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13 School of Public Health, University of Alabama at Birmingham, Birmingham, AL, United States of America,

14 Lund University, Lund, Sweden, 15 University of Maryland School of Medicine, Baltimore, MD, United

States of America, 16 Heidelberg University, Heidelberg, Gemany

* jcole@som.umaryland.edu

Abstract

Background and purpose

The role of copy number variation (CNV) variation in stroke susceptibility and outcome has

yet to be explored. The Copy Number Variation and Stroke (CaNVAS) Risk and Outcome

study addresses this knowledge gap.

Methods

Over 24,500 well-phenotyped IS cases, including IS subtypes, and over 43,500 controls

have been identified, all with readily available genotyping on GWAS and exome arrays, with

case measures of stroke outcome. To evaluate CNV-associated stroke risk and stroke out-

come it is planned to: 1) perform Risk Discovery using several analytic approaches to iden-

tify CNVs that are associated with the risk of IS and its subtypes, across the age-, sex- and

ethnicity-spectrums; 2) perform Risk Replication and Extension to determine whether the

identified stroke-associated CNVs replicate in other ethnically diverse datasets and use bio-

marker data (e.g. methylation, proteomic, RNA, miRNA, etc.) to evaluate how the identified

CNVs exert their effects on stroke risk, and lastly; 3) perform outcome-based Replication

and Extension analyses of recent findings demonstrating an inverse relationship between
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CNV burden and stroke outcome at 3 months (mRS), and then determine the key CNV driv-

ers responsible for these associations using existing biomarker data.

Results

The results of an initial CNV evaluation of 50 samples from each participating dataset are

presented demonstrating that the existing GWAS and exome chip data are excellent for the

planned CNV analyses. Further, some samples will require additional considerations for

analysis, however such samples can readily be identified, as demonstrated by a sample

demonstrating clonal mosaicism.

Conclusion

The CaNVAS study will cost-effectively leverage the numerous advantages of using existing

case-control data sets, exploring the relationships between CNV and IS and its subtypes,

and outcome at 3 months, in both men and women, in those of African and European-Cau-

casian descent, this, across the entire adult-age spectrum.

Introduction

In the United States, stroke is the leading cause of serious long-term disability and the 4th lead-

ing cause of death [1, 2]. In contrast to myocardial infarction, where the underlying pathology

is almost exclusively atherosclerotic, large artery atherosclerosis accounts only for 12% of

ischemic stroke (IS) incidence [3]. The etiology of IS complex, and understanding its patho-

physiology can aid in prevention and improve treatment. As for many other complex diseases,

one approach to understanding etiology is genetics, which can identify novel pathways and

drug targets through an unbiased approach.

Although large genome-wide association studies (GWAS) of ischemic stroke (IS) popula-

tions have been successful at identifying stroke-associated loci with small effect sizes, copy

number variation (CNV) analyses of these same datasets has yet to occur. Studying CNV has

revealed important insights for numerous other complex diseases and, in fact, our preliminary

data demonstrates several CNV associations to biologically compelling ischemic stroke candi-

date loci. Moreover, we have recently demonstrated that a higher CNV burden genome-wide

is associated with poorer stroke outcome at 3 months using the modified Rankin Scale (mRS)

[4]. We therefore hypothesize that CNV analyses of existing GWAS and exome array data will

be a highly effective and cost-efficient methodology to identify novel associations illuminating

stroke mechanisms, treatment targets, and outcome drivers. We further speculate that these

analyses of existing GWAS microarrays will also identify rare and de novo CNVs of large effect

size in ischemic stroke, as suggested by the existence of numerous monogenic, syndromic and

complex diseases associated with CNV. CNV studies therefore may bridge the gap between

common SNPs associated with common stroke and rare mutations, causing familial stroke

syndromes, thus partially explaining the ‘missing heritability’ known to exist in stroke.

Prior studies on the heritability of stroke

Twin studies suggest a significant heritability for stroke. Monozygotic twins are more likely

(odds ratio *2.0) to be concordant for stroke than dizygotic twins [5–7]. Other studies evalu-

ating IS genetics across the age-spectrum demonstrated a stronger genetic contribution to
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early-onset stroke, serving as a motivator for the planned age-stratified CNV analyses. In these

studies, it was demonstrated that a gradient of greater familial aggregation exists in younger

cases [8], that extended into the young-adult age range [9]. Consistent with these findings, and

since familial aggregation can also be due to shared environmental influences, genetic herita-

bility analyses based on common variant GWAS data showed that IS cases younger than 55

years of age had higher heritability compared to older IS cases (42% ±8%, P < 0.001 versus

34% ±10%, P < 0.001) [10].

Specific to the CaNVAS study, the heritability of stroke has previously been evaluated in the

African-ancestry South London Ethnicity and Stroke Study (SLESS) population (included in CaN-

VAS) using GREML (genomic-relatedness matrix-restricted maximum likelihood) approaches

[11]. Based on sample size limitations, restricted analyses to the phenotype of all-stroke vs. controls,

including 10 ancestry-informative principal components to control for population structure, esti-

mated the population prevalence of stroke in England at 2.3%. Implementing a relatedness thresh-

old of 0.05 (equivalent to second-cousin relatedness), 161 individuals were removed (89 cases, 72

controls). Ultimately, a genetic contribution to IS in SLESS (p = 0.043) was found with an esti-

mated heritability of 0.35 (SE 0.19). If the prevalence were assumed to be higher (4%), this estimate

would rise to 0.41 (SE 0.23); whereas for a lower prevalence (1%), the estimate is 0.26 (SE 0.16).

This compares to a heritability estimate of 0.18 in the largest analysis in Europeans to date [12].

There are other studies evaluating stroke-subtype heritability. First, using single nucleotide

polymorphism (SNP)-based pseudo-heritability measures heritability estimates in cardioem-

bolic stroke were demonstrated increasing from 16.5% in older onset cases to 28.5% in youn-

ger onset cases [13]. Two other studies [12, 14] reporting GWAS-derived heritability measures

using GCTA software [15] demonstrated variability in the heritability estimates. Both studies

agreed on the heritability estimate for stroke as a whole of *40%. However, heritability esti-

mates by stroke subtype varied markedly. The large vessel subtype always showed the highest

heritability measures (40.3 and 66%) while the small vessel subtype showed the lowest mea-

sures (16.1 and 10%), although accuarate phenotyping may play a role, as higher heritabilities

were seen in magnetic resonance imaging–verified lacunar stroke (20%–25%) [16].

Missing heritability

While the described findings demonstrate a strong heritabilitable component for ischemic

stroke, which is enriched in early-onset cases, it is important to note that the total contribution

of all identified and replicated genetic stroke risk factors [17] remains far below the estimated

stroke heritability measures as described. Hence, with few genome-wide loci for stroke identi-

fied thus far, there remains a substantial proportion of missing heritability, with CNV as a thus

far unexamined potential contributor.

CNV and stroke risk

A relatively recent review, as summarized in Table 1, highlights the prior CNV findings in

patients with ischemic stroke [18] emphasizing rare CNVs causing Mendelian stroke syn-

dromes, common CNVs associated with stroke risk factors, and CNV associated with particular

stroke subtypes, including cervical artery dissection, small vessel disease or Moyamoya disease.

