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Abstract

Understanding how the brain allocates resources to match the demands of active neurons

under physiological conditions is critically important. Increased metabolic demands of active

brain regions are matched with hemodynamic responses known as neurovascular coupling

(NVC). Several methods that allow noninvasive assessment of brain activity in humans

detect NVC and early detection of NVC impairment may serve as an early marker of cogni-

tive impairment. Therefore, non-invasive NVC assessments may serve as a valuable tool to

detect early signs of cognitive impairment and dementia. Working memory tasks are rou-

tinely employed in the evaluation of cognitive task-evoked NVC responses. However, recent

attempts that utilized functional near-infrared spectroscopy (fNIRS) or transcranial Doppler

sonography (TCD) while using a similar working memory paradigm did not provide convinc-

ing evidence for the correlation of the hemodynamic variables measured by these two meth-

ods. In the current study, we aimed to compare fNIRS and TCD in their performance of

differentiating NVC responses evoked by different levels of working memory workload dur-

ing the same working memory task used as cognitive stimulation. Fourteen healthy young

individuals were recruited for this study and performed an n-back cognitive test during TCD

and fNIRS monitoring. During TCD monitoring, the middle cerebral artery (MCA) flow was

bilaterally increased during the task associated with greater cognitive effort. fNIRS also
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detected significantly increased activation during a more challenging task in the left dorsolat-

eral prefrontal cortex (DLPFC), and in addition, widespread activation of the medial prefron-

tal cortex (mPFC) was also revealed. Robust changes in prefrontal cortex hemodynamics

may explain the profound change in MCA blood flow during the same cognitive task. Overall,

our data support our hypothesis that both TCD and fNIRS methods can discriminate NVC

evoked by higher demand tasks compared to baseline or lower demand tasks.

Introduction

Under cognitive workload, activation of neurons in the brain implies the allocation of

resources and nutrients by the cerebrovascular system. A better understanding of this physio-

logical adaptation may aid timely identification of individuals in early stages of cognitive

impairment, provided that a neuroimaging modality is available with adequate sensitivity to

detect functional responses elicited by cognitive stimuli. Early interventions would allow

improvements in healthspan and postpone deterioration of quality of life in individuals prone

to dementia.

Under physiological conditions, the brain is critically dependent on the structural and func-

tional integrity of its blood vessels. To supply additional nutrients to match the metabolic

demand of the cells in the central nervous system, activation of the neuronal population in the

brain is accompanied by functional hyperemia, also known as neurovascular coupling (NVC).

In human subjects, impaired NVC is associated with neurological diseases (stroke, Alzheimer’s

disease) that lead to cognitive impairment [1]. Interestingly, recent studies suggested that

decreased cognitive performance may be associated with increased or decreased cortical NVC

responses during certain cognitive tasks [2, 3], depending on the type and difficulty of the task.

These recent developments highlight the importance of further investigations of NVC to better

understand the resource allocation of the brain while performing cognitive tasks under physio-

logical conditions.

A relatively ubiquitous method, Transcranial Doppler sonography (TCD) allows rapid and

economical assessment of dynamic blood flow regulation in the brain. Specific task-evoked

NVC can be assessed during a cognitive task (e. g., a working memory paradigm with different

levels of difficulty) while monitoring blood flow in the middle cerebral artery (MCA) [4].

However, TCD methodology does not allow monitoring of blood vessel diameters. It is

assumed that MCA diameter remains constant during testing and that increases in the blood

flow velocities are proportional to increases in blood flow caused by the dilation of arterioles

downstream TCD offers low spatial resolution as it can only measure NVC in major supply

arteries of the brain, therefore, it cannot localize activation to a specific area of the brain.

NVC can also be assessed by functional Magnetic Resonance Imaging (fMRI) [5]. During

fMRI, the production and washout of paramagnetic deoxy-hemoglobin (HbR) represent a

focal change of blood flow around activated brain regions which creates a signal that is com-

monly referred to as the blood oxygen level-dependent (BOLD) signal [6]. When interpreting

fMRI results, NVC is commonly considered a marker of neuronal activation and the vascular

component of NVC is often not considered, however, the captured BOLD signal originates

from the microcirculation of the brain.

