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Abstract: The terroir of coffee is defined as the unique sensory experience derived from a single origin
roasted coffee that embodies its source. Environmental conditions such as temperature, altitude,
shade cover, rainfall, and agronomy are considered the major parameters that define coffee terroir.
However, many other parameters such as post-harvest processing, roasting, grinding, and brewing
can combine to influence the perception of terroir. In this review, we discuss the contribution of
these parameters and their influence on coffee terroir. Assessment of terroir requires defined sensory
descriptors, as provided by the World Coffee Research Lexicon, and standardized roast level, grind
size, and brew method. The choice of the post-harvest processing method is often environmentally
dependent, suggesting that an inclusion into the coffee terroir definition is warranted. Coffee terroir
is often not intentionally created but results from the contributions of the Coffea species and variety
planted, environmental and agricultural parameters, and both the harvest and post-harvest method
used. The unique combination of these parameters gives the consumer a unique cup of coffee,
reminiscent of the place the coffee was produced.

Keywords: sensory experience; environment; post-harvest; maturation; roasting; particle size

1. Introduction

Terroir is the complex interaction of environmental, varietal, and agricultural factors
that affect a product’s sensory experience [1]. The terroir of wine is widely recognized, with
the vineyard location considered to affect a wine’s sensory qualities [2]. Plantings of clonal
wine grapes exhibit chemical fingerprint variation dependent on the vineyard location,
supporting terroir variation [3]. Factors such as air temperature, solar radiation, rainfall,
soil water holding capacity, and nitrogen are associated with locations and significantly
contribute to the terroir of wine [4].

Terroir in coffee is most notable in single-origin coffees that represent their growing
location [5]. Like the terroir of wine, the terroir of coffee is affected by environmental factors
such as latitude, longitude, rainfall, temperature, and altitude [1,5,6]. It has been reported
that terroir associated with high altitude (>1000 m) and low rainfall (<1600 mm/year) pro-
vided a more appreciated coffee that was aromatic, slightly bitter, acidic, and had body [1].
In contrast, coffee grown at low altitude (<850 m) and high rainfall (>2110 mm/year) was
less appreciated, with more substantial bitterness, grassy flavor, lower aroma, and increased
astringency [1]. A terroir that includes high altitude is reported to produce a favorable,
higher quality coffee [1,6]. It is hypothesized that higher altitude with a lower average
temperature prolongs the coffee cherry maturation period, resulting in a nutritionally dense
coffee bean that provides a greater concentration of chemicals/flavor to the resulting coffee
beverage [1,5,6].

The wine industry [7] has defined and created a formal assessment of wine terroir,
involving a panel of wine experts that compares a wine sensory experience to a bench-
mark [8]. In comparison, coffee terroir currently does not have a formal definition. Current
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assessment of the terroir of roasted coffee involves either the use of a scoring system devel-
oped by the specialty coffee association (SCA) [9] or the use of sensory descriptions with
references made to growing locations [5].

Based on the terroir definition of wine, terroir is fixed once the coffee cherry is har-
vested (Figure 1). However, compared to wine, coffee undergoes more steps in its pro-
duction pathway that can affect the final sensory experience (Figure 1). The impact of the
processing method, roast level, and brew method on the final sensory experience is well
documented and has been recently reviewed [10–14]. As these steps (Figure 1) affect the
final sensory experience, they significantly affect the terroir experience and assessment.
The observation of coffee terroir is possible when the roasting, grinding, and brewing steps
are standardized [15].
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Further, compared to wine, the post-harvest processing of coffee often occurs under
uncontrolled environmental conditions. Sundried and monsoon Malabar represent post-
harvest processing methods that are particularly reliant on the environment [10,14]. As the
environment still affects the processing steps, consideration should be given to whether
coffee terroir encompasses this step (Figure 1).

Coffee terroir broadly encompasses those factors that affect the growth of the coffee
cherry and its conversion to a green coffee bean [16]. However, the assessment of cof-
fee terroir depends on the steps that convert the green coffee bean into a cup of coffee
(Figure 1) [10]. This review aims to identify and bring together the factors determining the
terroir and the factors affecting the terroir assessment. The identification of terroir begins
with the quality of the cup of coffee. This review works from the cup to the farm to assess
the factors that influence the terroir of coffee.

2. Factors Affecting the Terroir Assessment
2.1. Coffee Sensory Experience and Analysis

The coffee industry uses three general methods for sensory analysis: a triangle method
for distinguishing between two coffees, a scoring method focused on ranking key/overall
sensory attributes in a cup of coffee, and a descriptive method that provides more in-
depth details of the sensory descriptors [17]. These methods allow for the assessment and
comparison of the coffee sensory experience with minimal bias from the taster.

The triangle method requires the preparation of three cups of coffee, one of which is
different. The taster then determines the deviating cup. The triangle test is primarily used
by the industry for quality control and matching coffee blends [17].