In these early subtype-specific CNV studies, 70 CeAD patients were phenotyped by an elec-

tron-microscopic analysis of a skin biopsy in order to detect connective tissue alterations [20].

One patient with carotid artery dissection and a history of aortic disease had a large deletion

covering the entirety of the COL3A1 and COL5A2 genes [20]. Another patient carried a large

recurrent duplication of chromosome 16p13 including the MYH11 and ABCC6 genes, a rare

finding in the normal population that predisposes to aortic aneurysm and dissection [34, 35].
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Four further patients with CNV of the MYH11/ABCC6 locus were identified in a subsequent

exploration of 833 CeAD patients [21]. Interestingly, this latter CNV-study of CeAD did not

detect association with variation in a particular locus but found association with variation in a

pre-defined set of genes involved in cardiovascular system development. To date, only a few

small, underpowered studies [36] have evaluated CNV in the setting of IS.

CNV and stroke outcome

Few studies exist evaluating the association between CNV and ischemic stroke outcome. One

recent study demonstrated that genetic imbalance level (i.e. total CNV burden) was negatively

associated with favorable outcome after IS [4]. CNV was identified in high-density SNP micro-

array data of IS patients from the Cervical Artery Dissection and Ischemic Stroke Patients

(CADISP [37]), Stroke Genetics Network–NINDS (SiGN [38]) and Genetics of Ischaemic

Stroke Functional Outcome (GISCOME [39]) networks. Genetic imbalance, defined as the

total number of protein-coding genes affected by CNVs in an individual, was compared

between patients with favorable (modified Rankin Scale, mRS = 0–2) and unfavorable (mRS

>3) outcome after 3 months. Subgroup analyses were carried out confined to CNVs either

affecting ohnologs, a class of dose-sensitive genes, or not.

Table 1. CNV-findings associated with ischemic stroke.

Phenotype CNV affected/disrupted genes Ref

CNV-findings in stroke due to a Mendelian disorder

CADASIL 100 bp deletion NOTCH3 [19]

Vascular EDS 2q32 deletion COL3A1, COL5A2 [20]

CNV associated with subtypes of ischemic stroke

CeAD erichment of various CNVs affecting arterial development [21]

CeAD 16p13.1 duplication MYH11/ABCC6 locus [21]

Moya-moya 6pter duplications [22, 23]

CCM exonic CNVs CCM1; CCM2; CCM3 [24]

SAO 13q34 duplication COL4A1/COL4A2 locus [25, 26]

SAO low (<4) copy number DEFB4 [27]

LVD low (<4) copy number DEFB4 [27]

CNV associated with complex developmental retardation phenotypes and pediatric stroke

1q24 /10q26 deletions SERPINC1 [28]

CNV associated with stroke risk factors

Atrial fibrillation intronic duplication KCNIP1 [29]

Obesity CNV burden [30]

Obesity 16p11.2/22q11.2 deletion [31]

Obesity low copy number AMY1 [32]

Hyperlipidemia VNTR LDLR, LPA [33]

CADASIL: Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy; EDS: Ehlers Danlos syndrome; SAO: Small arterial

occlusive disease; LVD: Large vessel disease; CeAD: Cervical artery dissection; CCM: Cerebral cavernous malformations; VNTR: Variable number of tandem repeats.

https://doi.org/10.1371/journal.pone.0248791.t001

Note on ohnologs

The geneticist Susumu Ohno hypothesized that the large vertebrate genome developed

from smaller primitive fish genomes by two rounds of whole genome duplications. As a

consequence, many genes have four similar copies across the genome (for instance

NOTCH1, NOTCH2, NOTCH3, and NOTCH2NL). Apparently, these copies were not
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The association of imbalance with outcome was analyzed by logistic regression analysis,

adjusted for age, sex, stroke subtype, stroke severity and ancestry. The study sample comprised

816 CADISP patients (age 44.2±10.3 years) and 2498 SiGN/GISCOME patients (age 67.7±14.2

years). Outcome was unfavorable in 122 CADISP and in 889 SiGN/GISCOME patients. Multi-

variate logistic regression analysis revealed that imbalance was negatively associated with

favorable outcome in both samples (CADISP: p = 0.0007; OR (odds ratio): 0.89; 95% confi-

dence interval (95%CI): 0.82–0.95; SiGN/Giscome: p = 0.0036, OR:0.94; 95%CI:0.91–0.98).

The association was independent of age, sex, stroke severity upon admission, stroke subtype

and ancestry. In our study, upon subgroup analysis, imbalance affecting ohnologs was associ-

ated with outcome in both study populations (CADISP: OR: 0.88; 95%CI: 0.80–0.95; SiGN/

Giscome: OR: 0.93; 95%CI: 0.89–0.9) whereas imbalance without ohnologs lacked such an asso-

ciation. From these subgroup analyses we concluded that the identified associations were

driven by the presence of ohnologs in the respective CNVs, suggesting a truly causal role of the

deleterious effects of genetic imbalance.

Overall, these described studies, demonstrate the scientific motivation and methodological

basis for the Copy Number Variation and Stroke (CaNVAS) Risk and Outcome Study.

Materials and methods

In the field of stroke genetics, the CaNVAS study is innovative for several reasons:

1. Patients

The study sample includes large African ancestry cohorts, in addition to large European-Cau-

casian cohorts, with sample sizes well powered to evaluate ischemic stroke subtypes, sex differ-

ences, across the age-spectrum [42, 43].

2. Type of genetic variation

Focus on CNV, and in particular on genomic imbalance, as a methodology to identify key

CNV drivers, genes and pathways related to stroke risk and outcome.

redundant and have been evolutionary conserved over billions of years. Other copies,

however, evolved into new functions (“neo-functionalization) and have no detectable

homologous relatives within the genome. Although the evolutionary conserved genes

(ohnologs) were originally present in multiple copies (after the initial whole genome

duplication) all copies were apparently needed. This might indicate that these genes are

particularly dose-sensitive, which was confirmed in other recent CNV studies: many dis-

ease-causing CNV include ohnologs [40, 41].

Note on genetic variation

Human genetic variation can be classified with regard to frequency (rare or common vari-

ants), function (pathogenic, benign or variants of unknown significance–VUS) or size (single

nucleotide polymorphisms (SNPs), microsatellites (oligo-nucleotide repeats), indels, copy

number variants–CNVs, or aneuploidy). CNVs are usually defined as structural variants

>100 base-pairs of DNA. CNV typically map in genomic regions that are rich in repeated

sequences (segmental duplications) and have a higher rate of new mutation than SNPs.
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Most current studies in stroke genetics relate to either rare pathogenic variants associated

with rare Mendelian disorders (like CADASIL or Ehlers-Danlos syndrome) or common SNPs

with small effects sizes. Notably, the CaNVAS study will address the intermediate class of

structural variation including CNV which have not been systematically explored in IS.

3. Innovative CNV analysis methodology

CaNVAS is both cost-effective and immediate, utilizing pre-existing GWAS microarray data

from well characterized patient cohorts and from controls. Further, high-quality CNV identifi-

cation methods will be employed implementing: a) software-assisted noise reduction; b) qual-

ity control including detection of clonal mosaicism, and; c) analysis of long runs of

homozygosity to assess degree of consanguinity.

