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Abstract

Objective—To determine whether the mRNA concentrations of inflammation response genes in 

isolated adipocytes and in cultured preadipocytes are related to adipocyte size and in vivo insulin 

action in obese individuals.

Design—Cross-sectional inpatient study.

Subjects—Obese Pima Indians with normal glucose tolerance.

Measurements—Adipocyte diameter (by microscope technique; n=29), expression of candidate 

genes (by quantitative real-time PCR) in freshly isolated adipocytes (monocyte chemoattractant 

protein [MCP] 1 and MCP2, macrophage inflammatory protein [MIP] 1α, MIP1β and MIP2, 

macrophage migration inhibitory factor [MIF], tumor necrosis factor alpha, interleukin [IL] 6 and 

IL8; n=22) and cultured preadipocytes (MCP1, MIP1α, MIF, IL6 and matrix metalloproteinase 2; 

n=33) from subcutaneous abdominal adipose tissue (by aspiration biopsy, n=34), body fat by dual-

energy X-ray absorptiometry, glucose tolerance by 75-gram oral glucose tolerance test, and insulin 

action by euglycemic-hyperinsulinemic clamp (insulin infusion rate 40 mU/m2.min)(all n=34).
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Results—MIF was the only gene whose expression in both freshly isolated adipocytes and 

cultured preadipocytes was positively associated with adipocytes diameter and negatively 

associated with peripheral and hepatic insulin action (all P<0.05). In multivariate analysis, the 

association between adipocyte MIF mRNA concentrations and adipocytes diameter was 

independent of percent body fat (P=0.03), whereas adipocyte MIF mRNA concentrations but not 

adipocytes diameter independently predicted peripheral insulin action. The mRNA expression 

concentrations of MIF gene in adipocytes were not associated with plasma concentrations of MIF, 

but were negatively associated with plasma adiponectin concentrations (P=0.004). In multivariate 

analysis, adipocyte MIF RNA concentrations (P=0.03) but not plasma adiponectin concentrations 

(P=0.4) remained a significant predictor of insulin action.

Conclusions—Increased expression of MIF gene in adipose cells may be an important link 

between obesity characterized by enlarged adipocytes and insulin resistance in normal glucose 

tolerant people.
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Introduction

Obesity and insulin resistance are associated with chronic sub-clinical inflammation (1;2). 

More than a decade ago it became evident that adipose tissue itself may play an active role 

in the obesity-related inflammation via its production of proinflammatory cytokines (3;4). 

Further studies have shown that inflammation-related genes are the most prominently 

expressed genes in white adipose tissue in animal models of obesity (5–7). Moreover, 

increased expression of inflammatory cytokines in adipose tissue in these animals precedes 

hyperinsulinemia and overt hyperglycemia (6) indicating that increased adipose tissue 

inflammation may have a pathophysiological role in metabolic complications of obesity (8).

More detailed studies of different cell types within adipose tissue have shown that many of 

those cytokines are predominantly produced by cells of non-adipose lineage (9;10), 

including macrophages (11), that increasingly infiltrate adipose tissue of obese individuals 

(5;6). However, inflammation-related genes are still amongst the most overexpressed genes 

in cells of adipose lineage such as freshly isolated matured adipocytes (12) and cultured 

preadipocytes (13) from obese individuals. It has been hypothesized that under positive 

energy balance, as adipose cells increase in size, they start to produce molecules with 

chemoattracting and activating effects on monocytes/macrophages (8). In fact, macrophage 

content in human subcutaneous adipose tissue is positively related to adipocyte size (5) and 

large adipocytes produce higher concentrations of chemokines than small ones (14).