The overall scoring method uses industry-standard guidelines to assess and score
coffee quality [18]. Evaluating the aroma, flavor, aftertaste, acidity, body, balance, sweetness,
cleanness, uniformity, and overall impression of the coffee via a scoring system provides
a coffee quality score [18]. The score allows coffees to be ranked and statistics to be more
readily applied. Industry uses the scoring system to assign value, with higher scoring
coffee receiving higher prices [9]. Overall impression, flavor, aroma, aftertaste, acidity, and
body are the most frequently published attributes (Figure 2).

The descriptive sensory analysis provides a more in-depth study of the sensory at-
tributes [19]. The World Coffee Research Sensory Lexicon defines 110 sensory descriptors
related to coffee [20]. For analysis, 110 descriptors is an impractical number to assess,
requiring a subset as a compromise between the number of attributes for assessment and
the time allowed to assess a sample [21].

The scoring and descriptive sensory analysis methods are capable of defining terroir.
The SCA overall scoring method combined with ad hoc sensory descriptors such as sweet,
complex, fruit, floral, berry, caramel, butter, cherry, wine, peach, and juicy identified
country-level terroir in Central America, with coffee from Guatemala receiving higher
scores [9]. Intra-country terroirs have been identified in Brazil and Honduras using sensory
scoring methods, with higher altitude terroirs receiving higher scores [1,6]. Descriptive
sensory analysis using the varying intensities of turbidity, coffee aroma, green aroma,
sweet aroma, acidic taste, bitter taste, and astringent taste identified distinct terroir regions
in Paraná, Brazil [5]. Terroir regions were separated by different combinations of aroma
descriptors so that no one descriptor defined a region, illustrating the complexity of defining
terroir [5].

The primary methods for assessing terroir are the scoring method and the descriptive
sensory method. Although the two sensory methods measure related attributes, difficulties
have arisen when correlating scoring and sensory descriptive analysis [19]. The results
from these two different sensory methods cannot be used interchangeably but could be
used in synergy to evaluate the quality of a coffee and its terroir [19]. Defining coffee
terroir requires a standard method. The descriptive sensory method allows the coffee taste
to be defined rather than its quality. For terroir, the taste carries more weight than the
quality, as the quality is dependent on the taster. The recent development of the World
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Coffee Research Lexicon provides a standard list of sensory attributes for defining terroir
by descriptive sensory analysis [20].
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2.2. How Does the Brew Method Affect the Coffee Terroir Experience?

The coffee brew method has a major effect on the drinker’s sensory experience and
can critically affect the assessment of coffee terroir, assuming a consistent roast [15]. There
is a growing number of coffee brewing methods used worldwide [41]. The brew method
can enhance but not change the sensory attributes of the coffee terroir. The most significant
observable difference in sensory attributes is observed with the filter and espresso methods,
while the industry standard is the cupping method [18,26,42].

Espresso methods produce a more concentrated coffee and enhance the bitterness of
the coffee, favoring roasted and nutty flavor notes [42,43]. The filter method often uses a
paper filter, removing oils from the coffee, and can give a less bitter coffee that favors fruity
notes [43]. The cupping method sits in the middle, with less intense sensory attributes
compared to espresso and retention of the oils compared to the filter method [42,43].
Occupying a middle position means the cupping brew method provides a more centered
coffee experience of the terroir.

Coffee brewing is a solid-liquid extraction with water as the solvent. Water temper-
ature and extraction time can significantly affect the variation between coffee brewing
methods [15]. The extraction requires a balance between temperature and time, as an
increased rate of extraction from higher water temperature can also extract chemicals that
can negatively impact the coffee [43]. Filter, espresso, and cupping methods use differ-
ent parameters and setups for coffee brewing (Table 1, Figure 3), adjusting the sensory
experience.
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Table 1. A summary of the brew parameters presented in the literature for cupping, filter, and
espresso methods.

Brew Method Cupping 1 Filter 2 Espresso 3

Coffee Grounds (g) 5–8.25 2–210 5.5–21
Water (mL) 100–300 100–3800 20–100

Water Temperature (◦C) 92—Boiling 90–100 86–97
Brew Time (min) 3–5 2–10 10–30 (s)

Pressure (bar) NA NA 8.5–19
Water/Coffee ratio 14.29–20.00 7.4–59.0 2–18.18

Filter Type NA
Paper Filter #3, Paper Filter #6, Paper
Filter, Metallic Sieve, Ceramic Filter,

Metal Filter, Stainless Steel Tea Strainer
Metallic Sieve

1 [18,26,34,42,44–51], 2 [22,27,39,51–66], 3 [38,59–61,67–77].

Foods 2022, 11, x FOR PEER REVIEW 5 of 20 
 

 

Table 1. A summary of the brew parameters presented in the literature for cupping, filter, and es-
presso methods. 

Brew Method Cupping 1 Filter 2 Espresso 3 
Coffee Grounds (g) 5–8.25 2–210 5.5–21 

Water (mL) 100–300 100–3800 20–100 
Water Temperature (°C) 92—Boiling 90–100 86–97 

Brew Time (min) 3–5 2–10 10–30 (s) 
Pressure (bar) NA NA 8.5–19 

Water/Coffee ratio 14.29–20.00 7.4–59.0 2–18.18 

Filter Type NA 
Paper Filter #3, Paper Filter #6, Paper Filter, Me-

tallic Sieve, Ceramic Filter, Metal Filter, Stain-
less Steel Tea Strainer 

Metallic Sieve 

1 [18,26,34,42,44–51], 2 [22,27,39,51–66], 3 [38,59–61,67–77]. 