4. Includes analysis of outcome / recovery after ischemic stroke

In additional datasets, one goal is to replicate recent findings demonstrating that an increased

CNV burden is associated with worse outcome at 3-months post-stroke [4], and then using all

datasets in CaNVAS perform analyses to identify the key CNV drivers, genes and pathways

responsible for these relationships.

5. Investigations of CNV function

As to be discussed, CNV associated with stroke risk and outcome will be assessed for function-

ality using existing biomarker data from the TOPMed and GeneStroke Cconsortiums.

6. Creation of a new junior investigator training network

Given the international structure of the CaNVAS Study and a desire to promote consistent sci-

entific involvement across all sites, a training network was developed within the CaNVAS

study for Ph.D. Students and Post-Doctoral Research Fellows. These genetics trainees will be

supervised by their respective CaNVAS site PI and tasked with site-specific responsibilities

related to the project. They will receive CNV methodological training, and participate in all

phases of the study, including monthly study and trainee web-based conference calls. Senior

CaNVAS investigators will ‘rotate’ providing monthly lectures and seminars for the trainees.

Study subjects

CaNVAS study subjects and variables as related to each cohort are described in Table 2.

Data management

A centralized data repository is being created at the University of Maryland (UMD) Baltimore

with analyses occuring at several sites. Notably, the UMD served as the Data Management

Core for the SiGN Consortium [38, 48, 49], organizing the transfer of DNA, genotype and phe-

notype data from/to each study site and then ensuring harmonization of required covariate

data. UMD will utilize pre-existing procedures and pipelines for transfer of data, checking of

variables for missing and out of bounds values, and harmonization as needed. Similar proce-

dures are in place at other analyses sites and will be harmonized across all sites. Secured access

will be provided to the data for authorized personnel only. Reproducibility of research findings

is of growing concern to the larger scientific community and clinical research in particular.

Reproducibility will be maintained through the use of project specific git-repository (version

tracking software). Due to the large volume of data associated with CaNVAS, data redundancy

PLOS ONE The CNV and stroke (CaNVAS) study

PLOS ONE | https://doi.org/10.1371/journal.pone.0248791 April 19, 2021 6 / 26

https://doi.org/10.1371/journal.pone.0248791


will be minimized, with duplicate data files constructed only when analytic processing

requires. Notably, all international data limitations regarding genetic and phenotype data

transfers will be respected.

Stroke phenotyping

All included studies have datasets with previously assigned ischemic stroke subtypes using the

TOAST subtype classification system [50] and/or the CCS-Causative Classification System

[51], categorizing stroke cases on the basis of the presumed mechanism: large-artery

Table 2. Summary of CaNVAS study subjects and other cohort specific variables.

Study (reference) Ancestry Number of

cases (Goals 1

and 3)

Number of

controls

(Goal 1)

Control

source

GWAS chip Exome

chip data

available

Outcome mRS

@ 3 months

(Goal 3)

Biomarker Data (Goals 2 and

3)

GEOS-USA [44] CAU 448 498 Internal Illumina 1M Yes No (100% w/

mRS at

discharge)

No

GEOS-USA [44] AFR 381 352 Internal Illumina 1M Yes No (100% w/

mRS at

discharge)

No

Krakow-Poland [38] CAU 952 776 Internal Illumina 5M Yes No (100% w/

mRS at

discharge)

No

Leuven-Belgium [38] CAU 469 468 Internal Illumina 5M Yes Yes; n = 469 No

CADISP-European

[37]

CAU 565 1260 Internal Illumina 610K or 670K No Yes; n = 565 No

South Swedish GWAS

Study (Partial SiGN)

[38]

CAU 3500 (SiGN:

1500; non-

SiGN: 2000)

5500 Internal SiGN: Illumina 5M Yes Yes, ~40%;

n = 1400

(100% w/

mRS at

discharge)

No

Non-SiGN:

OmniExpressExome

BeadChip V1.1

GeneStroke: Sant Pau-

Spain [45]

CAU 2571 505 Internal Illumina 5 M and

Illumina Human Core

Exome

Yes Yes; n = 2571 Yes Epigenetic (n = ~300), 52

cases / controls with proteomic

data. 230 cases / controls with

epigenetic data.

GeneStroke:

IMIM-Spain (Partial

SiGN) [38]

CAU 2709

(SiGN:1035;

non-SiGN:

1674)

1000 Internal SiGN:Illumina 5M Yes Yes; n = 2709 Yes (case data only; control

data pending) Epigenetic

(n = 1072). miRNA (n = 260).

RNAs (n = 127; 40 samples at

three timepoints: 6hr, 24hr and

3 months post-stroke).

Non-SiGN: Illumina

Omni2.5, CoreExome

12

SLESS–UK [11] AFR 808 868 Internal Illumina 1.7M Multi-

Ethnic

No No Yes (e.g. Homocysteine,

coagulation factors)

SIREN–Nigeria [43] AFR 1700 1700 Internal Illumina 2.5M H3Africa No Yes, ~50%;

n = 850

No

Additional SiGN [38] CAU/

AFR

5765 (942

Hisp)

0 External Illumina 5M Yes Yes, ~50%;

n = 2882

No

Health and Retirement

Study [46]

CAU/

AFR

0 11724

(1136

Hisp)

N/A Illumina 2.5M Yes N/A No

Total 19868 24651 11446

Replication and Lookup (Goal 2)

TOPMed (WHI/FHS/

JHS/ ARIC/MESA)

[47]

CAU/

AFR

4665 (151

Hisp)

19283

(1105

Hisp)

Internal Whole Genome

Sequencing (WGS)

Yes, WGS No Yes, many

Cumulative Total 24533 43934

https://doi.org/10.1371/journal.pone.0248791.t002
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atherosclerosis, cardioembolism, small-artery occlusion, other known etiology, and undeter-

mined etiology. Analyses evaluating both classification systems when available will be

employed. Notably, most replicated GWAS loci identified in IS have been subtype-specific

[17], which is also consistent with the CNV findings as listed in Table 1. With the large sample

size of the proposed study, CaNVAS is expected to have an enhanced ability to examine sub-

type specificity.

Genome–wide CNV identification

All data as required for the CNV analyses are readily available from the prior SNP microarrays.

Phenotype data files will be maintained with SAS (v9.4), and scripts written for transfer to mul-

tiple formats. The genotype data (GWAS) needed for principal components will be kept in text

and PLINK formats.

Quality control and identification

All participating studies have previously been genotyped on high-density SNP microarray plat-

forms. Many of the participating studies have internal controls that were genotyped alongside

the cases. Previously utilized external controls (n = 11,724) from the Health and Retirement

Study (HRS) will be used for the SiGN cases without internal controls. In addition to the SiGN

data, the UMD and other analyses sites will work together to attain and transfer the necessary

data files for the CNV analyses from each participating site. The ability to implement

PennCNV at all sites has been confirmed, as this will be necessary for the junior trainee partici-

patory investigations. All sites have IRB approval for the studies and collaborations as pro-

posed; formal IRB approval for this particular study will be attained at each site. All

investigators and junior trainees will attain appropriate human subjects training.

