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Introduction: Preeclampsia, one of the leading causes of maternal and

fetal morbidity and mortality, demands accurate predictive models for

the lack of e�ective treatment. Predictive models based on machine

learning algorithms demonstrate promising potential, while there is a

controversial discussion about whether machine learning methods should be

recommended preferably, compared to traditional statistical models.

Methods: We employed both logistic regression and six machine learning

methods as binary predictive models for a dataset containing 733 women

diagnosed with preeclampsia. Participants were grouped by four di�erent

pregnancy outcomes. After the imputation of missing values, statistical

description and comparison were conducted preliminarily to explore the

characteristics of documented 73 variables. Sequentially, correlation analysis

and feature selection were performed as preprocessing steps to filter

contributing variables for developing models. The models were evaluated by

multiple criteria.

Results: We first figured out that the influential variables screened by

preprocessing steps did not overlap with those determined by statistical

di�erences. Secondly, the most accurate imputation method is K-Nearest

Neighbor, and the imputation process did not a�ect the performance of the

developedmodels much. Finally, the performance of models was investigated.

The random forest classifier, multi-layer perceptron, and support vector
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machine demonstrated better discriminative power for prediction evaluated by

the area under the receiver operating characteristic curve, while the decision

tree classifier, random forest, and logistic regression yielded better calibration

ability verified, as by the calibration curve.

Conclusion: Machine learning algorithms can accomplish prediction

modeling and demonstrate superior discrimination, while Logistic Regression

can be calibrated well. Statistical analysis and machine learning are

two scientific domains sharing similar themes. The predictive abilities of

such developed models vary according to the characteristics of datasets,

which still need larger sample sizes and more influential predictors to

accumulate evidence.

KEYWORDS

pre-eclampsia (PE), adverse outcomes, maternal, neonatal, predictive models,

machine learning, logistic regression, retrospective study

Introduction

Preeclampsia affects about 5 to 7% of all pregnant women

but is responsible for over 70,000 maternal deaths and 500,000

fetal deaths worldwide every year (1). As a placenta-mediated

disease, the pathogenesis of preeclampsia is poorly understood,

and therapeutic interventions are limited. The only effective

treatment is the termination of the pregnancy, which may

cause severe consequences of maternal target-organ damage or

neonatal concomitant prematurity (2). Therefore, both accurate

prediction of the disease onset for expectant women and

precise identification of susceptible patients for adversematernal

or neonatal outcomes are important for required intensive

monitoring and preventive management.

Recently, early screeningmodels with promising biomarkers

effectively discriminate suspected women from normal

pregnancies (3), while significant heterogeneity can still be

revealed when these models are utilized to predict adverse

maternal and perinatal outcomes (4). Considering the time span

from pre-pregnancy or early pregnancy to the appearance of

adverse outcomes, applying short-term predictive models may

be more realistic in ruling out the occurrence of adverse events

in women with preeclampsia. Furthermore, novel biomarkers

that present exciting roles for assisting prediction are still under

testing for extensive clinical utility. Therefore, deep mining the

application of maternal demographic characteristics, medical

history, physical examination, as well as biochemical indicators

obtained during antenatal care visits, or even obtained just

ahead of confronting pregnancy outcomes, and evaluating

the reliability of real-time predictive models developed by

these variables, will still be an efficient and economical choice

for timely distinguishing adverse outcomes, especially in

low-resource settings.

For the purpose of developing short-term predictive models

with common clinical observations and laboratory tests, we

derived the variables collected routinely before the termination

of pregnancy based on revealing the actual individual signaling

when they confront pregnancy outcomes. The developed

predictive models with variables can be considered bottom-up

work that laid a foundation for subsequent real-time predictive

models embedded in different trimesters of pregnancy.

