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Abstract

Charadriiformes represent one of the largest orders of birds; members of this order are

diverse in morphology, behavior and reproduction, making them an excellent model for

studying evolution. It is accepted that the avian putative ancestral karyotype, with 2n = 80,

remains conserved for about 100 million years. So far, only a few species of Charadriiformes

have been studied using molecular cytogenetics. Here, we performed chromosome painting

on metphase chromosomes of two species of Charadriidae, Charadrius collaris and Vanel-

lus chilensis, with whole chromosome paint probes from Burhinus oedicnemus. Charadrius

collaris has a diploid number of 76, with both sex chromosomes being submetacentric. In V.

chilensi a diploid number of 78 was identified, and the Z chromosome is submetacentric.

Chromosome painting suggests that chromosome conservation is a characteristic common

to the family Charadriidae. The results allowed a comparative analysis between the three

suborders of Charadriiformes and the order Gruiformes using chromosome rearrangements

to understand phylogenetic relationships between species and karyotypic evolution. How-

ever, the comparative analysis between the Charadriiformes suborders so far has not

revealed any shared rearrangements, indicating that each suborder follows an independent

evolutionary path, as previously proposed. Likewise, although the orders Charadriiformes

and Gruiformes are placed on sister branches, they do not share any signature chromo-

somal rearrangements.
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Introduction

Charadriiformes represent one of the largest orders of birds, with 19 families and 383 species.

This order is divided into three large monophyletic suborders: Charadrii (plovers), Scolopaci

(snipes, partridges) and Lari (seagulls, terns and mandrels) [1]. Members of this order are

quite diverse in morphology, behavior and reproduction, which make them an excellent

model for studying evolution in different groups [2].

Molecular data analyses suggest that these three suborders arose in the late Cretaceous and

that at least 14 modern Charadriiformes lineages have survived the late Cretaceous mass

extinction [3]. Molecular data reveal that Lari and Scolopaci are sister branches and Charadrii

is in a more basal position [1].

It is accepted that the avian putative ancestral karyotype (PAK) with 2n = 80, remained con-

served for about 100 million years, with few variations in Neoaves [4, 5]. Although the order

Charadriiformes has 383 species, only 64 species (16.7%) from eleven families have had their

karyotypes studied by classical cytogenetics [6–9]. This order has a huge karyotype diversity,

with the family Charadriidae having a diploid number ranging from 58 to 78 [10, 11]. This

makes it of interest to study its evolutionary process from a cytogenetics point of view. Chro-

mosome painting has been used in identifying such chromosomal diversity [12]. In particular,

whole chromosome probes made from the species Burhinus oedicnemus (Burhinidae, Chara-

driiformes), in which most microchromosomes are fused, therefore provide improved resolu-

tion for comparative analysis in Charadriiformes [13]. Chromosome painting studies between

BOE and GGA shows the conservation of pairs GGA1, GGA2, GGA3, GGA4q and GGA5, but

with the presence of some intrachromosomal rearrangements, probably pericentric inversions

[13]. BOE7 to BOE14 show microchromosome homologies. Pericentric inversion or centro-

mere repositioning lead to the morphological change in some pairs of autosomes [7, 11, 14]

and in the sex chromosomes Z and W [15]. However, only five studies in Charadriiformes

using molecular cytogenetics have been carried out so far [13, 16–19].

As Charadriiformes is an order where the phylogenetic relationships of a major higher-level

clade have been successfully resolved [1], comparative chromosome painting analysis of the

three suborders using BOE painting probes could shed new light on phylogenetic relationships

and define karyotype evolution in the order. Our hypothesis is that this approach will allow us

to find chromosome signatures specific for each suborder. Since the order Gruiformes is a sis-

ter branch of Charadriiformes [1] and that BOE and GGA chromosomal painting data exist

for Gruiformes [16, 20, 21, 28], we expect that this phylogenetic proposition can be confirmed.

The aim of the present paper is to undertake comparative analysis between the three subor-

ders of Charadriiformes and the order Gruiformes by homology mapping of the two species of

Charadriidae, Vanellus chilensis (VCH) and Charadrius collaris (CCO). The results are com-

pared with those obtained in Gallus gallus [22], Burhinus oedicnemus [13], Larus argentatus
Pontoppidan 1763 [16], Actitis macularius Linnaeus, 1766 [18] and Jacana jacana Linnaeus,

1766 [17]. We also searched for a chromosomal signature that would connect the orders Char-

adriiformes and Gruiformes.