SiGN sample-level quality control steps will be implemented on all samples including

removal of study samples exhibiting mismatches between genetic and reported sex, and those

appearing as outliers from the population on the basis of principal component analysis of

SNPs. Tests for cryptic relatedness will be performed to exclude related samples to avoid infla-

tion of test statistics. Population stratification will be accounted for in a variety of ways as con-

sistent with recent CNV analyses of stroke outcome [4]. Specific CNV QC measures include

identification of samples with clonal mosaicism (a condition occurring in >3% of humans

older than 80 years), with outlier number of CNV calls and with variance of signal intensity

values (LRR) >0.2 as described previously [4].

Microarrays for each study population will be analyzed using automatic CNV detection

algorithms including PennCNV [53], and at least one further software package like QuantiSNP

Note on CNV detection

CNV can be identified on a genome-wide scale in next generation sequencing data and

in high-density SNP microarrays. CaNVAS reanalyzes pre-existing GWAS microarrays,

which is an excellent platform for the study of larger (>10 kilobases of DNA) CNV. For

CNV detection automatic established software algorithms will be used. Using software

to reduce noise in GWAS microarrays [52] there will be improved exclusion of false pos-

itive CNV findings. Precise breakpoint estimates of CNV-findings enables mapping on

the human genome, assessment of genetic content, and comparison with established

databases.
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[54] or DNAcopy [55]. Data transfer, automatic CNV-detection and filtering of CNV-findings

with regards to size (number of SNPs or physical length in base-pairs) and to genetic content

(exclusion of CNV-findings without coding sequences) will be performed using standardized

protocols. Eligible CNV findings of each individual dataset will be manually inspected after

noise reduction with the noise-free-CNV software [52] to identify and exclude false positive

findings. Since a large part of the noise in SNP microarrays is systematic, comparison of target

samples with referent samples will enable significant noise-reduction. As consistent with stan-

dard in Comparative Genomic Hybridization methods, the noise-free-CNV software intro-

duces similar pairwise comparative approaches into the field of SNP microarray analyses.

CNV mapping and functional classification

Confirmed CNV-findings will be characterized by mapping their breakpoints (start-SNP; end-

SNP) onto the human genome [56] to assess the size (physical length of the DNA sequence) of

the CNV; to define the CNV-finding as genic (affecting protein-coding genes) or non-genic

CNVs (located in introns, in intergenic regions or affecting non-coding transcripts) and to

determine the number of protein-coding genes affected by the CNV. Comparison with find-

ings from other patients, controls or public databases allows the classification of the CNV-find-

ing as unique versus recurrent, as rare (minor allele frequency <1%) versus common, and as

complex rearrangements versus simple CNV.

The genetic content of the CNV-findings may indicate its functional impact. Large CNV

covering several whole genes are more likely to be deleterious than small CNV findings, dele-

tions (loss of functional genes) may have a stronger phenotype than duplications (gain of

genetic material). Because ohnologs were recently identified as a class of dose-sensitive genes,

all genes affected by CNV will be classified accordingly by searching in the Ohnolog Reposi-

tory [40]. CNV affecting genes that are known to cause Mendelian disorders associated with

stroke or that affect stroke risk factors (blood lipid level, blood pressure) are also potentially

functional, when identified more frequently in patients than in controls. Established stroke

loci will also be considered.

In general, it is important to note that functional annotation of CNV differs from functional

annotation of coding SNPs, since most CNV do not result in missense, non-sense or loss-of-

function variants. CNV do not necessarily result in up- or down-regulation of transcriptional

activity, although they can. Since most genic CNVs are rare and since many different low-fre-

quency genic CNVs occur, previously performed GWAS SNP-based case-control studies may

be underpowered to detect disease-association.

Note on functional enrichment analysis

Systematic study for association of CNV with stroke risk or with stroke outcome will

make use of functional enrichment analysis (FEA) with public browsers like Database

for Annotation, Visualization and Integrated Discovery (DAVID [57]), the generic Gene

Ontology (GO) term finder [58], or others. Essential for valid FEA is the analysis of con-

trol samples: Association with a predefined gene group (GO term) or pathway is estab-

lished if such enrichment is significant (after stringent correction for multiple testing) in

the cases, but absent from the controls (or observed in the patients with poor outcome,

but absent from the patients with favorable outcome). For an example of comparative

FEA see a relatively recent CNV study of cervical artery dissection [21].
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Statistical methods

Statistical analysis of confirmed CNVs and stroke phenotypes will be performed mainly in R

and SPSS. Datasheets and results may be converted to SPSS format if necessary to facilitate

exchange with research partners and junior participants. Age, sex and phenotypic covariates

like stroke subtype and vascular risk factors will be accounted for as appropriate.

Goal 1. Risk Discovery

Using manually-curated and standard CNV analytic approaches, identify CNVs that are asso-

ciated with the risk of IS and its subtypes, in over 19,500 cases from the SiGN Consortium

(African and Caucasian ancestry), the SIREN Consortium (African ancestry), the South Lon-

don Ethnicity and Stroke Study (SLESS) (African ancestry), the CADISP Consortium (Cauca-

sian ancestry), GeneStroke Consortium (Caucasian ancestry), South Sweden Study (Caucasian

ancestry) and in controls.

Motivation

Goal 1 is to identify CNV associated with IS using available data from available GWAS and

exome arrays. The numerous participating studies brought together by CaNVAS are described

in Table 2 and comprise over 19,500 cases and over 24,500 controls with GWAS data, and

exome content in well over 50%. The selected CaNVAS studies were chosen to balance subjects

of African and Caucasian ancestry, as well as age and sex. This risk goal will utilize a case-con-

trol design, with the sources of controls for each study also provided in Table 2. Internal con-

trol availability was considered, as was the availability of case outcome data as required for

Goal 3. Notably, through prior participation in the SiGN Consortium [48], the CaNVAS inves-

tigators have extensive experience utilizing external controls to ensure appropriate case/con-

trol matching [38]. Available Hispanic data (as indicated in Table 2) will be analyzed, although

power will be limited.

Single-CNV risk analyses

Classical methods of genetic association analysis, including logistic regression modelling, will

be used to evaluate the impact of CNV genotype on stroke risk, both in single CNV-based and

in pathway-based approaches (Goals 1 and 2). Analyses will be stratified by stroke subtype,

age, sex or other covariates, depending upon data structure. We plan to run single CNV associ-

ation analyses for those with minor allele count (MAC) > 10 as well as implementing binning

approaches for less frequent but regionally localized CNVs.

Single-CNV power

The stroke risk assessments of Goals 1 and 2 form the primary endpoint for all power and sam-

ple size estimations in this study. There is little information on what constitutes genome-wide

significance in CNV studies of this type. The first CaNVAS hypothesis is that specific CNVs

are associated with stroke risk. In this situation, at an alpha level of 5 X 10−08, hence the sample

of>19,000 stroke cases should provide 80% power to detect CNVs with ORs ranging from

1.10 to 1.22 across CNV frequencies ranging from 5% to 50%.