The traditional predictive model assisting clinical decision-

making for binary outcomes is logistic regression (LR). This kind

of regression-type modeling is mainly based on assumptions

and probability calculations, and the interpretation of models

specified by artificial intervention and background knowledge

is quite essential (5). Nowadays, “machine learning” (ML)

has become a prevalent approach for modeling, encompassing

a variety of algorithmic strategies (6). It is claimed that

ML models learn from data directly and automatically with

highly flexible algorithms. With increasing computational

power, the capability of ML-based predictive models has vastly

expanded, providing an opportunity for accurate prediction

from voluminous electronic medical records (7). As a matter of

fact, the distinction between LR and ML is blurry. “Continuum”

may be a more appropriate phrase to describe their relationship

(8). Though the algorithmic flexibility promises ML to perform

better over traditional statistical modeling on handling a

large number of data, which may be especially preferred by

preeclampsia, with heterogeneous pathophysiology and clinical

presentation (9), the fair comparison between ML and LR

is still sparsely exploited. In other words, the reliability of

different models performed on a certain type of data or a

certain sample size still needs assessment. To date, limited

research studies focused on the development of ML models

for preeclampsia predictive tasks, which mainly involved

early detection of preeclampsia (10–14), exploring identified

biomarkers (15), or assessment of subsequent cardiovascular

risk (16), while there is still no research designed to predict

adverse pregnancy outcomes.
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Therefore, the primary objective of this study was to

evaluate the performance of ML and LR for the development

of short-term predictive models for binary maternal or

neonatal outcomes involving pre-eclampsia, and the models

were generated by common clinical indicator. The secondary

objective was to further explore the characteristics of these

models when applied to our structural medical recodes, aiming

to provide information for the match-up patterns of the two

modeling approaches, which are from two different domains but

share similar themes.

Methods

The flow chart of this research can be seen in Figure 1.

Study population

A retrospective cohort study consisted of women admitted

to two tertiary care hospitals with delivery services in China,

Second Affiliated Hospital of Dalian Medical University and

Shengjing Hospital of China Medical University, from January

1, 2007, to December 31, 2017. Medical records were reviewed,

and 867 Han-Chinese women diagnosed with preeclampsia

were enrolled. Seven hundred thirty-three pregnant women had

definite records of pregnancy outcomes, while 134 cases were

admitted to hospitals after the confirmation of the diagnosis

of preeclampsia, and the pregnancy outcomes are unknown

for planned discharge or required transfer. Individuals were

excluded from the study when the missing data rates of analyzed

variables were more than 60%.

The diagnostic criteria for preeclampsia were based on the

ACOG (American College of Obstetricians and Gynecologists)

practice bulletin (17).

The requirement for informed consent was waived off for

this retrospective and observational study. Personal information

of the subjects was shielded before any analysis. The study

protocols were approved by the Ethics Committees of the two

hospitals, and all procedures adhered to the ethical standards

outlined in the principles of the Declaration of Helsinki.

Grouping

Eight hundred sixty-seven participants were initially divided

into the early-onset group (EOP, early-onset of preeclampsia

would be labeled when preeclampsia presents before 34 weeks

(2), n= 372) and the late-onset group (LOP, n= 495).

Then, the 733 women with well-documented pregnancy

outcomes were categorized separately based on different adverse

outcomes. (1) Grouped based on adverse or satisfactory

maternal outcomes: the adverse maternal outcomes group

(AMO, n = 182) and the control group (CON-AMO, n = 551);

(2) grouped based on placental abruption occurred or not: as a

more specific adversematernal outcome, the differences between

placental abruption group (PA, n = 71), and the control group

(CON-PA, n = 662) were also identified; (3) grouped based on

adverse or satisfactory neonatal outcomes: the adverse neonatal

outcomes group (ANO, n = 423) and the control group (CON-

ANO, n= 310); (4) grouped based on low birth weight occurred

or not: the low birth weight group (LBW, n = 253) and the

control group (CON-LBW, n= 480).

The adverse maternal and neonatal outcomes regarding

preeclampsia were identified according to the international

consensus (18).

Maternal adverse outcomes include maternal mortality,

eclampsia, stroke, cortical blindness, retinal detachment,

pulmonary edema, acute kidney injury, liver capsule hematoma

or rupture, placental abruption, postpartum hemorrhage,

raised liver enzymes, low platelets, admission to ICU required,

intubation, and mechanical ventilation.

Outcomes demonstrating the impact of preeclampsia on the

fetus and neonate include stillbirth, preterm, low birth weight,

small-for-gestational-age, neonatal mortality, neonatal seizures,

admission to neonatal ICU, and respiratory support.