 
Figure 3. Common literature brew methods presented in a simplified format for easy method com-
parison. 

A few studies have successfully used the cupping method to distinguish coffee ter-
roir by countries and regions [5,6,9]. The lack of literature using the more sensory enhanc-
ing filter and espresso methods is explained by the robustness of the cupping method 
(Figure 3) [42]. The cupping method requires minimal specialized equipment and is 
straightforward in execution, reducing experimental variation and increasing its accessi-
bility [18]. 

Distinguishing terroir requires a robust, easy to replicate method that the current in-
dustry cupping method fulfils [18]. Instead of enhancing the coffee sensory experience, it 
provides a baseline experience to allow a fair comparison of coffee and its terroir, inde-
pendent of the brew method. The main limitation of the cupping method is that it does 
not replicate the consumer experience. However, considering the range of brew methods, 
it is not plausible to measure terroir using every method [41]. 

The SCA cupping method requires a coffee to water ratio of 0.055 g/mL (normally, 
8.25 g/150 mL), with clean and odor free water poured at 93 °C [18]. Once poured, the 
coffee steeps for 3–5 min before sensory evaluation [18]. This SCA method also falls within 
the parameters of the International Organization for Standardization (ISO) method (ISO 
6668:2008 Green coffee—Preparation of samples for use in sensory analysis) [26]. The SCA 
method is a version of the ISO standard targeted toward single-origin coffee. The cupping 
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comparison.

A few studies have successfully used the cupping method to distinguish coffee terroir
by countries and regions [5,6,9]. The lack of literature using the more sensory enhanc-
ing filter and espresso methods is explained by the robustness of the cupping method
(Figure 3) [42]. The cupping method requires minimal specialized equipment and is
straightforward in execution, reducing experimental variation and increasing its accessibil-
ity [18].

Distinguishing terroir requires a robust, easy to replicate method that the current
industry cupping method fulfils [18]. Instead of enhancing the coffee sensory experience, it
provides a baseline experience to allow a fair comparison of coffee and its terroir, indepen-
dent of the brew method. The main limitation of the cupping method is that it does not
replicate the consumer experience. However, considering the range of brew methods, it is
not plausible to measure terroir using every method [41].

The SCA cupping method requires a coffee to water ratio of 0.055 g/mL (normally,
8.25 g/150 mL), with clean and odor free water poured at 93 ◦C [18]. Once poured, the
coffee steeps for 3–5 min before sensory evaluation [18]. This SCA method also falls within
the parameters of the International Organization for Standardization (ISO) method (ISO
6668:2008 Green coffee—Preparation of samples for use in sensory analysis) [26]. The SCA
method is a version of the ISO standard targeted toward single-origin coffee. The cupping
method focuses on the coffee and the terroir rather than the brewing method, making it
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the best suited for defining terroir. Using the cupping method, Conley and Wilson [9]
identified 36 commonly used sensory descriptors that may be used to distinguish terroir
from 742 coffees submitted to the Central American Cup of Excellence program.

2.3. How Does the Coffee Particle Size Affect the Experience of the Coffee Terroir?

Coffee beans require grinding to increase the surface area and expose the roasted bean
center for brewing [78]. Ground coffee beans range in particle size from around 1800 µm
down to <300 µm (Figure 4). Smaller particle size generally increases the intensity of
positive and negative sensory attributes due to the greater surface area for extraction [79].
Ideally, the particle size is matched to the brew method to adjust the rate of extraction to
enhance the positive and diminish the negative sensory attributes [12].
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The ground size is poorly described and inconsistent in the literature [23,56,78–81],
with descriptive definitions used, such as fine, medium, and coarse [79]. Generally, de-
scriptions specify the following: fine ground (300 to 600 µm), medium ground (600 to
800 µm), and coarse ground (800 to >1000 µm) (Figure 4) [23,56,78–81]. Brew meth-
ods utilize different particle sizes, ranging from medium-coarse (Plunger/French Press),
medium (Immersion Dripper, Cupping), medium-fine (Pour Over/Filter) and fine (Col-
umn/Aeropress) [55,82–85]. Cupping as an immersive method requires a medium style
grind for ideal extraction.

Particle sizes affect the sensory experience, changing the perception of coffee terroir.
The flavors of brown roast, burnt wood/ash, cocoa, dark green and hay-like, along with a
smoky aroma, are more intense in a fine ground compared to a coarse ground coffee [79].
The SCA cupping method [5,9,86] requires the coffee to be ground so that 70–75% of the
grinds pass through a 20 mesh sieve [18], which means 70–75% of the grinds are smaller
than 841 µm, about a fine-medium grind [87]. The particle size distribution of ground
coffee through a grinder is close to a normal distribution, depending on the grinder and
roast used [88].

