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Abstract
Pharmaceutical and personal care products (PPCPs) are commonly used
chemicals that are increasingly detected in urban-impacted environments,
particularly those receiving treated wastewater. PPCPs may have
toxicological effects on the macrofauna that are exposed through
contaminated water; thus, there is interest in microbially mediated
transformations that may degrade PPCPs. This review discusses specific
examples of PPCP transformations that may occur in anoxic environments,
including O-methylation and O-demethylation.
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Introduction
Pharmaceutical and personal care products (PPCPs) contain  
chemicals that are widely distributed in surface waters, sediment, 
and soil1,2. Pharmaceuticals enter wastewater treatment plants 
through ingestion and subsequent excretion3, through improper 
disposal down a household drain4, or from pharmaceutical  
manufacturing plant discharge5. Wastewater treatment plants are 
not designed to remove these complex organic contaminants,  
which can result in incomplete PPCP removal. A major concern  
is, therefore, that treated effluent may contain low concentrations 
of PPCPs that can enter receiving waters or soils when biosolids  
are used as fertilizer6–8.

A range of adverse effects has been reported for wildlife that is 
exposed to treated effluent. When released into the environ-
ment, pharmaceuticals can be toxic9 or can cause unwanted 
physiological responses to non-target organisms, including 
endocrine disruption (e.g. feminization of fish), altered devel-
opment of aquatic organisms including fish and frogs, and 
changes to behavior10–13. In addition, bioaccumulation in aquatic  
organisms is a concern, particularly in fish intended for human  
consumption14. Not only are these findings a potential public  
health problem, but they also raise concerns about the health  
of the ecosystem and overall water quality. While the concen-
trations of an individual chemical may be in the ng L-1 range  
(for example, see 15), PPCPs are typically found in wastewater  
as complex mixtures and may have additive effects that remain  
to be understood.

Microbial toxicity
Some PPCPs are designed specifically to have antagonist  
effects against microorganisms. Notably, this includes antibiot-
ics, preservatives (e.g. parabens), and antimicrobial compounds  
(e.g. triclosan and triclocarban). Others may have unexpected  
inhibitory effects. Ibuprofen, for example, has been shown to  
inhibit the growth of a variety of microorganisms16. Pharma-
ceuticals such as propranolol, diphenhydramine, and diclofenac 
sodium have also been reported to have inhibitory effects on 
the methanogenic microbial community found in anaerobic  
digesters17,18. Furthermore, the metabolites produced during  
microbial transformation of pharmaceuticals are not always  
further degraded18–20 and could also have negative effects on the 
microbial community. Alternatively, the microbial community  
may still carry out the desired function, such as methanogenesis, 
but the microbial community composition may be altered or  
enriched for antibiotic resistance genes21,22. In addition, these 
metabolites can still be pharmacologically active and can  
exhibit toxicity to eukaryotic organisms, although these effects 
have not yet been documented in prokaryotic organisms such 
as bacteria and archaea23,24. As prokaryotes provide ecosystem  
services for all environments, the effects of PPCPs and their  
metabolites on prokaryotes are valuable to know.

Biodegradation
PPCPs enter changing environmental conditions and encounter 
diverse microbial communities as they pass from households  
through the wastewater treatment process and ultimately into 
the environment. The initial stages of wastewater treatment are 
designed to first use well-oxygenated units to support aerobic  

degradation. Later in the process, further degradation of the 
sludge solids takes place in anaerobic digester units that promote 
a fermenting and methanogenic community operating under low 
oxidation-reduction potential (<–350 mV). Treated wastewater 
effluent is released into oxic surface water; however, some  
PPCPs will eventually migrate into anoxic sediments25–28. In 
freshwater systems, nitrate, iron, or carbonate are predominant  
electron acceptors available for respiration, whereas coastal  
marine waters would additionally have sulfate as a respiratory 
electron acceptor. These different conditions, therefore, support  
diverse microbial communities that may also be capable of  
divergent biochemical mechanisms for biodegradation in  
surface waters and anoxic sediments. This must all be taken 
into account when modeling the environmental fate of PPCPs,  
as degradation might be more likely to occur, proceed to a 
greater extent, or produce different intermediates depending on 
the location. Naproxen transformation, for example, has been  
shown to occur under sulfate-reducing and methanogenic  
conditions in constructed wetlands, estuarine sediment, and 
anaerobic digester sludge, yet nitrate-reducing conditions in  
constructed wetlands yielded little transformation activity20,29. 
Oxybenzone, in contrast, was transformed under aerobic,  
nitrate-reducing, iron-reducing, sulfate-reducing, and methano-
genic conditions30,31. PPCPs have diverse chemical structures 
that underscore the need for a broader understanding of how  
microbes in different environments will metabolize the  
different classes of compounds. This is valuable for predicting 
potential activity in the environment, as partial microbial trans-
formations may make the original PPCP undetectable by  
standard methods, yet the new transformation product may have 
ecotoxicological effects.