Collection of variables

All the maternal variables were obtained within 24 h after

admission, and all the neonatal variables were recorded after

delivery; all the biological samples were analyzed in the

laboratories of two hospitals. The list of variables can be seen

in Supplementary Table 1.

Gestational ages were confirmed by ultrasonic examinations

before 14 gestational weeks.

Hypoalbuminemia is defined as plasmatic albumin < 30

g/L (19).

The diagnosis criteria of “impaired liver function,” “renal

insufficiency,” “thrombocytopenia,” and “HELLP syndrome”

were all defined by the ACOG practice bulletin (17).

The “creatinine clearance rates” were calculated based on the

Cockcroft-Gault equation (20).

Imputation for missing values

Random missing data were inevitable in our retrospective

study to unnecessarily threaten the validation of results.

Therefore, imputation techniques were proposed before any

subsequent analysis.

To observe the influence of imputation on the datasets

and select the appropriate imputed method, the four datasets

were split into training (70%) and testing (30%) sub-datasets

randomly, and the training datasets were either imputed or not.
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FIGURE 1

The flowchart of this study.

Meanwhile, several imputation techniques were applied when

the training datasets required imputation, and the imputation

accuracy was evaluated by training on the Random Forest

(RF) classifier.

Both Iterative Imputer and K-Nearest Neighbor (KNN) (21)

were proposed as imputed techniques with the necessary three-

fold iteration. As Iterative Imputers, Bayesian Ridge Regression

and Extratree were the selected algorithms, which impute each

missing value several times until algorithmic convergence is

reached in each model (22). The principle of KNN is that

the value can be approximated by the “k” neighbors closest

to it. Depending on the chosen values of “k,” the efficiency of

imputation varied (22).

After data imputation, the missing data rate was calculated.

Statistical description and analysis

Firstly, the normality of distribution was analyzed by

the Shapiro–Wilk test for continuous variables. Secondly,

intergroup comparisons between continuous variables with

normal distributions were performed by Student’s t-test and

presented as mean ± standard deviation, while continuous

variables with skewed distributions were compared using

the Mann–Whitney U-test and described as median with

interquartile range. Thirdly, categorical variables were

analyzed by the Chi-square test or Fisher’s exact test. Finally,

ordinal variables were compared by the Mann-Whitney

U-test. A probability level of P-value <0.05 was taken as

statistically significant.
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All analyses were performed by SPSS version 26 (IBM

Corp., Armonk, NY, USA), Python language version 3.6.9, and

GraphPad Prism 6.01 (GraphPad Software, San Diego, CA,

United States).

Selection of predictive variables

The selection of predictive variables correlated with clinical

outcomes was performed by two different strategies sequentially:

the first step is statistical correlation analysis, and the second

step is feature selection performed by the decision tree

(DT) algorithm.

Statistical correlation analysis is applied to calculate the

association between two variables. Pearson correlation is

typically used for jointly normally distributed continuous data,

while Spearman rank correlation can be used for non-normally

distributed data (23). The correlation coefficient shows the

correlated value of changes, and the preceding sign indicates the

direction of correlated changes.

The “heat maps” can be constructed according to the

results of correlation analysis to solve the problems of pairwise

graphic mapping of variables simultaneously and to assess the

presence of dependence in an illustrative way. The independent

variables screened by correlation analysis will be obtained for the

following exploration.

Further feature selection was performed by DT models as

another preprocessing measure for the following construction

of predictive models (the explanation of this model will be

discussed below in detail). The area under the receiver operating

characteristic (ROC) curve, also known as AUC, is commonly

used for ranking the performance of models (24). Each variable

was applied to the DT model, and the performance of each

model was evaluated by the AUC value. With AUC values >0.5,

variables would be filtered as the targeted satisfactory predictors

for the following predictive models (25).

Selection of predictive models

All the selected variables were standardized to the same

order of magnitude and normalized from zero to one. The

standardization was essential to weaken or even eliminate

the disturbance factors of variables with different features,

thus solving the problems of comparability between different

variables and improving the prediction accuracy (26).