Functional near infrared spectroscopy (fNIRS) is a relatively new method that allows a

more economical assessment of NVC [7] in the microcirculation of the cerebral cortex. In con-

trast to fMRI, which only allows for measurement of HbR, it is capable of measuring changes
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both in oxy-hemoglobin (HbO) and HbR concentrations. Although fNIRS underperforms

fMRI in its spatial resolution in the cortex, the technique provides satisfactory resolution for

applications in functional neuroimaging studies. fNIRS illuminates tissue with multiple wave-

lengths of light from the near-infrared spectrum, which can penetrate through the scalp and

skull to reach superficial layers of the cerebral cortex [7]. The light is then partially absorbed by

HbO and HbR present in the illuminated tissue, allowing for measurement of the absolute or

relative concentration of these chromophores [8]. fNIRS has proven to be a useful tool to

detect deactivation in the prefrontal cortex (PFC) in patients with posttraumatic stress disor-

der while performing a cognitive task [9] or detecting the recruitment of the dorsolateral pre-

frontal cortex (DLPFC) when a more challenging task was anticipated [10]. Further, results

from fNIRS studies correlate well with those done with fMRI methodology [11]. For example,

cognitive workload-dependent activation in DLPFC was observed when using fMRI during n-

back cognitive stimulation [12] and gradually increased activation in the left DLPFC was

reported during a similar stimulation paradigm measured with fNIRS [11, 13]. Attempts using

a standardized n-back cognitive stimulation of several difficulty levels found increased activa-

tion in the left DLPFC region with increased task difficulty [13].

The studies mentioned above utilized a working memory paradigm as cognitive stimulation

to evoke NVC response [4, 12, 13]. Working memory can be examined via the n-back

approach, originally published by W. K. Kirchner [14], and this cognitive domain is responsi-

ble for temporarily holding information available for manipulating, processing, including criti-

cal thinking, solving problems, interacting with others.

Previous studies have demonstrated that NIRS is sensitive to cognitive workload while per-

forming an n-back working memory paradigm [15, 16]. However, the reported localized acti-

vation of the PFC—typically in the area of the DLPFC—may not explain the bilateral vascular

response that can be seen during TCD monitoring while utilizing the same paradigm for cog-

nitive stimulation [4]. In the current study, we expanded the area of measurement during

NIRS examinations to capture hemodynamic signals over other cerebral regions. In this study,

we aimed to investigate whether (1) activation of other areas in the prefrontal cortex can be

measured with NIRS, (2) whether these areas are only activated at higher cognitive workload,

(3) and compare the sensitivity of TCD and fNIRS in their capabilities of detecting cognitive

states evoked by different levels of cognitive workload during a working memory task. To

achieve these aims, an n-back working memory paradigm was utilized as cognitive stimulation

to evoke NVC response. The cognitive stimulation paradigm consisted of several difficulty lev-

els, and fNIRS was utilized to measure NVC in the PFC (not limited to DLPFC). TCD was

used to measure hemodynamic changes in the upstream MCA during the same cognitive task

in young, healthy individuals.

Materials and methods

Study design and subject characteristics

Study participants were recruited between February 2018 and July 2019 from the employees of

the University of Oklahoma Health Sciences Center. Study participants received information

about the study via e-mail, over the phone or in person. The whole study was performed in the

Translational Geroscience Laboratory of the Center for Geroscience and Healthy Brain Aging,

Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences

Center. A total of fourteen healthy adults (2 left-handed participants, 10 males and 4 females)

were enrolled in this study (age: 31±5.94 years, BMI: 24.9±2.95, systolic blood pressure: 116

±10.48, diastolic blood pressure: 75±10.47, reported values are mean±SD). None of the partici-

pants reported neurological, psychiatric diseases, or any other significant medical condition
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(cardiovascular disease, cancer, diabetes, infection within 2 weeks of the examination date).

Two female subjects reported the use of oral contraceptive medication during the study, and

other subjects reported no chronic use of prescribed or over-the-counter medications. No

smokers were included in the study. All participants were asked to refrain from consuming

caffeinated beverages at least 6 hours prior to the assessments. Four participants had college

degrees and 10 participants had doctoral degrees. The study required two visits, and partici-

pants were randomized to start with either the TCD or fNIRS assessments during the first

visit. The average time between the two assessments was 121.86±77.99 days, and subjects per-

formed the remaining other assessment during the second visit (either fNIRS or TCD) using

the same cognitive stimulation paradigm.