Fate in wastewater treatment plants and receiving 
aquatic habitats
There have been many reports of PPCP removal during the  
biological stages of wastewater treatment (for reviews, see 
32,33) or quantifying PPCPs in effluent-impacted water and  
sediment2,34. Treated wastewater effluents are one of the main  
pathways by which PPCPs enter watersheds. While some  
removal during wastewater treatment can be attributed to the  
biological activity of microorganisms, there are few simplified 
consortia or pure cultures available to demonstrate the  
biochemistry involved in PPCP transformation. Without  
biochemical evidence, it is difficult to determine if the PPCP in  
question has been mineralized35, lost due to abiotic processes 
such as sorption to solids36–38, or transformed into unknown  
metabolites31,39.

Some anaerobic transformation reactions may lead to persistent 
metabolites that present additional environmental problems.  
Nonylphenol and octylphenol, for example, are produced from 
the sequential removal of ethoxyl groups from the nonionic  
surfactants nonylphenol polyethoxylate and octylphenol  
polyethoxylate, as shown in Table 140,41. These metabolites have 
been shown to mimic estrogen13 and are frequently detected in 
wastewater treatment systems and in the aquatic environment2.  
The genes and biochemical intermediates for nonylphenol and 
octylphenol degradation have been reported under aerobic  
conditions42–44; however, only limited data exist regarding their 

Page 3 of 8

F1000Research 2020, 9(F1000 Faculty Rev):130 Last updated: 21 FEB 2020



Table 1. Anaerobic and aerobic transformation reactions may lead to persistent metabolites. 
Specific examples of pharmaceutical and personal care products with corresponding transformation 
products are shown.

Parent compound Transformation product References

O-Demethylation 

Naproxen  
Over-the-counter 
non-steroidal anti- 
inflammatory drug         

6-O-Desmethylnaproxen 
                 

20,31

Guaifenesin  
Expectorate                    

3-(2-hydroxyphenoxy) propane-1,2-diol 
                     

31

Oxybenzone  
UV light absorber 
Found in sunscreens      
and plastics 

2,4-Dihydroxybenzophenone 
                   

31

Methylparaben  
Preservative in  
cosmetics, 
pharmaceuticals,                  
and food

4-Hydroxybenzoic acid 
                            

31

N-Demethylation 

Diphenhydramine  
Anti-histamine                

N-Desmethyl diphenhydramine 
                    

18

O-Methylation 

Bisphenol A (BPA)  
Plastic precursor           

BPA monomethyl ether (left), 
BPA dimethyl ether (right) 
 

45

De-ethoxylation 

Octylphenol and  
nonylphenol  
polyethoxylate  
Nonionic surfactant          

Octylphenol or nonylphenol 
                       

40

fate under anaerobic conditions and the biochemical pathways  
are largely unknown46–49. With the identification of nonylphenol  
and octylphenol as persistent metabolites with toxicological  
effects, it is now imperative to monitor their concentrations 
in the environment and quantify their potential estrogenic  
impact.

Other types of anaerobic biotransformation reactions include  
O-demethylation. Recently, we reported on the complex  
microbial strategy of naproxen transformation by a methano-
genic consortium enriched from anaerobic digester sludge20.  
The methanogenic consortium O-demethylated naproxen to 

form the persistent metabolite 6-O-desmethylnaproxen, which is  
illustrated in Table 1. Acetogenic bacteria were responsible for 
this step and produced acetate that subsequently enriched for a 
population of syntrophic acetate-oxidizing bacteria. The latter 
supported a methanogenic community that produced the amount 
of methane that was consistent with O-demethylation20. This  
model is an example of an anaerobic microbial food web that  
was supported through pharmaceutical biotransformation.

Similarly, diphenhydramine can be transformed by anaerobic 
digester sludge microbes via N-demethylation to N-desmethyl 
diphenhydramine (see Table 1;18), a metabolite formerly known 
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to be generated only by mammals and fungi50. While the parent 
compound, diphenhydramine, suppressed both fermentative 
and methanogenic activity in the anaerobic digester commu-
nity, the metabolite suppressed only methanogenic activity. In  
contrast, there was negligible toxicity of naproxen and 6-O- 
desmethylnaproxen to the same community20. These differences  
highlight how chemically different PPCPs and their transforma-
tion products may have different effects on the same microbial  
community, further underscoring the complexity of the fate and 
effect of the PPCPs.