2.4. The Effects of Roasting on the Coffee Terroir Experience

Green coffee beans are roasted in preparation for brewing. The roasting process
requires holding the green bean at temperatures of up to 250 ◦C for a period up to
15 min [89,90]. The longer or hotter the roast, the more Maillard, Strecker, hydrolysis,
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and pyrolysis reactions can take place, darkening the bean [91]. The roasting process
encompasses three phases. The first phase is endothermic, as the moisture in the green bean
turns to steam, increasing the internal bean pressure [90]. Once the steam pressure exceeds
the cell wall strength, the bean cracks, releasing steam and volatiles while growing in size
due to the now weaker cell walls [90]. The second phase is exothermic, with the additional
heat from the roaster beginning pyrolysis and Maillard reactions [90]. Aroma formation
occurs rapidly during the second phase, which comes to an end with the build-up of carbon
dioxide. The remaining steam and volatiles cause a second crack [92]. The third phase after
the second crack continues to be exothermic, and the bean begins to burn, creating burnt
flavors [92].

As more prolonged or higher temperature roasts give a darker bean, the color of the
roasted bean can indicate the degree of roasting, with the terms ‘light’, ‘medium’, and
‘dark’ used to describe the roast level (Figure 5). Additionally, the bean color correlates well
with sensory attributes, allowing the color to indicate the sensory attributes caused by the
roasting process [90]. The roasting process causes the roasted bean to increase in volume
(50–100%) and lose weight (15–22%) [90]. The change in volume and the degree of roasting
influences the uniformity of the grind size [12]. Darker roasts reduce the uniformity of
the pores and increase the brittleness of the roasted bean, resulting in a less uniform grind
distribution [12]. Lighter roasts provide a more consistent ground size distribution, as the
pore sizes remain more uniform [12].
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Upon the green beans reaching the roasting step, the terroir is considered fixed, as the
roasting process is independent of environmental conditions and location. Further, roasting
often occurs in the country of consumption rather than the country of production. When
done appropriately, roasting will highlight the characteristics of the terroir, while if carried
out inappropriately, it will destroy the characteristics [91]. The coffee terroir determines the
starting composition of volatile and non-volatile compounds present during the roasting
process, influencing the final aroma and flavor of the coffee [90,91].

The required temperature and time to reach a specific roast color are terroir depen-
dent [1]. Decazy et al. roasted coffee (100 g, 8 min, 220 ◦C) from 52 plots across six
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Honduras regions with different terroirs [1]. Under the same roast profile, there was a
greater appreciation for coffee beans from the Olancho and El Paraiso regions than those
from Santa Barbara [1]. The coffee beans from Santa Barbara exhibited astringent, sour, and
acidic flavors, suggesting insufficient roasting [1].

As the terroir governs the roast profile, the color of the roasted ground coffee provides
a more consistent means to measure the roast level than the roasting parameters [1]. Terroir-
focused studies report the use of medium-light to medium roast levels for cupping [5,6,9],
which aligns with the industry standard that requires a medium-light roast (Agtron 65, SCA
coffee color scale) [18]. A lighter roast is used, as lighter roasts highlight the differences
in post-harvesting methods more than darker roasts [93]. Further, lighter roasts minimize
aroma compounds from the roasting process, providing a similar aroma to the green beans
(e.g., fruity and sour), and darker roasts increase the aroma compounds created during
roasting via Maillard reactions (e.g., bitter, burnt, spicy) [93].

A medium-light roast should be used as the standard roast to ensure that terroir
affected by post-harvesting methods can be differentiated through sensory analysis while
incorporating reaction products from the roasting process. As coffee roasting often occurs
outside the country of origin, it should not contribute to the definition of coffee terroir.

3. The Effect of Harvest and Post-Harvest Processing Methods on Terroir

The coffee cherry harvesting method contributes to the terroir and the sensory expe-
rience of the coffee. Harvesting of coffee cherries occurs by hand or machine, depending
on the terrain and labor cost [94]. Harvesting is complicated by cherries typically not
ripening uniformly, with a single branch containing unripe, ripe, and overripe cherries [94].
Hand-picking overcomes the range of ripeness by allowing individual cherries to be picked
at optimal ripeness (bright, deep red color) and on any terrain [94]. The downsides to
handpicking include increased time required for harvesting and multiple passes through
the trees [94]. In contrast, machine harvesting is quicker, using vibrating fingers to knock
loose the ripe cherries [94]. Machine harvesting is limited by the terrain and has less
selectivity, harvesting a broader range of cherry ripeness, including unripe and overripe
cherries in the harvest, dependent on the machine configuration [94].

Post-harvest methods separate the bean from the flesh of the cherry. There are three
main methods for separating the bean from the flesh: wash (or wet), honey (or semi-dry),
and natural (or dry) methods [14,94]. The wash method removes the flesh mechanically
before removing the remaining mucilage using controlled fermentation or mechanical
scrubbers. The honey method mechanically de-pulps the cherry before drying with the
mucilage remaining on the bean. The wash and honey methods leave the papery parchment
layer on the coffee bean. Often, removal of the parchment layer occurs separately to produce
the dry green beans used for coffee trading. The natural method generally uses the sun’s
heat to dry the cherry, with the dried flesh and mucilage removed in combination with the
parchment layer. Each method can be further subdivided, depending on the conditions
and additional steps used during post-harvest processing [14]. Each method impacts the
sensory experience of the green bean in different ways, with method choice generally
dependent on the environmental conditions and resources available. Once processed, the
green beans require drying to approximately 11.5% moisture content for all methods before
they can be bagged and placed into storage [95].