Written informed consent was obtained by study personnel from all participants prior to

participation in the study. The protocol was approved by the Institutional Review Board of the

University of Oklahoma Health Sciences Center and all methods were carried out in accor-

dance with relevant guidelines and regulations.

Cognitive stimulation

In this study, we used an n-back paradigm-based cognitive test to evoke NVC responses, as

previously described [4]. In brief, participants were seated comfortably in front of a 22-inch

monitor, with their right hand resting on the computer mouse (Fig 1). Tasks were first

explained in detail before the trials were started. Participants were encouraged to perform as

well as they could. During cognitive testing, all participants were presented with the instruc-

tions on the monitor screen, and then a white fixation rectangle appeared on a black back-

ground. Sixty letters were presented within the fixation rectangle in a random order, each for

250 ms. Participants were presented with three tasks:

1. 0-back or identify W: a click of a mouse button was requested whenever the letter ‘W’ was

shown within the fixation rectangle.

2. 1-back: the task was to identify repeated letters in the sequence (e. g. x-y-A-A)

3. 2-back: the task was to identify patterns where every other letter was repeated (e. g. x-A-

y-A)

Tasks were administered in the following order: 0-back! 1-back! 0-back! 2-back, dur-

ing both visits. The interval between presented letters varied from 1850 ms to 2050 ms and was

randomized by the custom software developed in ePrime 3 (Psychology Software Tools,

Sharpsburg, PA). The average block length was 134.13 ± 1.37 s.

Further, cognitive performance during n-back tasks were evaluated by calculating the per-

centage of correct responses (%correct) and reaction time for each subject, n-back task, and

each visit.

Neurovascular coupling protocol with transcranial Doppler (TCD)

MCA flow velocity (MCAv) was assessed using transcranial Doppler sonography (Digi-Lite,

Rimed, Raanana, Israel) by placing 2 Mhz ultrasound probes over the left and right temporal

acoustic windows. The ultrasound probes were mounted on a probe fixation device (LMY-2,

Rimed, Raanana, Israel) that allowed MCAv monitoring at a constant angle for an extended

period of time. Left and right MCAv signals were identified according to the standardized cri-

teria guided by signal depth and velocity [17, 18]. After establishing optimal MCAv signal, the
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probes were secured, and the signal depth and power remained constant throughout the test

session. Channels with an inadequate temporal acoustic window or flow velocity were

excluded from the analysis. Blood pressure was measured via sphygmomanometry at the

beginning of the session, and values were used to calibrate a non-invasive continuous blood

pressure monitor (Caretaker4, Caretaker Medical, Charlottesville, VA, USA).

MCA flow velocity envelope was continuously recorded with an analog-to-digital converter

(DI-4108-U, Dataq instruments, Akron, OH, USA).

Fig 1. Experimental setup. Participants were seated in front of the computer that delivered the cognitive paradigm.

Changes in cerebral hemodynamics were recording during cognitive stimulation with transcranial Doppler

sonography (Panel A) and functional near-infrared spectroscopy (Panel B).

https://doi.org/10.1371/journal.pone.0250043.g001
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Neurovascular coupling protocol with fNIRS

Functional NIRS examination was performed with the NIRScout platform (NIRx Medical

Technologies LLC, NY, USA) equipped with 16 light sources and 16 detector optodes. A

128-port Easycap headcap (Easycap GmbH, Woerthsee-Etterschlag, Germany) was positioned

to cover the area of the international 10–20 space. The line between Fpz and Iz ports on the

headcap was aligned with the sagittal plane of the head, and the optode in the Fpz port was

positioned along this line. The cap was set up with stretch-resistant spacers that limit the inter-

subject variability of the distance between optodes. The placement of optodes covered the PFC

(including DLPFC) and also the medial parts of the motor cortex and somatosensory cortex

(Fig 4A, 4D, 4G). Measurements were performed in a quiet and darkened room.