While anaerobic O-demethylation of aromatic compounds has  
been well established (see 51), less is known about this trans-
formation in PPCPs. We have evidence that PPCPs with diverse 
uses and chemical structures but share a phenylmethyl ether 
functional group can be transformed via O-demethylation31.  
Microbial communities enriched under both methanogenic and 
sulfate-rich conditions showed this capability when provided  
with naproxen, guaifenesin, methylparaben, or oxybenzone31. 
The sulfate-rich cultures formed O-demethylated metabolites,  
shown in Table 1, that were not further degraded. A similar  
pattern was observed in the methanogenic cultures31.

In contrast, many phenolic compounds can be transformed by 
microbial O-methylation (see 52). For example, bacteria are 
able to O-methylate bisphenol A (BPA) to its monomethyl and  
dimethyl ether derivatives, as pictured in Table 1 (BPA MME 
and BPA DME, respectively)45, resulting in metabolites with  
increased toxicity as shown from differences in survival and  
occurrence of developmental lesions in developing zebrafish 
embryos exposed to BPA, BPA MME, and BPA DME. The  
monomethyl and dimethyl ether derivatives were more toxic than 
BPA, resulting in increased mortality. Furthermore, exposure 
to either of the O-methylated metabolites resulted in an  
increase in the incidence of developmental lesions as compared 
to BPA exposure45. These data illustrate a new mechanism for 
the microbial transformation of BPA, producing metabolites  
warranting further study to understand their prevalence and 
effects in the environment. In addition, the O-methylated  
transformation products could serve as potential substrates  
for O-demethylation by the organisms described above31,51.  
The interconversion between O-methylated and O-demethylated  
forms thus presents a mechanism by which a PPCP  
compound can be transformed in one environment and the  
original parent compound regenerated by microbes that are 
active in another environment. This is similar to reports of  
flame-retardant and antimicrobial compound transformations that  
have been described in plants53,54.

Predicting anaerobic biodegradation
Identifying common functional groups may serve as a basis 
for predicting transformation products. Gulde et al.55 used a  
systematic approach to identify potential metabolites of 
PPCPs that contain an amine group, applying this method to  
predicting reactions in aerobic activated sludge. Alternatively, 
we used a culture-based approach to examine the range of  
O-demethylation substrates in anoxic sediments and anaerobic 
wastewater digestion31. Gonzalez-Gil et al.56 used enzyme assays 

to examine co-metabolic transformations of diverse PPCPs,  
including naproxen, nonylphenol, octylphenol, triclosan, and 
BPA, that were mediated by acetate kinase. The extent to which  
transformation occurred varied with the substrate from 10–90% 
and suggested the involvement of additional transformation  
pathways56, which could lead to a mixture of different trans-
formation products existing from the same parent compound.  
Laboratory-based assays, such as those conducted by Gonzalez-
Gil et al.56 and Wolfson et al.31, represent a starting point  
for the identification of potential metabolites, although it may 
not be representative of the dominant transformation mecha-
nism that occurs in the environment. Likewise, the microbial  
community composition may have an effect on PPCP trans-
formations, especially under methanogenic conditions20,57.  
Additionally, the effects that mixtures of PPCPs and associ-
ated transformation products will have on microbial community  
function cannot be overlooked.

Future directions for PPCP removal
Recognition of the expanding extent of PPCP contamination 
has stimulated the search for solutions that remove pharmaceu-
ticals from wastewater before they can reach the environment,  
including technologies like advanced oxidation processes 
and membrane bioreactors58–62. These new technologies have  
shown promise with higher removal rates in pilot treatment 
plants than with conventional treatment61,63. In combination with 
increased removal efficiencies, re-designing PPCPs to promote  
biodegradability could lead to a reduction in the environmental 
load in the future64,65. Understanding transformation products is  
important not only to the health of impacted aquatic ecosystems  
and humans but also for monitoring the safety of reclaimed 
wastewater reuse (for review, see 66) and for the accuracy of  
wastewater-based epidemiology to follow human health and  
pharmaceutical use67–70.

Conclusions
An Organization for Economic Cooperation and Develop-
ment report projects that sales of chemicals worldwide will 
increase by 3% annually between now and 205071, thus provid-
ing a steady stream of diverse chemical structures that may be 
entering wastewater treatment and the environment. Given that  
pharmaceuticals are used daily throughout the world, their 
release into the environment is both a public and an environ-
mental health concern. Understanding not only the microbial  
transformation processes but also the metabolites that are  
formed is essential for comprehensive accounting of pharmaceu-
ticals and potential pharmaceutically active compounds in the  
environment. The environmental context, be it the engineered 
anaerobic digester or freshwater or estuarine sediments that are  
impacted by treated wastewater, is critical for understanding  
potential microbial activities and biodegradation mechanisms 
to determine if biodegradation will occur or if potential  
metabolites may form and accumulate under the given redox  
conditions. This knowledge may provide solutions to remove 
these pharmaceuticals during wastewater treatment and prevent  
environmental deposition as well as to understand environmental 
processes that may occur to remove pharmaceuticals that have 
already entered the environment.
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