The selection of predictive models for clinical outcome

classification tasks was also performed by two different strategies

separately, LR and ML algorithms. These models originate in

two different communities—statistics and computer science—

but share many similarities. After the variable selection scheme

was used to remove spurious variables, LR (26) and six ML

prediction models were developed from the split training

datasets, and the validation of models was tested on the testing

datasets. GridSearch with Cross-Validation was the applied

parameter optimization technique (27). The discriminative

power of the models was assessed by the AUC of the ROC

curve, and the calibration quality was determined by the

calibration curve.

The following are the six ML algorithms we applied to

construct the models, and Figure 2 depicts these algorithms in

a more illustrative way.

A support vector machine (SVM) is a binary linear classifier

for classification or regression analysis. SVM can achieve

reasonable accuracy from small data sets by creating a decision

boundary between two classes and optimizing the distance of

the hyperplane between the boundary points to separate the

different classes, which enables the prediction of labels from one

or more feature vectors (28).

KNN, as we mentioned above, is one of the oldest, simplest,

and most accurate algorithms for pattern classification and

regression models. This classifier depends mainly on measuring

the distance or similarity between the tested and training

examples. There is no fixed number of parameters, no data size

limitation, and no data distribution assumptions (29).

The DT classifier is a single base classifier consisting of nodes

and edges. Starting from the root node, also known as the first

split point, the split determines the divisions of the entire dataset

based on calculation. The process continues from top to bottom

until no more partitioning is required, and the leaves present at

the end of the decision tree represent the last partitions (30).

RF is an ensemble learning method to overcome the

drawbacks of a single base prediction model, aiming to achieve

higher accuracy even though the dataset size is very small. This

model includes multiple decision trees corresponding to various

sub-datasets created from an identical dataset. The model can be

trained with a different subset of features rather than selecting

the best feature present in the dataset (30).

TheMulti-Layer Perceptron (MLP) is a feedforward artificial

neural network with a high degree of connectivity determined by

the synaptic weights of the network, consisting of input, hidden,

and output layers. Employing the backpropagation algorithm,

we fixed the synaptic weights as the signal propagated in the

forward phase, while in the backward phase, the error signal

propagates backward until it reaches the synaptic weight and is

adjusted (31).

Linear discriminant analysis (LDA) is a multivariate

classification technique. This model seeks a linear combination

to discriminate multiple measures into two different groups.

The decision boundary obtained from the testing sample plays

a crucial role in the correct recognition. Data from a higher

dimensional space is performed as a linear transformation to a

lower dimensional space to achieve the final decision (32).

For all ML models, the ten-fold cross-validation technique

was optimized to select the best bias-corrected discriminant

model. Data are randomly divided into ten equal-sized sets, and

in each iteration, seven sets are utilized for training, and three

sets are utilized for testing. After ten iterations are performed,
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FIGURE 2

The illustration of the machine learning algorithms applied in this research.

each set can be used as a testing set in a rotatory manner. The

final performance of models is calculated as the average of all the

iterations (33).

Results

Population characteristics

A total of 867 pregnant women were included in our study.

Among them, there are 733 cases with documented pregnancy

outcomes. Seventy-three variables were extracted from medical

records, including demographics, pregnancy complications,

features of deliveries and neonates, and maternal physical and

laboratory examinations. The missing data rate for 73 variables

is indicated in Supplementary Table 1.

The proportion of early-onset type is 42.9%, while

the rates of adverse maternal outcomes, placental

abruption, adverse neonatal outcomes, and low birth

rate are 24.8, 9.7, 57.7, and 34.5%, separately. Up

to 14.5% of women developed preeclampsia with

superimposed chronic hypertension. Twenty-one point
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TABLE 1 Variables with statistical significance between adverse maternal outcomes group and control group.