Data processing and statistical analysis

To assess cognitive performance, reaction time and correct responses (reported as a percent-

age) obtained from each n-back task during the first and second visit were compared using a

paired t-test (for reaction time) or Wilcoxon signed-rank test (for %correct answers).

For TCD analysis, the mean MCAv was extracted from a 100 second time window from

each n-back task. To eliminate the effect of motion and additional breathing artefacts, a 10 s

period of the recording was disregarded after the initiation of each task. Normal distribution

of data was determined with a d’Agostino-Pearson test, and a 2-way repeated measure

ANOVA (two factors being the type of cognitive stimulation and the side of MCAv) was per-

formed on the MCAv data followed by a Sidak’s post-hoc test. Increase in MCAv was calcu-

lated relative to the 0-back task preceding the 1-back or 2-back task using the following

equation: (MCAv[n-back]-MCAv[0-back])/MCAv[0-back]
�100%, and a paired t-test was used to

compare the evoked increase in MCAv.

For fNIRS analysis, the raw data were first processed using a pipeline based on a General

Linear Model (GLM) approach using the Brain AnalyzIR toolbox (commit 46c645d) [19].

Measured optical densities were converted to hemoglobin concentration using the modified

Beer-Lambert law [20], pre-whitening of data was performed with an autoregressive model-

based algorithm [21], and a Discrete Cosine Transform based high-pass filter (0.0045 Hz) was

used to remove slow drift. Four boxcar regressors (one for each task) were included in the

design matrix, which were convolved with a canonical hemodynamic response function to

predict brain activation. Beta-weights and scaling of predictors were then used for mixed effect

model-based group-level statistics, where a t-contrast of [(1-back)—(0-back)], [(2-back)—

(0-back)] and [(2-back)—(1-back)] was applied. Increased activation was considered signifi-

cant when the false discovery rate corrected p<0.05 (FDR using Benjamini-Hochberg method)

[22].

To demonstrate the timecourse of HbO and HbR concentration changes, raw fNIRS data

were analyzed and processed with nirsLAB (NIRx Medical Technologies, NY, USA) [23]. Satu-

rated channel data and channels with highly variable noise (>7.5% coefficient of variation)

were excluded from further analysis. A bandpass filter of 0.0045 Hz to 0.2 Hz was applied to fil-

ter physiological noise. Modified Beer-Lambert law [24] was used to convert recorded optical

density to change of hemoglobin concentration. differential pathlength factor was adjusted for

age with an equation previously described [25]. Block averages were then calculated for each

channel during each stimulus, and channel means were then averaged for the region of interest

for the two conditions associated with different levels of mental workload (1-back and 2-back

conditions). Three regions of interests (ROIs), including medial PFC, left and right DLPFC

were selected for plotting [10].
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Results

Cognitive performance in the group of healthy young adults and the

practice effect of the repeated n-back task

All subjects scored over 90% correct answers when tested with the cognitive n-back task. Reac-

tion times were found to be task-dependent and were significantly longer during the 1-back

and 2-back tasks vs. their corresponding 0-back task, on both visits (Table 1).

To evaluate the practice effect and repeatability of the n-back cognitive task, we performed

a paired analysis of the cognitive performance (%correct) answers and the reaction time and

performance between first and second laboratory visits. We found no significant difference in

the performance or the reaction between two visits, however, we observed a trend (p = 0.06)

for a minor improvement in the 2-back test performance.

Table 1 reports %correct answers and reaction time for each task of the n-back test for each

laboratory visit.

A more challenging cognitive task evokes NVC responses in the MCA

measured with TCD

Two participants were excluded from the analysis due to an inadequate temporal acoustic win-

dow. Left-sided channel data were excluded in 3 participants, and right-sided channel data

were excluded for one participant due to low mean flow velocity or signal loss during testing.

We found no effect of MCAv Side (F(1,18) = 0.6, p = 0.45) or interaction of Cognitive sti-

mulation×MCAv Side (F(3, 48) = 0.61, p = 0.6), however, we found a significant effect of Cog-

nitive stimulation that accounted for 2.54% of variation in the data (F(3, 48) = 8.595,

p<0.0001). Post-hoc testing revealed significant differences between the 0-back and 2-back

conditions (Table 2, mean difference for left MCAv: 2.65±0.65, t = 4.097, p = 0.0008; right

MCAv: 1.71±0.58, t = 2.93, p = 0.0295).