It has been shown that subjects with enlarged subcutaneous adipocytes are, on average, more 

insulin resistant and at higher risk for developing diabetes mellitus than those with a similar 

degree of adiposity but relatively smaller adipocytes (15;16). Given that many individuals 

who are very obese are still relatively insulin sensitive (17;18), we hypothesized that 

increased expression of inflammation-related genes in subcutaneous abdominal adipocytes 

in obese subjects would be more specifically related to adipocyte size and predict in vivo 
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insulin action. Candidate genes were mainly selected from genes known to be expressed at 

higher levels in adipocytes and/or cultured preadipocytes of obese Pima Indians compared to 

lean controls (12;13). In adipocytes, we determined the expression levels of: monocyte 

chemoattractant protein (MCP) 1, macrophage inflammatory protein (MIP) 1α, MIP 1β, 

MIP 2α, macrophage migration inhibitory factor (MIF), tumor necrosis factor alpha (TNFα) 

and interleukin-8 (IL8). In addition, we included interleukin 6 (IL6) because of its possible 

role in the development of insulin resistance and MCP 2 because of its potential role in 

attracting macrophages into adipose tissue. In cultured preadipocytes we studied the 

expression levels of MCP1, MIP1α, MIF, IL6 and matrix metalloproteinase 2 (MMP2).

Methods

Subjects in this study were at least half Pima (or closely related Tohono O’Odham) Indians 

from the Gila River Indian Community. All subjects were between 18 and 45 years of age, 

obese (BMI≥30 kg/m2), with normal plasma fasting and 2-h glucose concentration values 

according to a 75-gram oral glucose tolerance test (OGTT, World Health Organization 1999 

criteria; <6.1 and <7.8 mmol/l, respectively), and nonsmokers at the time of the study. Acute 

and chronic diseases were excluded on the basis of medical history, physical examination, 

and routine laboratory tests. Subjects with evidence of serious medical conditions (including 

autoimmune, cerebrovascular, and ischemic heart disease) or taking any medications, 

including contraceptives, were excluded. The protocol was approved by the Institutional 

Review Board of the National Institute of Diabetes and Digestive and Kidney Diseases, and 

all subjects provided written informed consent before participation. To minimize changes in 

glucose and adipose metabolism resulting from ovarian hormonal effects, the female 

subjects were studied during the follicular phase (days 0 through 14) of the menstrual cycle.

All subjects were admitted to the National Institutes of Health Clinical Research Unit in 

Phoenix, Arizona, and were placed on a weight-maintaining diet (containing 50% of calories 

as carbohydrates, 30% as fat, and 20% as protein) for 2–3 days before clinical testing. Body 

composition was measured by dual-energy X-ray absorptiometry using a total body scanner 

(DPX-L; Lunar Radiation, Madison, WI). At least 3 days after admission and after a 12-h 

overnight fast, subjects underwent OGTT to exclude impaired glucose tolerance or diabetes. 

Plasma glucose concentrations were determined by the glucose oxidase method (Beckman 

Instruments, Fullerton, CA) and plasma insulin concentrations by an automated 

immunoassay (Access; Beckman Instruments). Plasma MIF was measured using a human 

specific sandwich enzyme-linked immunosorbent assay (ELISA) from R&D Systems 

(Minneapolis, MN). Serum samples were diluted 1:10 for analysis and all samples were run 

in duplicate in the same assay. Total plasma adiponectin concentration was determined using 

a validated sandwich ELISA employing an adiponectin-specific antibody (intra-assay and 

interassay coefficients of variation 3.3% and 7.4%, respectively). Luminex bead array 

(LINCOplex, Linco Research Inc., St. Charles, MO) multianalyte detection system was used 

to determine serum concentrations of 13 cytokines (IL-1β, IL-2 , IL-4, IL-5, IL-6, IL-7, 

IL-8, IL-10, IL-12, IL-13, IFN-γ, GM-CSF, and TNF-α).

Insulin action was assessed at physiological insulin concentrations during a 

hyperinsulinemic-euglycemic glucose clamp (19). Briefly, after an overnight fast a primed 
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(30 µCi) continuous [0.3 µCi/min] 3-[3H] glucose infusion was started to determine 

endogenous glucose production (EGP). Two hours after starting the isotope infusion, a 

primed continuous intravenous insulin infusion was administered for 100 min at a constant 

rate of 40 mU·m−2 body surface area·min−1. Blood samples for measurement of 3-[3H] 

glucose specific activity were collected at the end of the basal period and every 10 min 

during the final 40 min of insulin infusion. Under basal conditions, EGP was calculated as 

the 3-[3H] glucose infusion rate divided by the steady-state plasma 3-[3H] glucose specific 

activity. During the insulin clamp, EGP was calculated from Steele's equation (20) and was 

used as surrogate for insulin sensitivity in the liver. The rate of total insulin-stimulated 

glucose disposal was calculated for the last 40 min of the insulin infusion and was corrected 

for the rate of EGP. Individual variation in plasma glucose and insulin concentrations during 

the clamp were taken into account in the calculation of the insulin-mediated glucose disposal 

(M) (19;21). All measurements derived from the clamp were normalized to estimated 

metabolic body size (EMBS, or fat-free mass + 17.7 kg) to account for the fact that the 

intercept of the relationship between fat-free mass and resting metabolic rate is not zero 

(22).