Variables Adverse maternal outcomes Placental abruption

AMO vs. CON-AMO PA vs. CON-PA

Demography

Gravidity 2 (1–3) vs. 2 (1–3)* 2 (1–3) vs. 2 (1–3)*

Complications

Early-onset type Yes 117 (64.3%) vs. 159 (28.9%)*** 49 (69.0%) vs. 227 (34.3%)***

Maternal hypoproteinemia Yes 70 (38.5%) vs. 86 (15.6%)*** 24 (33.8%) vs. 132 (19.9%)**

Cardiovascular disease Yes 23 (12.6%) vs. 3 (0.5%)*** 5 (7.0%) vs. 21 (3.2%)

Feature of Deliveries

Gestational age (weeks) 33.2 (30.4–36.4) vs. 36.9 (34.3–38.6)*** 33.2± 3.2 vs. 35.4± 4.3***

Delivery mode vaginal delivery 2 (1.1%) vs. 57 (10.3%)*** 0 (0%) vs. 59 (8.9%)***

forceps delivery 1 (0.5%) vs. 2 (0.4%) 0 (0%) vs. 3 (0.5%)

cesarean section 146 (80.2%) vs. 454 (82.4%) 65 (91.5%) vs. 535 (80.8%)

(2nd-trimester) labor

induction

20 (11.0%) vs. 30 (5.4%) 0 (0%) vs. 50 (7.6%)

stillbirth delivery 13 (7.1%) vs. 8 (1.5%) 6 (8.5%) vs. 15 (2.3%)

Feature of neonates

Neonatal death or stillbirth Yes 33 (18.1%) vs. 38 (6.9%)*** 6 (8.5%) vs. 65 (9.8%)

Admitted to NICU Yes 101 (55.5%) vs. 201 (36.5%)*** 52 (73.2%) vs. 250 (37.8%)***

Low birth weight Yes 75 (41.2%) vs. 178 (32.3%)* 34 (47.9%) vs. 219 (33.1%)*

Birth weight of neonates (g) 1894.9± 975.8 vs. 2520.1± 993.7*** 1810.5± 743.6 vs. 2431.8± 1039.1***

Apgar score (1min) 8 (3–10) vs. 9 (9–10)*** 8 (3–10) vs. 9 (8–10)**

Apgar score (5min) 10 (7–10) vs. 10 (10–10)*** 10 (8–10) vs. 10 (10–10)**

Physical examination

Weight (kg) 77.6± 12.3 vs. 82. 9± 14.0*** 76.9± 10.1 vs. 82.0± 13.9***

BMI 28.8± 4.0 vs. 30.7± 4.5*** 28.6± 3.4 vs. 30.4± 4.5***

Systolic pressure (mmHg) 154.8± 28.4 vs. 148.4± 21.1** 152.3± 23.7 vs. 149.8± 23.4

Diastolic pressure (mmHg) 100.3± 20.8 vs. 95.7± 15.0** 99.6± 18.3 vs. 96.6± 16.5

Laboratory examination

Leukocyte (× 10(9)/L) 11.56± 7.18 vs. 9.61± 3.17*** 12.74± 10.40 vs. 9.80± 3.35*

Neutrophil (× 10(9)/L) 27.93 (7.35–75.78) vs. 12.76 (6.14–70.99)* 62.60 (9.13–78.40) vs. 14.51 (6.24–71.47)**

Platelet (× 10(9)/L) 149.7± 69.3 vs. 194.4± 64.7*** 162.2± 58.9 vs. 184.7± 69.3**

APTT (s) 31.70± 9.16 vs. 29.89± 5.00* 32.19± 13.38 vs. 30.12± 5.03

Fbg (g/L) 4.00± 1.14 vs. 4.36± 1.60** 3.84± 1.20 vs. 4.30± 1.54*

ALT (U/L) 22.0 (16.6–35.3) vs. 17.0 (12.0–24.0)*** 21.0 (15.0–28.0) vs. 18.0 (13.0–26.0)*

AST (U/L) 21.9 (14.0–34.5) vs. 17.0 (12.0–24.0)*** 19.0 (11.0–28.0) vs. 18.0 (12.0–25.5)

Total protein (g/L) 53.7± 7.3 vs. 55.8± 7.0** 52.9± 7.3 vs. 55.6± 7.2**

Albumin (g/L) 28.9± 4.4 vs. 30.4± 4.7*** 28.2± 4.2 vs. 30.2± 4.8**

Urea (mmol/L) 5.81± 2.60 vs. 4.43± 2.46*** 5.83± 2.30 vs. 4.68± 2.59***

Creatinine (µmol/L) 71.0± 27.1 vs. 56.9± 14.8*** 67.6± 20.5 vs. 59.9± 19.7**

Creatinine clearance rate 141.8± 53.8 vs. 176.5± 59.4*** 141.3± 44.3 vs. 169.3± 61.8***