Investigations akin to Girirajan et al. [59] will also be performed, in which a total of 120

genomic regions potentially prone to recurrent CNVs were identified because they are flanked

by segments of high homology, called segmental duplications. CaNVAS subjects will similarly

be evaluated to determine if stroke cases are more likely than controls to have regions of
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segmental duplications as based on the 120 regions previously identified [59]. Since particular

regions will be explored, a Bonferroni correction for multiple testing of recurrent CNVs (those

flanked by segmental duplications) might require a p-value of<4.1×10−4 to be accepted as a

significant association for this particular type of CNV (p = 0.05/120). Based upon the large

CaNVAS sample size, our power will be high for such tests.

Functional annotation

Once associated CNVs have been identified, functional annotation merging with the identified

CNV loci with other known stroke susceptibility loci will occur. Basic annotation, such as for

evaluating known missense and loss of function variants with the identified CNV, can be inte-

grated using Variant Effect Predictor (VEP [60]). Overlap between CNV findings and prior

risk variants might imply risk mechanisms. Further, it is possible that some study participants

with CNV may have been excluded from GWAS SNP-based analyses as allelic frequencies

would not be in HWE. VEP includes ‘LOFTEE,’ an additional tool for filtering loss of function

variants (which are particularly challenging to annotate). Publicly available Hi-C data, which

measures the 3-dimensional folding of the genome, can also be used to find genomic regions

that interact and might be disrupted in the setting of CNV. Additionally, since many credible

CNV may not lie within a gene, functional annotations from ENSEMBL, ENCODE and

ROADMAP will be ‘layered-in’, annotating all CNVs in this set to prioritize those most likely

to be functional. The GTEx resource together with transcriptome wide association analysis

(see below) we also be utilized to evaluate whether CNVs in this set alter gene expression in

various tissue sets.

Integration of transcriptome association mapping

Once credible sets of causal CNV have been identified, they will be leveraged to try to identify

the causal genes, as well as ‘dig deeper’ to identify the most likely causal CNV within each set

employing functional annotation and integrating predicted transcriptome data with the CNV

results. Prediction of gene expression is based on the fact that gene expression can be por-

tioned into a component that is genetically determined and a component that is environmen-

tally determined (e.g., disease state causes change in gene expression). The PredixScan

software tool allows one to predict the genetically determined component of gene expression

by using models developed across a range of tissues and available through public resources

(e.g., GTEx) [61]. From these models, one can use the observed CNVs in one’s dataset to pre-

dict tissue-specific genome-wide gene expression. This approach will be employed to deter-

mine which (if any) genes in associated regions are predicted to be differentially expressed

between cases and controls. Because this method estimates only the genetically predicted com-

ponent of gene expression, it is suitable for predicting genes likely to be causal in disease.

Gene-based risk then pathway-based risk analyses

At this point in the CaNVAS analyses, single-CNV and gene-burden CNV results will be avail-

able. Next, implementing a unbiased hierarchical clustering on gene-level data (after removing

non-altered genes to reduce the visualization complexity), clusters will be evaluated to deter-

mine if phenotype categories (e.g. stroke subtypes, sex, age<50, among others) demonstrate

differential results. To apply this on a pathway level, data will be collapsed to pathways (group

genes into pathways) as based on KEGG pathway database, Cytoscape, Ingenuity Pathway

Analysis, Biocarta, and Reactome databases which reflect metabolic, biochemical and signaling

processes, and then perform clustering analyses based upon these pathways.
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Gene-based risk then pathway-based power

Regarding associations with individual genes, assuming all 20,000 protein-coding genes are

tested, a conservative Bonferroni correction would require a p<2.5×10−6 (p = 0.05/20,000).

However, collapsing CNV-findings on "biological processes", "predefined gene groups" (Gene

Ontology bases) and "pathways" liberalizes p-value significance requirements. For example,

analyzing all CNVs disrupting inflammatory response or those in the TGF beta-receptor sig-

nalling pathway or those related to a cell type or structure. As reported by Grond-Ginsbach

et al. [21], significant CNV associations were found with arterial connective tissue structure,

with significant findings of the functional enrichment analyses after correction for multiple

testing, this, in a much smaller sample size (833 CeAD patients and 2040 control subjects)

than that available in CaNVAS. Single CNV analysis may be performed for selected CNVs, for

instance as similar to the large MYH11/ABCC6 CNV in Table 1 [21], but not on a genome-

wide level. Hence, for stroke subtype it is estimated that ~800 patients and ~2000 controls are

required. However, since heritability of dissection may be higher and heterogeneity less than

for other stroke subtypes, larger numbers are preferred, for instance ~2000 or more patients

for each subtype. Such numbers are readily available in the CaNVAS study population.

At the completion of these stroke risk-related analyses a list of ‘top’ CNVs, genes and path-

ways will be generated that will undergo the replication and biomarker evaluations in the

TOPMed cohorts (Goal 2).

Goal 2. Risk replication and extension

Determine whether the CNVs associated with IS in Goal 1 are also associated with IS in the

TopMed Consortia (African and Caucasian ancestry), and then evaluate to what extent the

identified CNVs exert their effects on stroke risk via their effects on stroke risk factors that

have also been measured in TOPMed (e.g., blood pressure, circulating biomarkers of inflam-

mation and coagulation, blood miRNA, mRNA, methylation, metabolomics, and others). Sim-

ilar analyses will be performed using existing GeneStroke Consortium (Caucasian ancestry)

biomarker data.

Motivation

The intention here is to replicate CNV findings as identified in Goal 1 using TOPMed WGS

data. Then use available TOPMed an other biomarker data to determine the mechanisms of

action of the identified risk associated CNVs.

Replication

Multiple approaches will be employed to follow-up associations detected in Goal 1 for the pur-

pose of identifying causal CNVs, genes, and pathways associated with IS. First, identified CNVs

from Goal 1 will be evaluated for replication in existing TOPMed datasets. As indicated in

Table 2, the TOPMED datasets includes 4,665 IS and 19,283 controls samples of primarily Cau-

casian and African descent. The majority of TOPMed stroke patients have undergone stroke sub-

typing with contributing studies including: the Women’s Health Initiative (WHI: African/

Caucasian/Hispanic), the Framingham Heart Study (FHS: Caucasian), Jackson Heart Study (JHS:

African), the Atherosclerosis Risk in Communities Study (ARIC: African/Caucasian), and the

Multi-Ethnic Study of Atherosclerosis (MESA: African/Caucasian/Hispanic) ensuring adequate

ethnically-diverse populations for our replication efforts. All TOPMed subjects have undergone

WGS and/or GWAS. Using these data, IS associated CNVs can easily be replicated, and evaluated

according to multiple criteria, including strength of association across subtype, sex, ethnicity, age,
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vascular risk factors, as considered in the setting of plausible stroke mechanisms, among other

considerations. These risk replication analyses will include singe-CNV, gene-based and pathway-

based replication analyses as consistent with those identified in Goal 1.