Fat biopsies were obtained after a 12-h overnight fast, between 0830 and 1000 AM. 

Subcutaneous abdominal adipose tissue was removed from the periumbilical region by 

percutaneous needle biopsy under local anesthesia (lidocaine 1%). The biopsy specimen was 

placed on a sterile nylon mesh, rinsed with sterile 0.9% NaCl solution and cleaned of visible 

connective tissue and blood vessels in Hank's Buffered Saline Solution (HBSS) 

supplemented with 5.5 mM glucose.

Isolation of the adipocytes and stromal vascular fraction containing preadipocytes (and other 

cells) was performed according to a previously described method (12;13). Briefly, adipose 

tissue was digested in HBSS buffer containing 5.5 mM glucose, 5% fatty acid free BSA 

(Introgen/Serologicals, Norcross, GA ) and 3.3 mg/mL type I collagenase (Worthington 

Biochemical Corp., Lakewood, NJ) for 30 min in a 37°C water bath. The digestion mixture 

was passed through a sterile 230 µm stainless steel tissue sieve (Thermo EC, Holbrook, NY), 

and the adipocytes were allowed to float by gravity and collected for adipocyte size 

measurement and RNA isolation.

The preadipocyte-containing infranatant was collected into a separate tube and washed 

several times with HBSS. The stromal vascular fraction cells (hereafter referred to as 

preadipocytes) were resuspended in standard medium consisting of Medium 199 (Life 

Technologies, Grand Island, NY, USA) supplemented with 1 µg/ml amphotericin B, 100 

U/ml penicillin G sodium, 100 µg/ml streptomycin sulphate, 2 mmol/l Glutamax-1 and 10% 

heat-inactivated FBS (Life Technologies). The cell suspension was strained through a sterile 

25-µm stainless steel tissue sieve (Thermo EC, Holbrook, NY, USA). The filtrate was 

transferred to a T75 culture flask and maintained in an incubator at 37°C in 5% CO2. Cells 

were allowed to attach and, the next day, floating red blood cells were removed by 

aspiration and the culture medium was replenished. At sub-confluency, the cultured cells 

were trypsinised and plated at a concentration of approximately 1.5×106 cells/15-cm dish for 

RNA extraction, which was carried out approximately 14 days after the biopsy date. Media 
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was changed every 2–3 days throughout the culturing period. Preadipocyte culturing was 

completed in 33 of 34 samples obtained.

RNA from adipocytes and cultured preadipocytes was extracted using RNeasy Mini Kit 

from Qiagen (Valencia, CA). During the extraction, RNA was treated with RNAse-free 

DNAse (Qiagen) according to the manufacturer's instruction. RNA extracts were stored at 

−70°C until shipped on dry ice for analyses to Phoenix VA Health Care System (adipocytes) 

and Pennington Biomedical Research Center (preadipocytes).

Twenty-two of the 34 volunteers had sufficient amount of adipocyte RNA for the assay. The 

RNA was used to synthesize cDNA using iScript cDNA Synthesis Kit (BioRad, Hercules, 

CA). Quantitative real-time PCR (QRT-PCR) was carried out using SYBR Green chemistry 

(iQ SYBR Green Supermix; BioRad) and analyzed by an iCycler iQ Real-Time Detection 