Selecting ripe cherries on the tree is optimal, as post-harvest sorting will require
additional handling steps and create waste. Hand sorting harvested cherries adds another
labor-intensive process. Automated color and density sorting can sort ripe cherries from
unripe and overripe cherries [94]. Color sorting relies on color sensors to include or exclude
cherries based on the cherry color. Density sorting requires flowing water to separate the
cherries based on density, assuming similar size, with ripe cherries sinking and less dense
unripe and overripe cherries floating. Color sorting can be more effective than density
sorting due to variations in cherry size [94].
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Historically, post-harvest processing methods arose based on the restrictions of the
region where the processing took place. The natural method was suited for regions that
were dry and hot during harvesting. In contrast, the wash method allowed processing
in regions with high rainfall and humidity, unsuitable for sun drying without harmful
fermentation [94]. The natural method generally uses more straightforward equipment
than the wash and honey methods, making it more accessible to producers [94]. Colombian
coffee is an example of the environment directly affecting the post-harvesting method and
terroir [96]. Colombia’s high rainfall and temperature accelerates uncontrolled fermentation
in the coffee cherry, preventing the use of natural methods [96]. The limitations imposed
by the Colombian environment encourage the use of controlled fermentation (time, tem-
perature, water exchange, and control of spontaneous microorganism development) of the
wash method [96].

The harvest method affects terroir, as ripe cherries contribute sweet, floral, and fruity
sensory notes. In contrast, unripe cherries contribute grassy, green, or astringent notes
and overripe cherries contribute fermented, musty, or moldy notes [94]. Environmental
microbes can infest the damaged cherries during the harvesting process, imparting sour
notes from uncontrolled fermentation as the cherries are processed [91].

The sensory descriptors red wine, coffee blossom, lemon, acidity, body, fresh butter,
and dark chocolate differ significantly across beans from the wash, honey, and natural
methods [97]. The wash method adds fruity, sweet, floral, caramel, and acidity sensory
notes to the coffee [91,96,97]. Junqueira et al. [96] explains the unique sensory profile of
wash methods as a result of fermentation-generated compounds diffusing into the green
bean, altering their chemical composition and sensory characteristics. The honey method
retains some mucilage on the bean during the drying stage and is said to incorporate
sensory characteristics of both wash and natural methods [94,98]. The additional mucilage
present on the bean from the honey method increases the polysaccharide content, which
could contribute to increased sweet and body sensory notes [99]. The natural method
imparts unique red wine and strong body notes [97]. However, as the drying rate is
environmentally dependent, the natural method does not produce a consistent coffee, with
the intensity of sensory notes varying between batches [94].

Processing close to the growing area contributes to terroir, as the drying conditions,
fermentation conditions, and yeast strains used in the post-harvest process can be environ-
mentally dependent. Therefore, for coffee cherries processed on the farm, the environment
and geography influence the post-harvesting method, contributing to the coffee terroir.
However, not all post-harvest methods can contribute to terroir, as the processing of coffee
cherries does not always occur in the same area or environment in which the cherries are
grown. The correlation of post-harvest processing methods with terroir defining sensory
notes reinforces the need to include the post-harvest method in the definition of coffee
terroir. In contrast, the post-harvest processing method is not considered part of the terroir
within the wine industry because processing is less likely to be affected by environmental
constraints.

4. Environmental and Management Factors Affecting Coffee Terroir

Coffee bean quality is maximized by maintaining a lengthy maturation period and
ensuring that nutritional and carbon resources required for bean filling are not limited [100].
The maturation rate controls the accumulation rate and ratio of nutrients in the coffee cherry
and associated beans [101]. Coffee species differ in their length and rate of the maturation
period, with arabica lasting 7–9 months and robusta 11 months, and the cherry changing
from green to a red or yellow color (Figure 6) [94]. Each cherry typically contains two
coffee beans that accumulate polysaccharides, proteins, lipids, and minerals intended for
germination [101]. The cherry forms after pollination, with flowering lasting 2–3 days and
requires a period of dryness, followed by 7–10 mm of precipitation to trigger it [101,102].
Flowering can be triggered multiple times throughout the reproductive period during the
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tropical dry season [101,102]. Multiple flowerings can result in a single branch containing
cherries at different stages of maturity, complicating harvesting [101,102].
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Ultimately, a trade-off may occur between bean yield per tree and bean size and
quality, particularly when resources are limited, because individual beans compete for
carbohydrates and nutrients under high bearing loads [103]. As such, negative relation-
ships between coffee bean yields and coffee quality have been reported [104]. Thus, it is
the overall interaction between environmental and management factors that affect vege-
tative growth (‘source’), bean yields (‘sink’), and the length of the maturation period that
determine the potential bean quality in a given location and therefore the terroir [105]. The
key environmental and agronomic (management) factors that interact to determine coffee
bean quality and terroir are discussed below, noting that the interactive effects of these
variables can impact differently the different coffee varieties, i.e., genotype x environment
effects [106].