Material and methods

Ethics statement

The specimens were kept stress-free with full access to food and water until euthanasia was

performed in accordance with animal welfare guidelines established by Brazilian resolution

CFMV n.1000/2012. The necessary euthanasia was performed by intraperitoneal injection of

buffered and diluted barbiturates after local anesthesia, in accordance with animal welfare
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de Amparo a Estudos e Pesquisas http://www.

fapespa.pa.gov.br/ JCP 2.318.697.0001 Banco

Nacional de Desenvolvimento Econômico e Social
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guidelines established by the Animal Ethics Committee (Comitê de Ética Animal) from Uni-

versidade Federal do Pará (UFPA), which authorized the present study (Permit 68–2015). JCP

has a permanent field permit, number 13248 from “Instituto Chico Mendes de Conservação

da Biodiversidade”. The Cytogenetics Laboratory from UFPA has a special permit number 19/

2003 from the Ministry of Environment for samples transport and 52/2003 for using the sam-

ples for research.

Sampling

Charadrius collaris. Samplings were carried out in conjunction with the Laboratory of

Molecular and Environmental Biology of the Federal Institute of Pará (IFPA)—Campus Bra-

gança, which provided all technical support. They were performed in Otelina island (0˚

45’42.57"S; 46˚55’51.86"W, one male and one female) and Pilão beach (0˚47’46.08"S; 46˚

40’29.64"W, two females), on the coast of the Northeast Region of Pará, Brazil (Fig 1). Nets

with 12m x 2m and 36mm mesh were used at six collection points.

Vanellus chilensis. The samples were collected at the international airport Val—de—

Cans in Belém (SBBE) which covers an area of 631 ha, located 12 km from the center of Belém

city, with coordinates 01˚23´04´´S and 48˚28´42´´W (Fig 1). Four eggs were collected for the

cultivation of embryonic cells. Karyotypic analysis showed that they were all males.

Cytogenetic analysis

Metaphase chromosomes were obtained by the bone marrow technique [23] for CCO. Briefly,

0.05% aqueous colchicine was first injected intraperitoneally at the dosage of 0.01 ml per 10 g

Fig 1. Map of geographical distribution of Charadrius collaris and Vanellus chilensis, with their respective collection locations. Charadrius collaris: 1-Island of

Otelina; 2- Pilão beach; Vanellus chilensis: 3-Belém Airport. The map was prepared using the QUANTUM-GIS software, v. 2.10.1 (https://qgis.org). The free database was

obtained from DIVA-GIS (https://www.diva-gis.org).

https://doi.org/10.1371/journal.pone.0272836.g001

PLOS ONE Chromosome painting and an analysis of chromosomal signatures in Charadriiformes

PLOS ONE | https://doi.org/10.1371/journal.pone.0272836 August 10, 2022 3 / 14

https://qgis.org/
https://www.diva-gis.org/
https://doi.org/10.1371/journal.pone.0272836.g001
https://doi.org/10.1371/journal.pone.0272836


body weight. The animal was sacrificed by overdose of lidocaine (20mg/ml) injected intraperi-

toneally. The femur was extracted and the bone marrow was removed. The bone marrow was

placed in a homogenizer and incubated in a hypotonic solution (KCl 0.075 M) for 20–30 min-

utes at 37˚C. Then, 1 mL of ice-cold Carnoy fixative (methanol and glacial acetic acid in a 3:1

ratio) was added.

The chromosomes of VCH were obtained from embryonic cell cultures [24]. Eggs were col-

lected and placed in an incubator at 38˚C. After 40 hours the eggs blastodisks were transferred

to culture medium with addition of colcemide, followed by a 3 hours culture. The following

(hypotonic solution, fixation and slide preparation) are the same as the bone marrow

technique.

The chromosomes were classified in decreasing size according to the suggested nomencla-

ture [25]. Standard G-banding was performed [26].

Chromosome painting

Whole chromosome probes from BOE generated by flow cytometry [13] were used in this

study. Fluorescence in situ hybridization was performed according to Yang et al. [27]. Single

and double hybridization experiments were carried out, combining probes labeled with biotin

and detected with Avidin conjugated with Cy3 or probes labeled with digoxigenin and

detected with anti-digoxigenin conjugated with fluorescein. Counter staining was with DAPI

(4’6-Diamidino-2-phenyl-indole). Slides were analyzed in a Nikon H550S microscope, with a

DS-Qi1Mc digital camera controlled by the Nis-Elements software. The images were captured

in black and white and subsequently pseudo-colored based on the fluorochrome used. Images

were edited with the Adobe Photoshop CS6 software.