Extension

Based upon the Goal 2 replication results, biomarker evaluations as stratified by CNV will be

employed using data from TOPMed and other cohorts; the goal of these evaluations is to iden-

tify measurable biomarker differences relating to stroke risk mechanisms. As examples, poten-

tial biomarkers can include all previously attained measures available in the TOPMed data

sets, such as blood pressure, circulating biomarkers of inflammation and coagulation, blood

miRNA, mRNA, methylation, metabolomics, among others. Here, TOPMed participants

(stroke and non-stroke) can be stratified by the identified CNVs frequency or size to evaluate

if a specific biomarker correlates with that copy number variant. While determining the CNV-

mediated relationships between stroke risk and the biomarker is the goal, non-stroke controls

subject biomarker levels will be used as baseline measures, as some biomarkers will likely

change in the presence of stroke. In the stroke patients, given the cohort nature of the

TOPMed studies, pre-stroke biomarker data will also be evaluated and contrasted with post-

stroke measures. While the Goal 1 results will guide which subjects should be evaluated on the

basis of ethnicity, sex and age, available biomarker data is a limitation (discussed below).

As an example of a potential biomarker CNV-stratified comparison, consider Goal 1 identifies

and Goal 2 replicates a stroke associated intronic CNV of uncertain significance with a greater

frequency in hypertensive blacks than whites. Strata based on the presence or absence of the

CNV, then evaluating available biomarkers (+/- hypertension (HTN), creatinine levels, measured

known gene products related to HTN, etc.) would be created. These might include; 1) All non-

stroke participants by sex and ethnicity to determine baseline measures; 2) Further stratified by

HTN; followed by stratified comparisons of 3) Specific-stroke subtypes vs. non-strokes.

Beyond standard vascular risk factors (HTN, diabetes, smoking status, etc.), numerous cir-

culating biomarkers are available in the TOPMed data (Table 3), as are miRNA-whole blood

and extracellular, mRNA, methylation, 80 proteins, SomaLogic Proteomics, and ~450 metabo-

lomics markers, all of which can be explored. Notably, in the Women’s Health Initiative, a par-

ticipating TOPMed study, the Proseek Multiplex CVD III panel (see reference link: Proseek

[62]) of 92 cardiovascular protein biomarkers are being measured in baseline blood samples in

2,000 or more participants. This panel includes 6 proteins with central roles in coagulation (tis-

sue-type plasminogen activator (t-PA), plasminogen activator inhibitor 1 (PAI), urokinase-

type plasminogen activator (uPA), urokinase plasminogen activator surface receptor (U-PAR),

tissue factor pathway inhibitor (TFPI), and von Willebrand factor (vWF)). Many of the other

biomarkers on this panel play a role in the immune system or inflammation and are relevant

because of the tight stroke-related biological link between inflammation and coagulation path-

ways [63, 64]. Lastly, the GeneStroke Consortium included in CaNVAS also has similar exist-

ing biomarker data (e.g. methylation, proteomic, RNA, miRNA) in a subset of the CaNVAS

cases and controls, thereby allowing for direct comparisons within the same subjects, and pro-

viding further replication for the TOPMed results and vice-versa.

In summary, evaluating how risk-associated CNV modifies measurable biomarkers will

infer on stroke prevention and treatment strategies.

Goal 3. Stroke outcome replication and extension

Using manually-curated and standard CNV analytic approaches replicate recent findings dem-

onstrating an inverse relationship between CNV burden and stroke outcome at 3 months
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(mRS) in over 8,100 additional cases from the SiGN Consortium (African and Caucasian

ancestry), the CADISP Consortium (Caucasian ancestry), GeneStroke Consortium (Caucasian

ancestry), the SIREN Consortium (African ancestry), and then using new and prior data deter-

mine the key CNV drivers responsible for these associations implementing gene- and path-

way-based analyses, and by analyzing existing biomarker data (e.g. methylation, proteomic,

RNA, miRNA) in the GeneStroke Consortium (Caucasian ancestry).

Motivation

As described in the Preliminary Studies Section of this manuscript, a recent study demonstrated

that genetic imbalance level (i.e. total CNV burden) was negatively associated with favorable out-

come after IS [4]. These results form the basis of the CaNVAS Goal 3 efforts. First, using over 8,100

additional samples from SIGN, SIREN, SWEDEN and GeneStroke the Pfeiffer et al. [4] results will

be replicated. Following these efforts, a combined dataset consisting of n = 3,314 [4] and the new

n = 8,132 cases will be explored to determine which CNVs are the key drivers for these outcome

relationships (total n = 11,446). Notably, the same cases used in Goal 1, are also used here, hence

there is no further CNV calling required, rather only analyses based upon outcome.

Single-CNV outcome (case-only) analyses

As seen in Table 2, under the column header ‘Outcome mRS @ 3 months’ (mRS = modified

Rankin Scale), the cases with mRS data are listed. First, to replicate prior findings [4], new data

Table 3. Partial list of available biomarkers in TOPMed.

Circulating biomarkers

APOE E2, E3, and E4 genotype, and circulating APOE4 levels

Polyunsaturated fatty acids Docosahexaenoic acid (DHA), total omega-3 fatty acids, other RBC

membrane fatty acids

Inflammation C-reactive protein (CRP), interleukin-6 (IL-6), intracellular adhesion

molecule (ICAM-1), myeloperoxidase, osteoprotegerin, P-selectin CD40

ligand, monocyte chemoattractant protein-1 (MCP- 1), TNF-alpha and its

receptor TNF-R22 and lP-PLA2

Hemostasis and thrombosis Fibrinogen, Factor VIIIc, von Willebrand factor, D-dimer, PA I-1

Lipid metabolism Total cholesterol, LDL, HDL, Apolipoprotein A1, B100 and Lipoprotein (a)

Molecules interacting with vessel

wall and platelets

Markers of matrix remodeling (MMP-9, MMP-3, TIMP-1), plasma

homocysteine, asymmetric dimethylarginine (ADMA)

Oxidative stress Isoprostanes (IsoPs), uric acid

Hormones Renin-angiotensin-aldosterone pathway, measures of thyroid function (e.g.

TSH), sex steroid hormones, natriuretic pathway peptides (including BNP,

NT, ANP)

Vitamins Folate, un metabolized folate, B12, B6, vitamin D

Growth factors and their receptors IGF-I, VEGF, BDNF, NGF

Homocysteine Homocysteine, post methionine load homocysteine, MMA

Adipokines Leptin, leptin receptor, alpha fetuin, Ghrelin, retinal binding protein 4

(RBP4), adipocyte fatty acid binding protein (A- FABPR), adiponectin

Glycemic control and insulin

resistance

Hemoglobin A1C, Fasting and Postprandial blood sugar, categorization as

impaired fasting glucose (IGF), impaired glucose tolerance (IGT), fasting

and post-prandial insulin levels, measures of insulin resistance (H0MA-IR,

Insulin sensitivity index (ISI 0–120))

Markers of renal injury Cystatin-C, urine microalbumin

Markers of myocardial injury Troponin I, GDF-15, ST-2

Markers of brain injury S-100b, NSE (Neuron-specific enolase), GFAP (glial fibrillary acidic protein

marker of glial injury)

Putative AD markers Plasma Aβ measurements, Clusterin, Tau, Amylin

https://doi.org/10.1371/journal.pone.0248791.t003
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will be evaluated for genetic imbalance (as defined as the total number of protein-coding genes

affected by CNVs in an individual) as compared between patients with favorable (mRS = 0–2)

and unfavorable (mRS >3) outcome after 3 months. Notably, several case data sets (see

Table 2. GEOS, Krakow, SWEDEN—additional n = 3,881 cases) have mRS at time of stroke

hospital discharge. Hence, a similar analyses using these mRS at discharge data sets will be per-

formed, and pending results, can either be combined or meta-analyzed with our larger

3-month outcome datasets. Further analyses, that have not previously been performed, include

evaluating mRS as a continuous variable and implementing shift analyses will also occur. Sub-

group analyses will also be carried out confining CNVs to affecting ohnologs, or not. The asso-

ciation of imbalance with outcome will be analyzed by logistic regression analysis, adjusted for

age, sex, stroke subtype, stroke severity (NIHSS) and ancestry. Variable-specific stratified anal-

yses will also be performed pending results.