Neurovascular coupling hemodynamic responses were measured in the middle cerebral

artery (MCA) using transcranial Doppler (TCD) sonography during the performance of the

cognitive n-back task in healthy young adults (n = 12). Two-way ANOVA revealed no statisti-

cally significant effect for the Side of the MCA velocity (MCAv) or the interaction of Cognitive

Table 1. Cognitive performance in the group of healthy young adults and the practice effect of the repeated n-back task.

1st trial Median [IQR] or Mean ± SD 2nd trial Median [IQR] or Mean ± SD p-value (t-test or Wilcoxon signed-rank test)

Reaction time (ms)

0-back #1 412.6 ± 46.13 407.48 ± 22.6 0.87

1-back 531.6 ± 75.56# 497.12 ± 35.68# 0.37

0-back #2 441.7 ± 69.76 451.8 ± 23.66 0.29

2-back 644.7 ± 125.11# 610.44 ± 38.06# 0.5

Performance (% correct)

0-back #1 100 [100 to 100] 100 [100 to 100] >0.99

1-back 100 [99.6 to 100] 100 [100 to 100] >0.99

0-back #2 100 [100 to 100] 100 [100 to 100] >0.99

2-back 98.3 [93.3 to 100] 100 [98.3 to 100] 0.06

Cognitive function was measured using n-back cognitive task in n = 14 healthy young adults (n = 14). No statistical difference in reaction time and cognitive

performance between two visits was observed. Cognitive performance (%correct) is presented as median with interquartile ranges [IQR], and the reaction time is

presented as mean±SD.
#: Comparison with preceding 0-back task, p<0.01.

https://doi.org/10.1371/journal.pone.0250043.t001
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stimulation×MCAv Side. We observed a significant effect of Cognitive stimulation that

accounted for 2.54% of variance in the data. Results of the Sidak’s post-hoc test are reported in

the table. We observed significantly greater responses in the MCAv during 2-back task vs

0-back task.

To evaluate the effect of cognitive workload on NVC responses measured using TCD, we

also compared the percent change in the blood flow velocities between 2-back and 1-back

tasks that were normalized to the preceding 0-back task. We observed significantly greater

NVC responses during 2-back task compared to 1-back task in both MCAs (Fig 2, left MCA:

t = 3.73, p = 0.006, right MCA: t = 3.06, p = 0.012).

A more challenging cognitive task evokes NVC responses in the prefrontal

cortex measured using fNIRS

Two participants were excluded from fNIRS analysis due to highly variable noise recorded in

>80% of NIRS channels. Cognitive task evoked NVC was evaluated with two different

Table 2. MCA flow velocity increased with cognitive load.

MCA side and condition Mean MCAv Mean Difference SE of Difference t p
Left

0-back vs 1-back 47.85 vs. 48.02 0.17 0.65 0.262 >0.999

0-back #1 vs 0-back #2 47.85 vs. 46.58 -1.27 0.65 1.967 0.285

0-back vs 2back 46.58 vs. 49.23 2.65 0.65 4.097 <0.001

RIGHT

0-back vs 1-back 46.55 vs. 46.44 -0.11 0.65 0.191 >0.999

0-back #1 vs 0-back #2 46.55 vs. 45.14 -1.41 0.65 2.418 0.109

0-back vs 2back 45.14 vs. 46.85 1.711 0.65 2.928 0.029

https://doi.org/10.1371/journal.pone.0250043.t002

Fig 2. Neurovascular coupling responses measured in the MCA depend on cognitive load. The effect of cognitive

load on NVC responses measured using transcranial Doppler sonography (TCD) was evaluated by comparing the

percent change in the blood flow velocities between 2-back and 1-back tasks that were normalized to the

corresponding 0-back task in n = 12 young and healthy adults. Significantly greater NVC responses were observed

during 2-back task compared to 1-back task in both MCAs (left MCA: t = 4.097, p<0.001, right MCA: t = 2.928,

p = 0.029).

https://doi.org/10.1371/journal.pone.0250043.g002
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statistical methods when processing the results of fNIRS assessments. The results of the GLM

based approach are demonstrated in Fig 3 and S2 Fig. A t-contrast between the 2-back and