Results

Karyotype description and chromosomal painting in Charadrius collaris
Charadrius collaris has a diploid number (2n) of 76, where pairs 5, 7 and 8 are metacentric;

pairs 1–4 are submetacentric; pair 6 is acrocentric and the remaining pairs are telocentric; the

others are microchromosomes (Fig 2). Sex chromosomes are ZZ/ZW. Females have a sub-

metacentric Z chromosome, intermediate in size between autosomal pairs 5 and 6. The W

chromosome is a small sub-metacentric, similar in size to autosomal pair 9. Hybridizations

with BOE whole chromosome probes confirmed that these are the sex chromosomes (Fig 2).

The FISH experiments with BOE whole chromosome probes in CCO revealed the following

homologies: each one of the pairs CCO1 (BOE1), CCO2 (BOE2), CCO3 (BOE3), CCO4

(BOE4), CCO5 (BOE5), CCO6 (BOE6), CCO7 (BOE7) and CCO8 (BOE9) were equivalent to

a pair of chromosomes per BOE probe. Each of these probes also showed hybridization to the

sex chromosome W. The BOE8 probe showed homology to CCO9 and CCO10. The sex chro-

mosome probes hybridized only to the sex chromosomes of CCO. Seven probes hybridized to

microchromosomes: BOE10 (2 micros), BOE11 (4 micros), BOE12 (4 micros), BOE13 (20

micros), BOE14 (2 micros) and BOE17-20 (12 micros) and, with the exception of BOE10 and

BOE11 they also hybridized to the W chromosome. Examples of hybridizations are shown in

Fig 3.

Karyotype description and chromosomal painting in Vanellus chilensis
Vanellus chilensis has a diploid number of 78, where the first, fourth, seventh and eighth pairs

are metacentric; the second, fifth and sixth pairs are submetacentric; the third pair is subtelo-

centric and the remaining pairs are microchromosomes. The sex chromosome system is of the
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ZZ/ZW type. VCH samples were obtained from eggs. All karyotypes were ZZ, indicating that

the birds were male. The Z chromosome is submetacentric, almost metacentric, and is the

same size as the 4th pair (Fig 4). Hybridizations with BOE whole chromosome probes con-

firmed that this chromosome is the Z (Fig 4).

The FISH experiments with BOE whole chromosome probes in VCH demonstrated homol-

ogy of BOE1, BOE2, BOE3, BOE5, BOE4, BOE6 and BOE9 with VCH1, VCH 2, VCH3,

VCH4, VCH5, VCH6 and VCH7 respectively; BOEZ probe hybridized to VCHZ. The BOE7-

8, BOE10-14 and BOE17-20 showed some homology to microchromosomes. BOE7 hybridized

to 7 microchromosomes; BOE8 hybridized to VCH8 + 2 microchromosomes. BOE10-11

hybridized to four microchromosomes each. BOE12 and BOE 14 hybridized to two micro-

chromosomes each. BOE13 hybridized to 14 microchromosomes and BOE17-20 hybridized to

16 microchromosomes (Fig 5).

Discussion

Chromosomal rearrangements between Burhinus oedicnemus and

Charadrius collaris and their presence in Charadriiformes

The karyotype of Charadrius collaris (2n = 76) is described for the first time. The species of the

genus Charadrius cytogenetically analyzed, Charadrius alexandrinus and Charadrius dubius
[28], Charadrius hiaticula [29], Charadrius semipalmatus [6], Charadrius vociferus [29, 30], all

present the same diploid numbers (2n = 76), without noteworthy differences in chromosome

morphology.

Chromosome painting using BOE probes revealed a high degree of conservation in the first

seven pairs of CCO. These data suggest that this is a characteristic common to the ancestor of

the Suborder Charadrii. Some pericentric inversions and a fusion differentiate the karyotypes

of CCO and BOE (Fig 6). Nie et al. [13] compared the karyotypes of BOE and GGA, and we

found that the chromosomes of CCO are similar to those of GGA, so we can consider that

these rearrangements occurred mostly in BOE. Many cross-hybridizations of autosomal

probes also occurred on the long arm of CCOW, as already observed in Larus argentatus

Fig 2. G-banding in Charadrius collaris (2n = 76) showing the homologies of whole chromosome probes of Burhinus
oedicnemus (right). (�) Macrochromosome probes reveal homeology to the sex chromosome W. The microchromosomes are

arranged sequentially, as the correct homeologies cannot be detected due to the lack of reliable markers.

https://doi.org/10.1371/journal.pone.0272836.g002
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(LAR) [16]. A possible cause would be that there is a low number of interspersed repetitive

sequences in autosomes and a high number in the W chromosome. Sequencing of this regions

is necessary to confirm this possibility.