To this point, the methods employed have only evaluated for overall CNV burden. How-

ever, the goal is to identify individual CNVs of large effect, i.e. the key CNV outcome drivers.

As such, classical methods of genetic association analysis, including logistic regression model-

ling, will be used to evaluate the impact of CNV genotype on stroke outcome, implementing

single CNV-based and pathway-based approaches. Analyses will be stratified by stroke sub-

type, age, sex and other covariates, depending upon data structure. Possible confounding will

be controlled for by the use of propensity scores. Statistical analysis will be performed mainly

in R and SPSS. Thresholds for association analyses for single CNV association analyses will be

limited to those with MAC > 10, as well as implementing a binning approach for less frequent

but regionally localized CNVs.

Single-CNV power

Consistent with the recent Pfeiffer et al. study [4], it is estimated that ~1/3 of the CaNVAS

cases will have a poor outcome (n = 3777 (0.33 x 11,446)) and 2/3 will have a good outcome

(n = 7669). In this situation, at an alpha level of 5 X 10−08, the CaNVAS sample of>11,400

stroke cases should provide 80% power to detect CNVs with ORs ranging from 1.14 to 1.32

across CNV frequencies ranging from 5% to 50%. Although stratification analyses are also

planned, these by stroke subtype, ethnicity, sex, etc., and despite the heterogeneity of the sam-

ples, the given sample size will provide ample power.

Functional annotation

Once outcome associated CNVs have been identified, functional annotational merging will be

performed. The identified CNV loci will be mergered with the few other known stroke out-

come loci including BDNF, GPIIIa, COX2 [65] and the recently identified PATJ [66]. Overall,

the functional annotation methods employed in these stroke outcome analyses will be consis-

tent with those as described in Goal 1.

Gene-based risk then pathway-based risk analyses

At this point in the analyses, single-CNV and gene-burden CNV results will be available.

Again, methods consistent with the Goal 1 risk analyses will be employed, to identify pathways

associated with stroke outcome. Based upon prior findings, ohnolog burden in specific path-

ways will be assessed.

At the completion of these stroke outcome-related analyses a list of ‘top’ CNVs, genes and

pathways will be generated that will undergo biomarker evaluations consistent with those in

Goal 2 using existing GeneStroke Consortium biomarker datasets. Available datasets include:

proteomic data (52 cases and matching controls); epigenetic data (230 cases and matching
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controls); EWAS (n = 1072); miRNA(n = 260); RNA (n = 127; 40 of samples at 3 timepoints: 6

h, 24h and 3 months post stroke). Of note, these data are available on the same individuals

used to identify the outcome-associated CNV, hence these analyses allow direct intra-subject

correlation between CNV and the biomarker measures. While determining CNV-mediated

relationships between case outcome and biomarker is the goal, control subjects biomarker lev-

els can be used as baseline measures, as some biomarkers will likely change post-stroke.

Potential problems and alternative strategies

The possibility exists that the efforts of Goal 1–3 may detect associations to CNV in genes

whose products are not in the currently available in the TOPMed or GeneStroke biomarker

datasets. Indeed, this was the case with the relatively recent discovery of an association between

a variant in HAPB2 and early-onset stroke [63]. In this case, other datasets were sought out in

which it was demonstrated that FSAP, the protein product of HAPB2, correlated with the

stroke risk allele yielding elevated FSAP levels [67]. Similarly, if CaNVAS detects such a CNV

association, the possibility of developing a new assay for the product of this gene will be

explored. Notably, biobanked blood is available from the majority of studies in CaNVAS,

including GEOS, Krakow, Leuven, CADISP, SWEDEN, SIREN, and SLESS for such measure-

ments in the event a new assay requires development.

Junior investigator training network

Given the international structure of the grant and a desire to promote consistent collborative

scientific involvement across all sites, a training network within the grant structure for junior

researchers including Ph.D. Students and Post-Doctoral Research Fellows has been developed.

Beyond providing detailed CNV methodological training, trainees will participate in all phases

of the study, including the regularly-scheduled study conference calls. In addition to these

monthly conference calls, periodic “journal clubs” will also occur, with senior investigators

providing study-related lectures and seminars. Further, all trainees will attend at least one

CaNVAS study meeting annually with these meetings timed to precede ISGC Workshops

where they will present CaNVAS findings. Notably, the CNV techniques learned by the junior

investigators can be applied to other future studies worldwide.
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Timeline

Fig 1 demonstrates the CaNVAS timeline over the 5 year duration of the project.
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Initial data evaluation pilot study

Post-funding, an initial assessment of the data quality was perfumed reviewing 50 samples

from each participating center using the PennCNV software package [53]. A comparison of

the number of CNV-findings between the Centers was performed, as well as an analyses

screening for outlier-cases with excessive number of CNV-calls. This is the only analyses pre-

sented in this manuscript.

Results

Initial data evaluation pilot study

As described, CaNVAS uses existing GWAS and exome chip microarray samples from differ-

ent platforms and different genotyping centers. To assess the quality of the data and to refine

the analyses plan based on the differing data sets, a preliminary review of 50 samples from

each participating center and microarray was performed. As shown in Fig 2, differing numbers

of CNV were identified by the PennCNV software package [53] evaluating the 50 samples

from each Center (e.g. 4 Centers shown in Fig 2). Such differences are not unexpected given

the differing genotyping chips used as shown in Table 2.

As seen in Fig 2, the number of CNV-findings differs between the Centers (highest in Kra-

kow and lowest in Barcelona). Moreover, this demonstrates that the number of CNV findings

is similar for most cases from each Center, but that some outlier-cases exist with excessive

number of CNV-calls.

The differences in the number of CNV calls is related to the SNP-density on the microarray.

Krakow cases were analyzed with Illumina Exome Omni 5M chips, a high-density microarray

with about 5,000,000 SNPs. The chips used for Barcelona had fewer SNPs, and therefore many

smaller CNVs could not be detected, because for reliable detection of a CNV at least 5 consecu-

tive SNPs should display increased (duplication) or decreased (deletion) signal intensities. The

differences may also be related to the genomic location of the SNPs evaluated on a specific

microarray, because CNV occurs preferably at particular genomic sites that may or may not

have been included on any particular array.