System (BioRad) following the manufacturer’s recommendation. Successful cDNA 

synthesis was verified by PCR amplification of β2-microglobulin transcript using forward 

primer 5′ - TGT CTT TCA GCA AGG ACT GGT C - 3′ and reverse primer 5′- TGA TGC 

TGC TTA CAT GTC TCG AT - 3′. Quantification of candidate genes mRNA 

concentrations was carried out using gene specific primers (see Suppl. 1 for primer 

sequences). Each sample was run in duplicate and the mean value was used to calculate 

transcript level. A standard curve for each primer-probe set was generated by serial dilution 

of cDNA from a healthy subject done in triplicate. Reactions without template were 

included as negative controls. The reaction was carried out at 95°C for 3 min and followed 

by 40 cycles of amplification (94°C for 20 s, 60°C for 40 s). The reaction was further 

subjected to 66 cycles of 0.5°C increments (10s each) beginning at 62°C for melting curve 

analysis to confirm the specificity of amplification products. The mRNA concentrations of 

candidate genes were normalized to the geometric mean of those for human cyclophilin, 

TATA box binding protein and 18s ribosomal RNA. For the preadipocyte gene expression 

work, QRT-PCR reactions were performed as previously described (23) on an ABI Prism 

7700 Sequence Detection System (Perkin-Elmer Applied Biosystems, Foster City, CA). The 

mRNA concentrations of candidate genes were normalized to those for human cyclophilin. 

Each sample was run in duplicate and mean values were used for the expression of each 

gene (primer sequences in Suppl. 1). Preadipocyte gene expression analysis was performed 

on samples from 33 volunteers.

An aliquot of the adipocyte-suspension was used for cell size measurement by microscope 

technique. Briefly, packed adipocytes were mixed at a ratio of 1:2 with Medium 199 (Life 

Technologies, Grand Island, NY) containing 1% heat-inactivated FBS (Life Technologies), 

1% BSA (Introgen/Serologicals), and 50 nM adenosine (Sigma-Aldrich, St. Louis, MO) on a 

chambered slide covered with a cover slip. Representative pictures of the adipocytes were 

taken using a Polaroid Microcam (Polaroid) on an inverted microscope (Eclipse TE200), and 

the adipocyte cell perimeters on scanned images were measured using Scion Image (Scion, 

Frederick, MD) by three independent readers. The inter-reader variability was 4.7%. The 

mean cell diameter from samples was calculated from the mean cell perimeter of the three 

readings. As recommended (24), only samples with at least 100 sized cells (n=29) were 

included in further analyses.
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Statistical analyses were performed using the software of the SAS Institute (Cary, NC). Each 

gene mRNA concentration was normalized by taking the residuals after linear regression to 

the reference gene(s). Depending on the data distribution, Student-t-or Mann-Whitney test 

was used for comparison between males and females, and Pearson-r or Spearman-ρ 

correlation was used to test for simple or partial correlations between the variables. General 

linear regression analysis was used to test for independent determinants of the outcomes 

after adjusting for confounders. Non-normally distributed data were logarithmically 

transformed to approximate normal distribution before being analyzed in the multivariate 

analysis. P-values less than 0.05 were considered to be statistically significant.

Results

Anthropometric and metabolic characteristics of the study population are presented in Table 

1. Women had on average higher percentage of body fat (BF, P<0.0001) and larger 

adipocytes (P =0.0002) compared to men (Table 1). Therefore gender was considered as a 

confounder in all analyses involving BF and adipocyte diameter. Metabolic characteristics 

of the subgroup of subjects who had available gene expression data in isolated adipocytes 

were similar. The expression levels of the candidate genes were not significantly different 

between men and women (data not shown).

The expression levels of macrophage migration inhibitory factor (MIF) gene in cultured 

preadipocyte was the only one of the adipocyte or preadipocyte genes studied that was 

significantly associated (positively) with adiposity (BF, P=0.01, Table 2). A positive 

correlation was found between mean adipocyte diameter and expression levels of MIF in 

both adipocytes and preadipocytes (both P=0.02, Table 2 and Figure 1). On the other hand, 

adipocyte diameter was negatively associated with the expression levels of macrophage 

inflammatory protein 1a (MIP1a) in preadipocytes (P=0.02, Table 2). After adjustment for 

sex and BF, only the MIF expression in adipocytes was independently related to adipocyte 

diameter (P=0.03), while neither adipocyte diameter nor BF were significant predictors of 

preadipocyte MIF mRNA concentrations (P=0.09 and P=0.08 respectively).