The homology of BOE13 with 20 micros in CCO suggests that BOE13 was formed through

fusion of microchromosomes. This probe also bears the nucleolus organizing region [13]

showing its presence in 1 to 4 pairs of microchromosomes, with other cross-hybridization

occurring in some of them [16]. However, these results should be treated with caution since

we do not use Cot1 to suppress the cross-hybridization of shared repeats present in these

paints. The smallest pairs of BOE macrochromosomes appear to result from fusion of 1 to 2

pairs of microchromosomes derived from the common ancestor of Charadrii. The same can

be assumed for VCH (see section below).

Chromosomal rearrangements between Burhinus oedicnemus (BOE) and

Vanellus chilensis (VCH) and their presence in Charadriiformes

The karyotype of Vanellus chilensis (2n = 78) has been described by classical and molecular

cytogenetics [11], using GGA and Leucopternis albicollis Latham, 1790 (LAL) probes. In the

Fig 3. Chromosomal painting of whole chromosome probes of Burhinus oedicnemus on Charadrius collaris. The

probes are visualized with avidin-Cy3 (red); chromosomes counterstained with DAPI (blue).

https://doi.org/10.1371/journal.pone.0272836.g003

PLOS ONE Chromosome painting and an analysis of chromosomal signatures in Charadriiformes

PLOS ONE | https://doi.org/10.1371/journal.pone.0272836 August 10, 2022 6 / 14

https://doi.org/10.1371/journal.pone.0272836.g003
https://doi.org/10.1371/journal.pone.0272836


Fig 4. G-banding in Vanellus chilensis (2n = 78) showing the homologies of whole chromosome probes of Burhinus
oedicnemus (right). The microchromosomes are arranged sequentially as the correct homeologies cannot be detected due to

lack of reliable markers.

https://doi.org/10.1371/journal.pone.0272836.g004

Fig 5. Chromosomal painting of whole chromosome probes of Burhinus oedicnemus homologous to

macrochromosomes in Vanellus chilensis. The probes are visualized with avidin-Cy3 (red); chromosomes counter-

stained with DAPI (blue).

https://doi.org/10.1371/journal.pone.0272836.g005
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present study we provide more thorough detail on the genome organization using BOE

probes.

Vanellus chilensis has a karyotype typical of ancestral birds, conserved for about 100 million

years, with some small variations [5]. VCH pairs 1–3, 5 and 6 remain conserved. When these

results are compared with those obtained with the GGA probes for VCH, the fusion between

GGA7 and GGA8 in VCH4 is observed, as reported by others [11].

Previous studies [11] show that VCH has 10 pairs of macrochromosomes and the sex chro-

mosome Z is acrocentric, while in the present work there are only 8 pairs of macrochromo-

somes and a submetacentric Z. This variation in the number of macros can be explained by

different opinions in the classification of macros and micros, as there is little difference in size

between pair 8 (smallest pair of macrochromosomes) and pair 9 (largest pair of microchromo-

somes) (Fig 4). The Z chromosome issue however deserves special attention. The morphology

of this chromosome in the Fig 1 shown by those authors is clearly different from that presented

here. Unfortunately, they did not hybridize with a Z probe, which may raise doubts as to

whether the chromosome indicated as Z really is this sex chromosome. However, if it is, it

would indicate the occurrence of a pericentric inversion. There is a possibility that we are

observing a population difference but, again, it is difficult to make any statement as our sample

was collected in the field and those authors’ sample was a captive one, whose geographic origin

is not described. In any case, the comparison of the morphology of the Z chromosome

described here in VCH is different from that of CCO suggesting that inversions in the Z chro-

mosome are not rare, as already suggested for other birds [20].

Fig 6. Idiogram for chromosomal pairs that have undergone pericentric inversions or centric fusions. Pericentric inversion that differ: A) BOE3 from CCO3; B)

BOE6 from CCO6; C) Pericentric inversion of the metacentric CCO8 and the acrocentric BOE9; D) Fusion of CCO9 and CCO10 giving rise to BOE8.

https://doi.org/10.1371/journal.pone.0272836.g006
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BOE13 hybridized to 14 microchromosomes and is also the bearer of a Nucleolus Organiz-

ing Region, so a variation in the number of hybridizations on VCH microchromosomes is

expected [13]. BOE17-20 hybridized to 16 microchromosomes, corroborating the data

obtained between BOE and GGA [13].

