increased
from 0.320 eV to 0.545 eV as presented in Figure 10. This increase in φB can be interpreted
according to the simple Schottky–Mott model as the difference between the workfunction
of graphene (WG) and the affinity of β-Ga2O3(χGa2O3 ) [22]:

φB = WG − χGa2O3 (8)

Furthermore, a decrease in the saturation current was obtained with the increase in
the graphene workfunction.
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As the graphene workfunction increased, Rs increased from 0.89 to 3.9 mΩ.cm2. This
is related to the decrease in the tunneling rate in the graphene layer. Generally, controlling
the graphene workfunction means controlling φB between the graphene and the β-Ga2O3
as presented in Figure 11. As the workfunction increases, the barrier between the graphene
and the β-Ga2O3 increases while that between the Ni and the graphene decreases. This
leads to a decrease in the number of electrons transported from the graphene to the β-
Ga2O3 by thermionic emission. Therefore, an increase in Rs and a decrease in the saturation
current were obtained with an increase in the graphene workfunction. Experimentally



Nanomaterials 2022, 12, 827 10 of 12

and as described in [31,32], the graphene workfunction can be controlled by altering
the number of graphene layers. The workfunction increased as well, reaching 4.8 eV. In
addition, altering the graphene doping density is an essential method for controlling the
graphene workfunction because doping the graphene layer changes the fermi-level of the
graphene, which affects the electronic properties of the graphene and, among the properties,
the workfunction [33,34]. In addition, a zero-bandgap and low-workfunction SBD behaves
as an ohmic contact as shown in the inset of Figure 9 (the current has a linear variation
versus the forward voltage). Figure 11 shows the equilibrium band diagram. For a low
workfunction (4 eV), a very low barrier is formed between the graphene and the β-Ga2O3.
It was therefore concluded that a graphene layer with a lower workfunction (4 eV) and a
0-eV bandgap transitioned from a Schottky contact to an ohmic contact. This result is in
agreement with the simulation result obtained by Yuan et al. [27].
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5. Conclusions

In summary, this study investigated the effect of a graphene layer on characteristics of
a Ni/β-Ga2O3 SBD. Firstly, good agreement between simulation data and experimental
measurements was obtained for the Ni/β-Ga2O3 SBD without a graphene layer with the
consideration of a 5 eV Ni workfunction, an 8× 1015 cm−3 density for the E2 (Ec − 0.75), E∗2
(Ec − 0.72), and E3 (Ec − 1.05) interfacial traps, and a 3.89 eV surface electron affinity. Then,
the effect of inserting a zero-bandgap graphene layer at the interface between the Ni and
the β-Ga2O3 was studied. We observed a decrease in both φB and the series resistance RS.
However, the saturation current n increased. These effects were related to an increase in the
tunneling rate. The graphene bandgap and workfunction were used to control the output
parameters of the SBD. When the graphene bandgap increased, the Schottky barrier height
and series resistance both increased. Similarly, φB and RS increased as well. In addition,
with a lower graphene workfunction, Ni behaved as an ohmic contact with β-Ga2O3.
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