1-back task conditions revealed a significant increase in HbO in the PFC, HbO increase in the

left DLPFC(channels between 10–20 positions F3-FC3, FC5-FC3 and FC5-F5), and in the left

motor cortex (channels FC5-C5, C3-FC3) as shown in the left panel of Fig 3A. Changes in

HbR signal were found significant in several channels (Fig 3A, right panel), however, these

changes seemed to be bidirectional. We observed both focal increase and a decrease of the

HbR concentrations in the prefrontal cortex, in channel AF3-Fp1 and channels Fpz-Fp2,

AF7-Fp1, respectively. We also observed an increase in HbR concentrations in the left DLPFC

(FC5-F5). When comparing each n-back condition to the preceding 0-back condition as a ref-

erence, we observed no significant additional response evoked by the 1-back condition (Fig

3B), only the 2-back condition (Fig 4C). The two 0-back conditions were also compared, and

minor differences were found in the form of localized inactivation during the second 0-back

trial in the prefrontal cortex and the somatosensory cortex (S1 Fig).

Further, to demonstrate the timecourse of NVC responses, we plotted group averaged HbO

and HbR timecourses in three regions of interests (ROIs) responsible for executive cognitive

function, including the medial PFC, left and right DLPFC (Fig 4A, 4D and 4G). The character-

istic hemodynamic response can be seen during the 2-back condition in the medial PFC and

prominently in the left DLPFC (Fig 4C and 4F respectively).

Discussion

The current study compared hemodynamic responses in the brain evoked by a task with dif-

ferent levels of cognitive workload. Cognitive stimulation was based on the n-back para-

digm, which proved to be a repeatable paradigm to evoke NVC. No significant improvement

was seen between visits in the reaction time or performance of subjects during the tasks. The

n-back performance showed a trend toward improvement; however, the extent of the

improvement was minor when measured in participants of the current study. Neither NVC

measurements could differentiate NVC responses evoked by the task with lower cognitive

workload (1-back) when compared to the baseline (0-back) condition. The more demanding

cognitive task (2-back) evoked greater neurovascular coupling responses compared to both

the baseline (0-back) and the less demanding task (1-back) when measured in healthy young

adults.

During the more difficult task (2-back condition), TCD detected a significant increase in

MCA blood flow velocity (Table 2), indicating a downstream dilation of cerebral arterioles.

Functional NIRS is capable of imaging the convexity of the cerebral cortex, and since the

MCA supplies the PFC convexity through pial arterioles, it allowed closer investigation of the

dilation of blood vessels distal to the MCA. An increase of blood flow to a cortical region is

represented by the characteristic increase of HbO and decrease of HbR concentrations in the

brain tissues measured by fNIRS [26]. A significant increase of HbO concentration was seen in

the medial PFC and left DLPFC during a more challenging cognitive task (2-back versus

1-back and 2-back versus 0-back conditions). When evaluating with the GLM approach, bidi-

rectional changes of HbR signals were recorded with focally increased or decreased activity;

however, the used basis function (canonical hemodynamic response function) may not be the

ideal model to investigate changes in HbR concentration. When data were evaluated with the

block average approach, it is clearly visible that the decrease in HbR concentration is accompa-

nying increases in HbO concentration in the medial PFC and the left DLPFC (Fig 4) when

measured during the mentally more demanding condition (2-back). Interestingly, block
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Fig 3. Significant activation of the prefrontal cortex is only detected during the mentally more demanding task

with fNIRS. NVC responses were assessed during cognitive n-back stimulation using the functional near-infrared

spectroscopy (fNIRS) methodology. Tasks were administered in the following order: 0-back! 1-back! 0-back!