The variation of the number of CNV-calls within a center may be caused by technical error

(purity of DNA, conditions of chip-hybridization and washing, etc.), but may also be related to

biological causes, such as inbreeding or mosaicism. As a consequence, exclusion of all samples

Fig 1. CaNVAS study timeline (2020–2025).

https://doi.org/10.1371/journal.pone.0248791.g001
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with outlier number of CNV is not recommended, since inbreeding or mosaicism may affect

stroke risk and/or stroke outcome. Visual inspection of the samples revealed that the data qual-

ity was excellent for CNV analysis. The noise level was acceptable and most CNV were reliably

detected. As example a case from Barcelona is illustrated in Fig 3.

Fig 4 shows a detail of Fig 3 (arrow), a zoomed in detail of chromosome 9. It is the region

around the arrow in Fig 3. In this region, there is cluster of SNPs with characteristics like the

X-chromosome (marked by the red bar in Fig 4). The signal intensity of all SNPs in this region

is reduced, and none of the SNPs in this region are heterozygous. This finding suggests that

there is only a single copy of this genomic region present in Barcelona case (Identifier

4800000437), i.e. this region is deleted in one of the two chromosomes. This interpretation is

strengthened by the fact that a public database of human structural variation (DGV) reported

a common deletion (esv3619645) of similar size in this region [68].

The identification of such a deletion is more difficult if the data is noisy. Moreover, plat-

forms with a higher density of SNPs will have more SNPs within a CNV, which reduces the

likelihood of false-positive findings. As such, the identification of larger CNVs, is more reliable

compared to small CNVs. In genomic regions that are well represented on a microarray (high

Fig 2. Histogram showing the number of CNV-calls by PennCNV (X-axis) and the number of samples (Y-axis)

from 4 CaNVAS centers.

https://doi.org/10.1371/journal.pone.0248791.g002
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SNP-density) the detection of CNV is improved. As a consequence, many platforms were

developed with additional SNPs in regions that are prone to CNV.

As another example, Fig 5 and Fig 6 demonstrate a SIREN case with an additional copy of

the genomic region at the tip of the long arm of chromosome 18 (duplication).

Lastly, in Fig 7, another participant from the SIREN cohort demonstrates an outlier num-

ber of CNV calls as consistent with clonal mosaicism. Evaluating the visualization, this is sim-

ply not just a noisy case due to DNA degradation or some other technical error. Instead, the

genome of this sample is enriched for many large chromosome aberrations, including duplica-

tions and deletions. Most of these were found in only part of the cells. Apparently, the blood

cells, used for DNA extraction of this individual were not all identical. There were different

cell lineages in this blood sample, with some of the cells carrying many structural aberrations.

Such cases are not suitable for CNV analyses.

Fig 3. Visualization of all SNPs of a sample. Upper panel shows for each SNP the signal intensity, lower panel shows

for each SNP the distribution of the signal across the two alleles. This case from Barcelona (Identifier 4800000347) is a

man: the signal intensity of X-chromosomal SNPs is reduced (i.e. there is only one copy of the X-chromosome,

compared to two copies of the autosomes. As there is only one X, there are no heterozygous SNPs. As a consequence,

the mid-line of the allelic distribution (representing the heterozygous SNPs) is empty.

https://doi.org/10.1371/journal.pone.0248791.g003

Fig 4. Detail of Fig 3 (arrow) region demonstrating a deletion in one of the two chromosomes.

https://doi.org/10.1371/journal.pone.0248791.g004
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Discussion

Overall, our pilot evaluation analyses demonstrate that the data are excellent for our planned

CNV analyses. Further, as demonstrated by the SIREN participant with clonal mosaicism (Fig

7), some samples will be unsuitable for CNV analysis and can easily be identified and removed

from further analyses. While the primary goals of CaNVAS are to identify and mechanistically

understand CNV associated with ischemic stroke risk and outcome, numerous other studies

are possible using the data that will be generated. Further, with the junior training network

that is being developed, it is hoped that these data can be used toward PhD theses, among

other projects.

As just described, visual inspection of the samples (for validation of CNV-findings) can

lead to additional unexpected observations. For example:

1. Some individuals will have long genomic regions without heterozygous SNPs. Such long

regions of homozygosity (LRoH) are typically caused by consanguinity: both parents transmit-

ted the identical chromosome segment that was inherited from a common ancestor.

2. Some of the CNV-findings that were identified by the CNV-detection software programs

can appear to be irregular, due to a particular type of abnormal signal intensities and allele

Fig 5. SIREN case with an additional copy of the genomic region at the tip of the long arm of chromosome 18

(duplication).

https://doi.org/10.1371/journal.pone.0248791.g005

Fig 6. Zoom-in of the SIREN case with a CNV duplication in 18q.

https://doi.org/10.1371/journal.pone.0248791.g006
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distributions of the involved SNPs. These irregular CNV calls may be caused by clonal mosai-

cism as demonstrated in Fig 7. The DNA in such samples appears to be extracted from a

mixed population of white blood cells, some with normal genotype, others with a CNV. Cell

lineages with sex chromosome aberrations can be particularly frequent.

Preliminary studies suggested that both LRoH and mosaicism were associated with less

favorable functional outcome after ischemic stroke ([69]; personal communication between

Prapiadou S and Grond-Ginsbach C). As such, in the large CaNVAS study population, poten-

tial subprojects evaluating the effects of 1) inbreeding, and 2) mosaicism, on stroke outcome

and on stroke risk are possible and would be of great interest.

Since CNV genotyping is difficult, a further subproject may analyze factors that determine

CNV quality of GWAS microarrays. Microarray data may be very noisy, and it is not well

understood why some samples are quite noisy, whereas others are not. Moreover, different

types of noise can occur, including “genomic waves”, a systemic type of noise related to the

GC content of the DNA. The microarrays that were genotyped at the Genome Resource Cen-

ter (GRC) of the University of Maryland may be used to associated CNV quality with many

technical items, including quality and quantity of DNA, position on the sample plate, genotype

call rate in a previous GWAS, occurrence of mosaicism, amplitude of genomic waves, among

others.

CaNVAS will collect a basic set of clinical data for stroke cases including age, sex, ethnicity,

standard stroke risk factors, stroke subtype, NIHSS on admission, modified Rankin Score after

3 months (some cases 6 months), and for controls similar data including age, sex, ethnicity

and standard vascular risk factors. Stratified analyses regarding specific variables are possible.

Individual centers may have additional information about their patients and control subjects,

including co-morbidities, socio-economic state, family history of vascular diseases, complica-

tions during hospitalization, brain imaging, laboratory parameters, etc. These data may allow a

deeper analysis of the impact of CNV on stroke risk or stroke outcome.

Conclusion

CaNVAS will cost-effectively leverage the numerous advantages of using existing case-control

data sets, exploring the relationships between CNV and IS and its subtypes, and outcome at 3

months, in both men and women, in those of African and European-Caucasian descent, this,

across the entire adult-age spectrum. For the newly discovered risk and outcome CNVs identi-

fied by CaNVAS, multiple bioinformatics approaches will be employed to identify the causal

genes and affected pathways, merging these CNV loci in with the other known stroke

Fig 7. SIREN participant sample with clonal mosaicism.

https://doi.org/10.1371/journal.pone.0248791.g007
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susceptibility loci. The successful identification of novel genes, pathways and drug targets has

the potential to transform our understanding of the stroke pathophysiology leading to more

effective prevention and outcome strategies.
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