As shown in Table 2, MIF was the only gene whose increased mRNA expression in isolated 

adipocytes was significantly associated with high fasting and 2-hour plasma concentrations 

of glucose (P<0.05 and P=0.02, respectively) and insulin (P=0.004 and P=0.0002, 

respectively), and with reduced insulin action at the periphery (M, P=0.02) and liver 

(EGPins, P<0.0001, Figure 2). Similarly, increased expression level of MIF mRNA in 

cultured preadipocytes was the only significant correlate of high fasting and 2-hour plasma 

concentrations of glucose (P=0.002 and P=0.02, respectively) and insulin (P=0.003 and 

P=0.03, respectively) (Table 2). M and EGPins was positively correlated with MIF mRNA 

concentrations in cultured preadipocytes as well (P=0.02 and P=0.01 respectively; Table 2, 

Figure 2).

Sex-adjusted adipocyte diameter was significantly associated with M (log10, β=-0.009, 

SE=0.004, P=0.02) before but not after (P=0.9) further adjustment for MIF gene expression 

level in adipocytes. The expression of MIF in adipocytes was the only significant predictor 

of M in this model (β=-0.36, SE=0.14, P=0.02). The effect of preadipocyte MIF gene 
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expression on M disappeared (P=0.9) after adjustment for adipocyte diameter. EGPins was 

not associated with adipocyte diameter (P=0.7)

Finally, we tested whether differences in circulatory factors may explain the relationships 

between the expression of MIF gene in adipose cells and insulin action. Plasma 

concentration of MIF neither correlated with the mRNA expression levels of MIF gene in 

adipocytes or preadipocytes (Figure 3) nor was a significant predictor of M (ρ=0.19, P=0.3) 

or EGPins (ρ=-0.07, P=0.7). Adiponectin was the only adipokine whose circulatory 

concentration was significantly associated with both the expression levels of MIF gene in 

adipocytes (but not in preadipocytes, Figure 3) and insulin action (M, ρ=0.46, P=0.006; 

EGPins, ρ=-0.57, P=0.0004). In a multivariate model, adipocyte MIF expression (β=-0.32, 

SE=0.13, P=0.03) but not plasma adiponectin (P=0.4) predicted M, while neither of the two 

variables predicted EGPins (P=0.6 and P=0.15 respectively).

Discussion

The results of the present study demonstrate that the mean size of adipocytes from 

abdominal subcutaneous adipose tissue was positively associated with the expression levels 

of the gene for macrophage migration inhibitory factor (MIF) in both freshly isolated 

adipocytes and cultured preadipocytes of subcutaneous adipose tissue from obese Pima 

Indians. In addition, increased levels of MIF mRNA from both cell types were associated 

with higher fasting and 2-hour plasma glucose and insulin concentrations, and reduced 

peripheral and hepatic insulin action.

Adipocytes produce proteins that impact distant tissues, such as liver, skeletal muscle and 

brain, as well as proteins that affect either neighboring adipocytes or other local cell types 

within adipose tissue (25). Translational and proteomic studies have shown that adipocytes 

produce factors that attract macrophages into adipose tissue (12;26). The production of these 

signals may change with the expansion of adipocytes, both in size and number, and the 

relatively activated macrophages may in turn produce cytokines that can modify the 

functions of adipose cells and have significant impact on metabolic processes in distant 

organs (8). In fact, animal data show that increased inflammation in adipose tissue precedes 

the development of obesity-induced insulin resistance (6).

MIF is a widely expressed protein with potent pro-inflammatory action (27). In adipose cells 

the secretion of MIF increases while MIF mRNA concentrations are relatively constant 

throughout the differentiation process (26). The release of MIF protein from human 

subcutaneous and omental adipocytes positively correlate with the donors’ body mass index 

(26). In our study in Pima Indians, the expression levels of MIF in preadipocytes positively 

correlated with different measures of whole body and regional obesity, while MIF 

expression in adipocytes correlated only with the adipocyte size. This difference may be due 

to the smaller number of subjects with data on adipocyte MIF mRNA concentrations (type II 

error).