4.1. Temperatures—Altitude and Shading

Cooler air temperatures during the ripening phase extend the maturation period, and
thus coffees grown at high altitude tend to have high bean quality [1,107,108] and are asso-
ciated with improved sensory experience scores for the coffee beverage [86,109]. Even small
changes in temperature of 2.5 ◦C have a significant effect on the sensory score, changing
the quality grade of the coffee and suggesting the possible effect of microclimates on the
terroir [109]. Warmer temperature encourages the bioaccumulation of compounds known
to contribute to negative green and earthy sensory notes and an increase in compounds
that contribute bitter notes in coffee [106,110]. Lower temperatures contribute to fruity
notes and acidity [91,110]. Cheng et al. [106] proposed that the increased caffeine content
found at higher altitudes corresponds to the more extended maturation period, providing
additional time for caffeine accumulation during early bean development. However, this
high-caffeine-content coffee grown at high altitudes may be less bitter, as the accumulation
of other compounds in a slow maturation could dilute the bitterness [104]. While there
are interactive effects of altitude and management factors, including shading and varietal
choice, on coffee bean quality (see below), it is generally accepted that higher altitudes are
associated with increased bean and cupping quality.

Shading reduces both the air temperature and the radiation reaching the coffee
trees. Shading of trees has been widely reported to improve bean quality, particularly
at low altitudes, where the cooling effect of shade trees lengthens the bean maturation
period [103,111,112]. However, Bosselmann et al. [108] reported a negative association
between shading and bean quality, particularly at higher altitudes. Thus, at high altitudes
where the maturation period is already lengthened by cooler temperature, any further
cooling effects of shade trees may be outweighed by the reduction in radiation reaching the
coffee trees. For robusta coffee, a meta-analysis by Piato et al. (2020) found that shade >30%
reduced cupping quality, but there were significant interactions with shade and location,
variety, rainfall, and tree age; shade had little or negative impacts on trees <16 years old
but had positive impacts on older trees [113]. The impact of shading in a particular envi-
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ronment is also influenced by the coffee variety grown [112], and shade trees also impact
water use and the dynamics of pathogens and insects, which may also affect coffee tree
growth and yields in specific environments [114]. Taken together, these studies highlight
that it is the interaction between environmental and agronomic (management) factors that
determines bean quality, as opposed to one single factor.

Low temperatures and frost can be detrimental to coffee trees, with frost potential
increasing at high altitudes >2000 m in equatorial zones and at low altitudes at higher
latitudes [115]. Frost events can cause the death of plants, and low temperatures can affect
plant growth, which impacts source–sink relationships. As such, low-temperature stress
can affect bean yield and quality, but as an indirect effect it does not affect terroir directly,
and thus it is not discussed further in this review.

4.2. Moisture Relations—Rainfall and Irrigation

Rainfall affects source–sink relationships by ensuring photosynthesis (carbohydrate
source) is not impaired by lack of moisture but also effects time/synchrony of flowering
or fruit load by dislodging flowers or immature beans (carbohydrate sink). [116]. A dry
period is required to initiate buds prior to flowering, followed by rainfall (or irrigation—see
below) to stimulate flowering [117]. The lack of a distinct dry period followed by rain
can cause multiple or staggered flowering events that lead to a lack of uniformity in bean
maturity on trees. More staggered ripening increases the risk of introducing negative notes
by harvesting unripe/overripe cherries in mechanized systems [91,107]. Excessive rainfall
during the bean ripening period can also lead to disease issues or bean discoloration, which
lowers bean quality by imparting sensory attributes that are considered undesirable [118].

Because moisture impacts both source and sink resources, rainfall can have negative or
positive effects on coffee bean quality depending on the timing and amount of precipitation.
For example, Decazy et al. (2003) [1] reported higher coffee quality for arabica in regions of
Honduras receiving less than 1600 mm rain per annum. Kath et al. (2021) [116] reported an
increased risk of small bean size in robusta coffee if <1600 mm rainfall was received during
the latter part of the growing season. It is perhaps because of these complexities that some
studies have found limited contribution of rainfall or irrigation to coffee terroir [105,119],
but the findings need to be taken in context. As an example, irrigation was found to have
little influence on the chemical composition and physical quality of beans in several regions
of Brazil compared to other site factors [109]. However, it was noted that there were few
differences between irrigated and non-irrigated coffee trees in the years of study [109], and
hence, one would not expect any impact of irrigation on bean quality. In contrast, in specific
environments, irrigation can be used to avoid moisture deficits and maintain bean yields or
to initiate flowering to improve uniformity of bean ripening [115,117]. In these scenarios,
irrigation will impact bean yields and quality and will thus have an impact on the terroir.
Taken together, the results highlight the difficulty in drawing broad conclusions on the role
of rainfall and irrigation in terroir when the results from individual studies are generally
environment- and season-specific.