The 4th chromosome pair of VCH (and their homologues BOE5 and CCO5) is the result of

the fusion of chromosomes GGA7 and 8 (Table 1). Therefore, as previously proposed [11], our

results also support that this is an exclusive feature of Charadrii, for this fusion is not found in

the other suborders, Lari (Larus argentatus) [16] or Scolapacii (Jacana jacana, [17]; Actitis
macularius, [18]; Table 1).

Because B. oedicnemus has atypical karyotype with only four pairs of microchromosomes—

most microchromosomes commonly seen in other birds had undergone fusions becoming

parts of larger chromosomes. Thus, the whole chromosome probes can be useful to track the

evolution of microchromosomes in other species. At the first glimpse microchromosomes

may appear to be stable, but detailed analysis of hybridization signals on microchromosomes

of CCO and VCH shows a considerable degree of variability. BOE10 hybridizes to 2 micro-

chromosomes in CCO and 4 in VCH; BOE12 hybridizes with 4 microchromosomes in CCO

and 2 in VCH; BOE13 hybridizes to 20 microchromosomes in CCO and 14 in VCH; BOE17-

20 hybridize to 12 microchromosomes in CCO and 16 in VCH; BOE7 hybridizes with 1 pair

of macrochromosome in CCO and 7 microchromosomes in VCH; BOE8 hybridizes with 1

pair of macrochromosome in CCO and with 1 pair of macrochromosome and 2 microchro-

mosomes in VCH. Although it is not possible here to identify which pairs of microchromo-

somes are hybridized with each BOE probe, the variation in the number of these

microchromosomes indicates a considerable number of rearrangements involving micro-

cchromosomes coud have happened, more than that involving macrochromosomes. Studies

with BAC-FISH using specific probes for microchromosomes will allow a better understand-

ing of these rearrangements.

Table 1. Chromosomal correspondence between Gallus gallus (GGA), Burhinus oedicnemus (BOE), Vanellus chilensis (VCH), Charadrius collaris (CCO), Larus
argentatus (LAR), Actitis macularius (AMA), and Jacana jacana (JJA) demonstrated by chromosome painting. The numbers of chromosome pairs are those of the

species karyotype. They are compared with the Putative Ancestral Avian Karyotype (PAK). Micro = microchromosome.? = Hybridization did not work.

PAK [4] GGA [20] BOE [13] VCH (present study) CCO (present study) LAR [16] AMA [18] JJA [17]

1 1 1 1 1 1 1, 2, Wq 1

2 2 2 2 2 2 3, 11, 12, 13, Wq 4, 5p, 6p, 9

3 3 3 3 3 3 4, 14, 15, Wq 2q, 3p, 7q

4 4q 4 5 4 5 6, 16, W 2p, 3q

7, 8 7, 8 5 4 5 7, 8 7, 8 7p,6q

5 5 6 6 6 4 9, 10, Wq 5q, 8q

9 9 7 (9, R3 & R6) 6 micros, Wq 7 6, 7, 11 5, 2 micros, Wq 10

10 4p 8 (4p, R2) 8, 2 micros 9, 10 9 ? 15

6 6 9 (6, 1 micro) 7 8 6, 18 8 micros, Zq, Wq 13, 14

- - 10 (R1 & R4) 4 micros 2 micros 4, 8 17,20 -

- - 11 (R2 & R7) 4 micros 4 micros 10, 16 18, 2 micros -

- - 12 (R5) 2 micros 4 micros, Wq 12, 17 19 20

- - 13 (R6 & R9) 14 micros 20 micros, Wq 15, 25 6 micros, Wq -

- - 14 (R5) 2 micros 2 micros, Wq 13 2 micros, Wq 21

- - 15, 16 6 micros, Wq 2 micros, Wq 14, 19, 23 6 micros, Wq -

- - 17, 18, 19, 20 (R9) 16 micros 12 micros, Wq 22, 24, 26 6 micros, Wq -

Z Z Z Z Z Z, Wq Z, Wq Z

W W W W W Zq, Wq W, Zq W

https://doi.org/10.1371/journal.pone.0272836.t001
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Comparative analysis between the three suborders of Charadriiformes and

with the order Gruiformes

Since chromosomal painting data for the three Charadriiformes suborders is already available

in the literature, the data obtained here were compared to those previously described for Gallus
gallus [22], for the avian Putative Ancestral Karyotype [4] and the Charadriiformes Larus argen-
tatus [16], Actitis macularius [18], and Jacana jacana [17]. The comparisons are presented in