Increased concentrations of MIF in circulation have been reported in subjects with T2DM 

and impaired glucose tolerance (28;29). Higher MIF concentrations in circulation also 
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predicted increased risk of T2DM in Caucasian women (30). A previous study showed that 

Pima Indians, a population with high propensities for obesity and T2DM, had higher 

circulating MIF concentrations compared to Caucasians, and MIF concentrations appeared 

to be increased in non-diabetic Pima Indians with relatively impaired peripheral insulin 

action (31). The lack of significant association between plasma concentrations of MIF and 

measures of obesity or insulin action in our study may be explained by the rather narrow 

range of adiposity and insulin sensitivity in our subjects. In addition, our data indicate that 

adipocytes or preadipocytes may not be a major source of MIF in the circulation and that the 

association between MIF from adipose cells and insulin action may be of an autocrine 

and/or paracrine nature.

Studies in immune cells indicate several putative mechanisms of autocrine/paracrine effects 

of MIF, including the activation of extracellular signal-regulated kinase 1 (ERK1)/ERK2 - 

members of the family of mitogen-activated protein kinases (MAPKs), up-regulation of toll 

like receptor 4 (TLR4) or inhibition of p53 mediated apoptosis (27). ERK activation in 

adipocytes inhibits secretion of the insulin-sensitizing hormone adiponectin (32). In our 

study, the expression level of MIF in adipocytes was negatively associated with plasma 

adiponectin concentration. It could be speculated that local MIF in adipose tissue may 

inhibit adiponectin secretion, which in turn may result in impaired insulin action in the 

skeletal muscle and the liver. However, this was not supported by the multivariate model 

where MIF expression but not circulating adiponectin was a significant predictor of insulin 

action. Alternatively, MIF may activate TLR4, which stimulates the activity of IκB/NFκB 

pathway. Activation of this pro-inflammatory pathway can affect insulin signaling via 

increased release of proinflammatory cytokines (2). Conversely, genetic or immunologic 

inhibition of MIF in mice prevented TNF-α induced insulin resistance, while recombinant 

MIF inhibited insulin signaling in adipocytes (33). Alternatively, elevated MIF expression in 

adipocytes may go along with elevated MIF expression in other cell types, such as resident 

macrophages within skeletal muscle or Kupfer cells in the liver, thereby directly affecting 

peripheral and hepatic insulin sensitivity. Embryonic fibroblasts from mice with genetic 

MIF deficiency show increased expression of pro-adipogenic genes (33). Increased 

adipogenic capacity of the precursor cells may lead to relatively more small, newly 

differentiated adipocytes compared to older, lipid-laden large fat cells (34). In fact, 

adipocyte size was inversely associated with differentiation capacity of cultured 

preadipocytes in a previous study from our group (35). Lower proportion of newly 

differentiated adipocytes may also explain reduced adiponectin production and secretion 

(36). However, it must be noted that knock-down of MIF gene inhibited differentiation and 

decreased expression of adiponectin mRNA in murine 3T3-L1 preadipocytes (37), which 

may represent species-specific differences. Adipocyte hypertrophy may also be a 

consequence of antiapoptotic action of MIF via the p53 pathway (27). According to this 

scenario adipocyte enlargement and insulin resistance may represent two independent 

characteristics related to MIF overproduction from adipocytes.

Plasma glucose and insulin levels were positively associated with the expression levels of 

MIF gene in adipocytes and preadipocytes in our study. Past experiments in 3T3L1 

adipocyte line have shown that that the expression of MIF could be stimulated by glucose 
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and insulin, indicating that increased expression of MIF may be a consequence of metabolic 

dysregulation in obesity (38). However, this was not confirmed in a recent study in isolated 

mature human adipocytes (26). Furthermore, the association between plasma glucose or 

insulin concentration and expression of MIF was still present in the cultured preadipocytes, 

i.e. cells that underwent multiple division cycles after being separated from the in vivo 

environment for at least two weeks. This indicates that increased expression of MIF may 

represent an intrinsic characteristic of adipose cell lineage of obese individuals with 

relatively enlarged adipocytes and impaired insulin action.