4.3. Species and Varietal Effects

Arabica (Coffea arabica) and robusta (a variety or a hybrid of C. canephora) are the
main coffees used for commercial production [92,120]. Arabica coffee, by popular opinion,
delivers a better sensory experience with characterful, well-defined flavors [92]. Robusta
has a less popular sensory experience but contains higher levels of caffeine [92]. Hundreds
of varieties exist for the two species, with the more popular arabica having 53 standout
varieties recognized by World Coffee Research [121].

The coffee species and variety planted depend on the growing region’s environmental
conditions [120]. Arabica and robusta perform best under different growing conditions
(Table 2) [91]. Therefore, as species selection is dependent on the place, it forms part of
the terroir.
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Table 2. Ideal growing conditions for arabica and robusta coffee species [91].

Arabica Robusta

Altitude (m) 1000–2100 100–1000
Daily Ave Temp (◦C) 18–22 22–26
Annual Rainfall (mm) 1500–2500 >2000

Sunlight Partial Shade Full Sun

Coffee species and variety selection impact both the plant growth and resulting sensory
profile [91,120]. Coffee breeding programs have expanded the selection of coffee varieties
that farmers can access [120]. Breeding of arabica has created varieties with increased
disease resistance, crop yield, compact growth, and excellent cup quality [120]. Breeding
of the naturally more disease-resistant robusta has increased yields and bean size [120].
Coffee traits like bean size, bean weight, fat content, caffeine, and overall liquor standards
are highly heritable, providing starting points for the terroir to build on [120]. Though the
industry considers arabica to provide a better sensory experience, robusta is more robust
and provides greater yields [92].

Variety was found the next most influencing factor on the coffee’s sensory experience
after altitude by Aguilar et al. (2012) [119]. For arabica plants grown above 800 m, the
Caturra cultivar gives more fruity, acidic, and tarty coffee, while the Typica cultivar gives
more balanced and bitter, full-bodied coffee [119]. A study across 10 robusta coffee cultivars
planted across five environments in the Amazon region of Brazil identified consistent
differences between the sensory notes of varieties, independent of the environment [122].
Sensory notes of chocolate, cereal, woody, herbal, almond, and caramel differentiated
the varieties [122]. The species and variety provide the base for building the terroir and
determine the plants’ growth and yield under the terroir-defining environmental factors.

4.4. Soil and Fertility Management

Soil type generally has a minor impact on terroir compared to other factors [16,119,123],
but given that soil type will affect moisture relations and nutrient availability, it has
the capacity to influence tree growth and resource availability for bean development.
However, both water and nutritional constraints can be overcome by the use of irrigation
and fertilizers, depending on availability. Sandy soil was reported to increase bitter notes
while reducing fruitiness in coffee in one study [119], which may be related to either soil
moisture relations or nutrition, which both affect plant growth. Other than using soil
amendments or fertilizers to overcome nutritional constraints to tree growth, there are few
reports on the specific impact of soil type or tree nutrition on bean quality, and there is little
consensus among the published reports.

Abebe et al. [124] found relationships between cupping quality of Ethiopian coffee
and several soil nutrient ratios; for example, Mg:K, P:N, and P:C ratios were all positively
associated with cupping quality. However, the notion that specific cation ratios are required
for optimal plant growth has been largely discredited [125], and in the absence of any other
studies linking soil nutrient ratios to coffee cupping quality, it is difficult to extrapolate the
results of Abebe et al. (2019) [124] to draw broader conclusions.

Low potassium resulted in a 10% increase in leaf caffeine concentration in 7-month-
old coffee seedlings [126], but any consequence of this finding for bean quality remains
unknown. Clemente et al. (2015) reported that a N:K fertilizer ratio of 1:1.56 in hydroponic
culture resulted in the greatest cup quality (higher caffeine, color index and sugars, and
lower titratable acidity and EC), but the results were based on only four applied K lev-
els [127]. Vinecky et al. (2017) reported increased caffeine concentration with increasing N
nutrition under well-watered conditions [128], while Bote and Vos (2021) found increased
N nutrition improved bean size and organoleptic qualities under reduced radiation lev-
els [100]. Ultimately, the effect of the addition of any particular nutrient on the bean quality
of soil-grown plants will depend on the existing levels of that nutrient and other nutrients
within the soil reservoir and on interactions with other factors that drive plant growth,



Foods 2022, 11, 1907 13 of 20

including radiation, temperature, and moisture availability. It is perhaps for this reason
that there is no consensus in the literature on the specific impacts of tree nutrition on
coffee bean quality, and there are reports of limited effect of soils and fertilizer use on
terroir [16,119,123].

4.5. Other Environmental and Management Factors Affecting Terroir

Other inherent aspects of the growing site, such as aspect and slope, which impact
exposure to sunlight and movement of air, can affect bean quality. For example, Avelino
et al. (2005) found higher bean quality from trees on east-facing slopes and attributed this
to exposure to more morning sunlight [107]. It is likely, however, that any effect of aspect or
slope will interact with other environmental and climatic factors to determine bean quality,
and any conclusions on the optimum slope or aspect for coffee production would therefore
be location-specific.