Table 1, which shows the correspondence of homologies with BOE of those species studied only

with GGA probes. We performed a comparative analysis of the rearrangements found in each

suborder, using the molecular phylogeny as a guide [1], illustrated in Fig 7. As previously

observed [17], we also confirm that each suborder has its own chromosomal signatures and

here we detail these signatures: Charadrii (fusion PAK7 with PAK8), Scolopaci (fission of PAK

2 to 5, while a branch of this suborder has the fission of PAK1 as signature, at least with data

available now [18, 19] and Lari (fusion PAK6 with PAK9, fusion of PAK7 and PAK8 with

microchromosomes; pericentric inversion in PAK5). It is important to note that the supposed

signatures for Lari were observed only in LAR [16], which is not a basal species in the suborder.

Studies on more Lari species are needed to confirm whether these rearrangements are Lari sig-

natures or LAR autapomorphies. Another interesting rearrangement is the fusion of PAK10

with R2 (a fusion of two microchromosomes, [13]) observed in BOE8 and LAR9, and split in

CCO9 and CCO10. Since in PAK the segments are separated, their presence in Charadrii and

Lari, but absence in Scolopaci, can be explained in two alternative ways: 1) The fusion happened

twice, once in Charadrii and once in Lari and, therefore, Scolopaci maintains the ancestral

form; 2) the fusion is a signature of Charadriiformes and should be present in the three subor-

ders; its absence in Scolopaci could be due to a fission that separated the segments again. Since

the question of fusing PAK10 with a microchromosome remains open, we have not found any

rearrangements shared between the three suborders. Thus, the ancestral karyotype of Charadrii-

formes (CPAK, Fig 7) remains the same as the PAK, as previously suggested [17].

Since the order Gruiformes is a sister group of Charadriiformes [1], we compared our data

with chromosomal painting data published for Gruiformes [16, 20, 21, 31], described for

Fulica atra Linnaeus, 1758 (FAT), Gallinula chloropus Linnaeus, 1758 (GCH) [16, 20], and

Gallinula melanops Vieillot, 1819 (GME) [31], as well as Aramides cajaneus Statius Muller,

1776 (ACA) and Psophia viridis Spix, 1825 (PVI) [21]. The determination of homologies

between data obtained with GGA [20, 21] and BOE [16] chromosome probes is found in the

S1 Table. Charadriiformes and Gruiformes (Fig 7) do not share any rearrangement that could

be a signature of the branch from which the orders originated. Thus, the ancestral karyotype of

Gruiformes (GPAK, Fig 7) could be the same as PAK and CPAK [21].

Conclusion

We used a published molecular phylogeny [1] as a guide for studying the karyotype evolution

of Charadriiformes, determining the place where each rearrangement occurred and whether

each suborder shares the same chromosome signature. The suborder Charadrii has large, con-

served chromosome pairs in relation to PAK. The fusion of PAK7 with PAK8 gives rise to a

metacentric chromosome, which is characteristic of the Charadrii species already analyzed

(BOE5; CCO5; VCH4). The comparative analysis between the Charadriiformes suborders so

far does not show any shared rearrangement, indicating that each suborder followed an inde-

pendent evolutionary path showing no differences in relation to the PAK. Likewise, although

the orders Charadriiformes and Gruiformes are sister branches, they do not share any chro-

mosomal rearrangement that can be considered a chromosomal signature. Chromosome
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painting data from more Charadriiformes species will test these propositions and give more

details on the karyotypic evolution of this order.

Supporting information

S1 Table. Chromosomal correspondence between Gallus gallus (GGA), Burhinus oedicne-
mus (BOE), Fulica atra (FAT), Gallinula chloropus (GCH), Aramides cajaneus (ACA) and

Psophia viridis (PVI) demonstrated by chromosome painting. The numbers of chromosome

pairs are of the karyotype of each species. They were also compared with the Putative Ancestral

Avian Karyotype (PAK). Micro = microchromosome.

(DOCX)

S1 Fig. Metaphases of Charadrius collaris showing the hybridization of all whole chromo-

some probes from Burhinus oedicnemus.
(JPG)

S2 Fig. Metaphases of Vanellus chilensis showing the hybridization of all whole chromo-

some probes from Burhinus oedicnemus.
(JPG)
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