There are some potential caveats in interpreting the results of this study. First, our study had 

an exploratory character because of limited availability of biological material. Therefore we 

cannot exclude the possibility that some associations were significant by chance (type 1 

error) as may be indicated by multiple comparison tests (suppl. 2). However, consistent 

results of MIF expression between two different cell types and laboratory settings, i.e. 

adipocytes and cultured preadipocytes, may counteract such an explanation. Inflammation-

related genes can also be expressed by macrophages in adipose tissue. Previous experiment 

from our lab indicate that although macrophages may be present in the preadipocyte 

cultures, they were not likely to be a major contaminant (13). Collagenase digestion of 

adipose tissue during isolation could potentially stimulate transcription of inflammation-

related genes in adipocytes (39). Although this may have affected the gene expression levels 

in our study, all our samples were subjected to the same digestion procedure that likely 

affected all samples similarly. Furthermore, among the measured genes transcripts, the 

mRNA concentrations of MIF may be the least affected by the digestion procedure because 

of its constitutive expression pattern (27). We cannot exclude that the average cell size 

might have been underestimated in subjects with the largest fat cells due to their increased 

propensity for disruption/lysis when treated by collagenase but if anything, this would likely 

have led to an underestimation of the relationship between adipocyte size and MIF 

expression (40). Also, it must be noted that hepatic insulin action was overestimated in over 

40% of the study group with complete suppression of EGP due to both insulin dose used and 

dilution effect of unlabelled glucose (41). Therefore some caution is warranted when 

interpreting the results on hepatic insulin sensitivity.

In conclusion, our data show that increased expression of MIF gene in cells of adipocyte 

lineage is associated with obesity characterized by enlarged subcutaneous abdominal 

adipocytes, reduced circulatory adiponectin, and impaired insulin action on glucose uptake 

and production. Although these results indicate a compelling role for this abundant and 

potent pro-inflammatory cytokine in the development of metabolic complications of obesity, 

further studies are necessary to elucidate mechanisms underlying and the clinical risks 

related to these associations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Correlation of the mRNA concentrations of MIF in freshly isolated adipocytes and cultured 

preadipocytes from subcutaneous abdominal adipose tissue with mean adipocyte diameter. 

Symbols: close circles – males, open circles – females.
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Figure 2. 
Spearman correlation between the expression levels of MIF gene in freshly isolated 

adipocytes or cultured preadipocytes from subcutaneous abdominal adipose tissue and 

fasting plasma insulin, insulin-mediated glucose disposal (M), and endogenous glucose 

production (EGP) during the clamp. Symbols: close circles – males, open circles – females.
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Figure 3. 
Spearman correlations between the expression levels of MIF gene in freshly isolated 

adipocytes or cultured preadipocytes from subcutaneous abdominal adipose tissue and 

fasting serum MIF and plasma adiponectin concentrations. Symbols: close circles – males, 

open circles – females.
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Table 1

Anthropometric and metabolic characteristics of the study population

Variable All Men Women

N 34 18 16

Age (years) 24 (23, 32) 24 (23, 28) 25 (20, 34)

BMI (kg.m−2) 36 (5) 36 (4) 36 (5)

Body fat (%) 36 (5) 33 (3) 39 (4)c

Adipocyte diameter (µm)a 67 (9) 62 (8) 73 (5)b

Fasting plasma glucose (mmol.L−1) 4.93 (0.50) 4.90 (0.53) 4.95 (0.48)

2h plasma glucose (mmol.L−1) 6.25 (5.17, 7.0) 6.25 (4.39, 7.0) 6.31 (5.44, 6.94)

Fasting plasma insulin (µU.mL−1) 11 (6) 11 (7) 11 (5)

2-h plasma insulin (µU.mL−1) 58 (27, 84) 43 (17, 146) 63 (40, 83)

M (µmol.kgEMBS
−1.min−1) 14.3 (12.7, 17.4) 14 (12.4, 17.4) 14.7 (12.8, 17.5)

EGPfast (µmol.kgEMBS
−1.min−1) 9.8 (2.5) 9.4 (1.7) 10.2 (1.1)

EGPins (µmol.kgEMBS
−1.min−1) 1.7 (0, 3.5) 1.7 (0, 3.2) 1.7 (1.4, 3.8)

Expressed as means (SD) or median (lower quartile, upper quartile); data availability

a
29 (13F)

b
P< 0.001

c
P< 0.0001

sex comparison; M, insulin-mediated glucose disposal; EGP, endogenous glucose production; EMBS, estimated metabolic body size (fat-free mass 
+ 17.7)
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