Pruning and thinning are management factors that affect source–sink relationships
and can therefore impact carbohydrate and nutrient supply during bean maturation. High
bearing loads can increase competition between developing beans for carbohydrates, and
both pruning and thinning may reduce this competition by minimizing the fruit load
(sink) [103]. Pruning typically reduces fruit load in the subsequent season, or seasons, and
the impacts on both yield and quality of beans is variety-dependent [129]. Any impact of
pruning or thinning will depend heavily on interactions with other environmental variables
that affect source–sink relationships in a given season; thus, drawing broad conclusions on
the effect of thinning and pruning on terroir is difficult.

5. Biochemical Markers and Terroir

A number of biochemical markers have been identified in coffee with different sensory
profiles [1,130]. Modern analytical instruments such as gas chromatography mass spectrom-
etry (GCMS) [28,131–135], GCMS-Time of Flight (GCMS-TOF) [136], high-performance
liquid chromatography (HPLC) with evaporative light scattering detector (ELSD) [133],
near-infrared radiation (NIR) [137], and Raman spectroscopy [138] have been utilized to
find relationships between biochemical markers and the sensory notes of coffee.

Using GCMS, robusta and arabica samples from different locations were separated
through chemical and sensory notes [135]. Arabica samples presenting acidic, flowery,
and fruity notes contained increased amounts of furan derivatives, esters, and ketones.
In contrast, robusta samples, with roasty, tobacco, nutty, spicy, and woody notes, had
increased amounts of pyrazines and phenolic derivatives [135].

An increase in altitude correlates with an observed increase in chlorogenic acid (1000–
1750 cm−1) and lipids (2700–3050 cm−1) by Raman spectroscopy [138]. The increase in
altitude affects the biochemicals of the green bean, with a reported decrease in chocolate
and almond notes and an increase in citric, floral, and sugar cane notes [138]. The inclusion
of immature beans during harvesting leads to increased levels of serine, aminobutyric acid,
valine, leucine, isoleucine, methionine, and 2-methylbutanal, contributing to increased
astringency and bitterness in the coffee [131].

Biochemical markers can further separate the country of origin. Naturally pro-
cessed Uganda robusta reportedly possesses higher acidity from 2,3-butandione and 2,3-
pentandione, acetoxy acetone, hexanal, acetic acid, 1-hydroxy-2-butanone, and 1-H-pyrrole-
2-carboxaldehyde, which contribute to musty, sour, pungent, and buttery notes [135]. In
contrast, woody notes dominate in naturally processed Indonesia robusta, with higher
pyrazines and phenolic compounds that contribute woody, spicy, and buttery notes [135].
Ethiopian natural and Papua New Guinea washed arabica present similar differentia-
tion. Ethiopian arabica has a more pungent aroma and fruity notes corresponding to
higher levels of furfuryl alcohol, methyl acetate, 5-methyl furfural, and 2-cyclopenten-1-
one-3 methyl [135]. In comparison, Papua New Guinea arabica contained higher levels
of acetyl furan, 2-furfuryl-5-methylfurane, 2-furanmethanol propanoate, and 2-furfuryl
furan, adding sweet-caramel-like notes [135]. Xu et al. (2019) demonstrated that HPLC-
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quadrupole time-of-flight mass spectrometry (HPLC-QTOF) can identify a number of chem-
ical markers and separate different coffee origins (Ethiopia, Colombia, and China) [15].
However, additional sensory analysis is required to link the chemical markers with ter-
roir [15].

Biochemical markers allow separation based on the presence and absence of com-
pounds and the variations in the quantities present. A recent review by Seninde et al. goes
deeper into the relationship between biomarkers and sensory notes [10]. As the repro-
duction of sensory analysis heavily relies on the panelists selected each time, biochemical
markers and instrumental analysis should be used to assist in identifying terroir and quality
control. Some examples have been provided in Figure 7 to assist in the understanding
of the relationship between sensory attribute, chemical molecules, and different coffee
roasting/post-harvesting methods. Some links between the chemical molecules and roast-
ing or post-harvesting methods are still not clear and sometimes are even contradictory in
publications [10,139–141].
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6. Conclusions

Coffee terroir is greatly affected by environmental and agricultural factors that affect
the maturation rate of the coffee cherry and bean. The remaining factors like soil and water
affect the nutrients available to the plant and coffee cherry development. Plant nutrition to
terroir correlations are inconclusive. In contrast to wine, the post-harvest processing of the
coffee cherry can be considered part of the terroir, as environmental factors often determine
how the cherry is processed.
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We propose that coffee terroir should be assessed using descriptive sensory analysis
using the cupping method for a medium-light roast. The post-harvesting method, coffee
variety, and environmental and farm management factors should all be considered as
contributors to the coffee terroir.

The assessment of terroir through the cupping method represents the industry stan-
dard but does not represent the consumer experience. After the terroir is assessed by the
cupping method, different roast profiles and brew methods should be tested to check if
the terroir could be retained or highlighted. Modern instrumental analysis can identify
biochemical markers associated with terroir and should be used to validate the sensory
assessment from a cupping panel.
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