2-back, 0-back being the reference condition, 1-back and 2-back being the tasks with different cognitive demand. Blue

dots represent detectors and red dots represent light sources of the fNIRS probe. The 3D probe structure and

statistically significant different hemodynamic responses were then projected into the international 10–20 space. t–
values are plotted in a color-coded manner to show differences. We observed a statistically significant increase in the

oxy-hemoglobin (HbO) levels in the prefrontal cortex (PFC), an increase in the left dorsolateral prefrontal cortex

(DLPFC), and a focal increase over the left motor cortex. Data were analyzed using the Brain AnalyzIR software, and a
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averaged data showed multiple peaks in the change of HbO and HbR concentrations. This can

be a byproduct of the long stimulation period and the mid-stimulation HbO dip may be a

residual physiological artefact. The n-back paradigm used in this study for both TCD and

fNIRS methodologies was originally developed for TCD studies [4, 27], and therefore was not

mask was applied on results to only map channels where pFDR<0.05. t-statistic heatmaps show the significant

difference between the more mentally demanding task [2-back] and the less demanding task [1-back] (Panel A). No

significant neurovascular coupling response was detected when comparing the [1-back] condition to the baseline

condition [0-back] (Panel B). Panel C demonstrates a significant activation during 2-back task when compared to the

preceding 0-back task.

https://doi.org/10.1371/journal.pone.0250043.g003

Fig 4. Block average traces over the prefrontal cortex and dorsolateral prefrontal cortex during the cognitive n-

back stimulation using functional near-infrared spectroscopy. Group average traces of oxy-hemoglobin (HbO, red

lines) deoxy-hemoglobin (HbR, blue lines) concentrations were plotted from medial prefrontal cortex (PFC; Panel A),

left and right dorsolateral prefrontal cortex (DLPFC; Panel D and G). Region of interests are shown on Panel A, D, and

G within the international 10–20 space, and green lines represent channels. 2-back cognitive tasks elicited visible

changes in HbO and HbR levels with profound hemodynamic responses during 2-back condition in the medial PFC

and left DLPFC (Panel C and F). DLPFC ROI based on Vassena et al. [10]. Mean±SD is plotted for each channel. Data

for individual channels are shown in S2 and S3 Figs.

https://doi.org/10.1371/journal.pone.0250043.g004
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optimized for use with fNIRS assessments. The long stimulation periods did not allow for very

strong filtering of fNIRS data to remove low-frequency physiological noise since task-related

signals also had a very low frequency. However, this was addressed by performing statistical

analysis in a more standardized way with the Brain AnalyzIR toolbox and showing block aver-

aged hemodynamic responses only for demonstrative purposes.

Activation of medial PFC in addition to DLPFC was only significant while participants

were presented the more demanding 2-back task. According to earlier neuroimaging studies,

the medial PFC (and the dorsal anterior cingulate cortex) is activated when a difficult task was

anticipated [28], and these areas partially overlap with areas activated when anticipating a

reward [28, 29]. Some studies showed that performing a task correctly may be rewarding on its

own, even without any extrinsic incentive [30, 31]. Latter may also help interpret the activation

of the medial PFC since participants in this study were encouraged to perform as well as they

could. Interestingly, the area of medial PFC during the 2-back task compared to the 1-back

task resembles the increase in frontal theta activity assessed by EEG during a similar n-back

approach [32], which has been described to appear when performing cognitive tasks demand-

ing excessive concentration [33].

Involvement of the DLPFC area has been widely described in working memory [34], which

involvement is also further confirmed by other studies where working memory deficits are

associated with limited DLPFC activation in patients with schizophrenia [35] or post-trau-

matic stress disorder [9]. Vassena, E. et al also described DLPFC activation when a mentally

challenging task was anticipated [10]. Prior to the administration of the 1-back and 2-back

tasks, the trials were cued, which could also further explain the multiple peaks in the HbO and

HbR signals (Fig 4). Cueing tasks may lead to an early activation of the PFC during the prepa-

ration and the building of strategy for the tasks, and the late activation peak could be evoked

by performing the task itself.

To summarize, hemodynamic NVC responses were successfully assessed using fNIRS and

TCD with the same cognitive stimulation paradigm after reaching a certain level of difficulty.

The combination of the two NVC assessments allowed better understanding of the cerebral

hemodynamics in healthy individuals, which also means that presented procedures can poten-

tially detect cerebrovascular dysfunction. Our data suggest that if NVC function is to be moni-

tored, utilizing the more ubiquitous TCD may be sufficient if the stimulation paradigm and

task difficulty are carefully selected. On the other hand, inference from purely TCD results

may be limited as it does not differentiate between the spatiotemporal pattern of cerebral

hemodynamic changes. Additional cortical areas might be recruited, or the timecourse and

amplitude of hemodynamic response may change depending on the task difficulty level in the

cortical area that was expected to be activated.

Due to limited metabolic reserve, intact neuronal and glial function underlying brain activ-

ity depends on constant provision of adequate oxygen and nutrient supply via continuous

adjustment of cerebral blood flow. The importance of NVC is evidenced by the fact that

disruption of NVC in a rodent model leads to the impairment of neuronal function, and con-

sequently, cognitive impairment [36]. Further, growing evidence suggests that cerebromicro-

vascular impairment plays a causal role in the development of cognitive impairment [37].

Studies assessing NVC with classic neuroimaging methods (e. g. fMRI) often consider NVC

only as a marker of neuronal activation, its amplitude proportional to the extent of neuronal

activation, and disease-related change in NVC is rarely considered. On the other hand, studies

utilizing TCD to assess NVC more commonly consider NVC a phenomenon that is dependent

on cardiovascular disease and age [4]. Therefore, understanding the NVC responses in human

subjects and developing appropriate methodologies and stimulation paradigms opens
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opportunities to investigate the NVC as a mechanism for mild cognitive impairment in aging,

Alzheimer’s disease, and other diseases that are associated with cognitive decline. Further,

improving NVC responses, as it has been demonstrated in animal models of aging and age-

related diseases [38–42], can also serve as a potential target for development interventions to

battle cognitive decline in aging and other age-related diseases. Finally, it is important to high-

light the limitations of the current study. The fNIRS technology only allows recording hemo-

dynamic responses from the convexity of the PFC, therefore, dorsal anterior cingulate cortex

and the striatum cannot be examined with this method. Measurement of these areas would

allow better insight into the neuronal resource recruitment process, possibly explaining the

multiple peaks in HbO and HbR signals observed, as contribution of these areas to preparing

and estimating the cost/benefit of a certain task has been described [29–31]. This study also

did not investigate the effects of motivation on the evoked NVC responses, therefore, we

assumed similar motivation levels in all participants, as they were all motivated by the exam-

iner the same way. The method of cognitive stimulation used in this study is designed to detect

an age-related decline in working memory [4, 14], and in this study we examined healthy

young individuals. Due to the observed high performance of enrolled subjects, we could not

examine the association of impaired NVC to impaired working memory performance.

Conclusions

The current study demonstrates the sensitivity of fNIRS and TCD to differentiate between

NVC responses evoked by cognitive stimulation with different levels of cognitive workload. In

healthy adults, only a more challenging working memory task evoked significantly greater

NVC responses both in the left DLPFC and medial PFC regions, as well as in the MCA supply-

ing these regions.

Supporting information

S1 Fig. NVC responses were assessed during cognitive n-back stimulation using the func-

tional near-infrared spectroscopy (fNIRS) methodology. Tasks were administered in the fol-

lowing order: 0-back! 1-back! 0-back! 2-back, 0-back being the reference condition,

1-back and 2-back being the tasks with different cognitive demand. Significant inactivation

was seen in areas of the prefrontal cortex (PFC) and left somatosensory cortex when the first

reference 0-back condition was compared to second 0-back condition. Data were analyzed

using the Brain AnalyzIR software, and a mask was applied on results to only map channels

where pFDR<0.05. T-statistic heatmaps are plotted.

(TIF)

S2 Fig. Block average traces over the prefrontal cortex and dorsolateral prefrontal cortex

during the cognitive n-back stimulation using functional near-infrared spectroscopy

(NIRS). Group average traces of oxy-hemoglobin (HbO) for each channel of the NIRS probe.

Red lines represent the channels regions of interest defined in Fig 4, and grey lines are other

channels in the area named above each panel.

(TIF)

S3 Fig. Block average traces over the prefrontal cortex and dorsolateral prefrontal cortex

during the cognitive n-back stimulation using functional near-infrared spectroscopy

(NIRS). Group average traces of deoxy-hemoglobin (HbR) for each channel of the NIRS

probe. Blue lines represent the channels in the regions of interest defined in Fig 4, and grey

lines are other channels in the area named above each panel.

(TIF)
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