Uric acid (µmol/L) 418.0± 104.5 vs. 374.6± 99.9*** 404.7± 86.1 vs. 383. 7± 105.1

Fasting blood-glucose (mmol/L) 4.76± 1.26 vs. 4.58± 1.16 4.36± 0.90 vs. 4.66± 1.22*

Serum sodium (mmol/L) 134.8± 14.4 vs. 137.2± 2.5* 134.2± 16.2 vs. 136.9± 5.9

Serum calcium (mmol/L) 1.97± 0.19 vs. 2.06± 0.17*** 1.93± 0.24 vs. 2.04± 0.18***

Serum phosphorus (mmol/L) 1.37± 0.25 vs. 1.30± 0.24** 1.37± 0.19 vs. 1.32± 0.25

Urine pH 6.09± 0.64 vs. 6.26± 0.68** 6.23± 0.73 vs. 6.23± 0.67

Urine protein negative 5 (2.7%) vs. 106 (19.2%)*** 2 (2.8%) vs. 110 (16.6%)***

(Continued)
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TABLE 1 (Continued)

Variables Adverse maternal outcomes Placental abruption

AMO vs. CON-AMO PA vs. CON-PA

(±) 10 (5.5%) vs. 54 (9.8%) 3 (4.2%) vs. 60 (9.1%)

(+) 18 (9.9%) vs. 106 (19.2%) 6 (8.5%) vs. 120 (18.1%)

(++) 53 (29.1%) vs. 124 (22.5%) 20 (28.2%) vs. 158 (23.9%)

(+++) 72 (39.6%) vs. 120 (21.8%) 34 (47.9%) vs. 158 (23.9%)

(++++) 24 (13.2%) vs. 41 (7.4%) 6 (8.5%) vs. 56 (8.5%)

Urine glucose negative 161 (88.5%) vs. 519 (94.2%)* 64 (90.1%) vs. 618 (93.4%)

(±) 16 (8.8%) vs. 14 (2.5%) 7 (9.9%) vs. 21 (3.2%)

(+) 2 (1.1%) vs. 10 (1.8%) 0 (0%) vs. 12 (1.8%)

(++) 3 (1.6%) vs. 5 (0.9%) 0 (0%) vs. 8 (1.2%)

(+++) 0 (0%) vs. 2 (0.4%) 0 (0%) vs. 2 (0.3%)

(++++) 0 (0%) vs. 1 (0.2%) 0 (0%) vs. 1 (0.2%)

Urine ketone negative 171 (94.0%) vs. 490 (88.9%)* 69 (97.2%) vs. 593 (89.6%)*

(±) 4 (2.2%) vs. 20 (3.6%) 0 (0%) vs. 24 (3.6%)

(+) 2 (1.1%) vs. 6 (1.1%) 1 (1.4%) vs. 6 (0.9%)

(++) 3 (1.6%) vs. 20 (3.6%) 1 (1.4%) vs. 22 (3.3%)

(+++) 2 (1.1%) vs. 9 (1.6%) 0 (0%) vs. 11 (1.7%)

(++++) 0 (0%) vs. 6 (1.1%) 0 (0%) vs. 6 (1.0%)

Urinary casts 1.7 (0.8–4.4) vs. 1.3 (0.1–3.7)** 2.0 (0.7–5.0) vs. 1.3 (0.1–3.8)

24-h urinary protein (mg) 3,29.2 (1,809.0–9380.0) vs. 1,860.0

(366.0–5,716.3)***

6,330.0 (2,206.9–10,370.0) vs. 2,061.5

(495.5–6,120.0)***

Cholesterol (mmol/L) 7.08± 2.13 vs. 6.70± 2.07* 7.24± 2.36 vs. 6.70± 2.03

* P < 0.05, ** P < 0.01, *** P < 0.001.

three percentage of cases were complicated by pre-gestational

or gestational diabetes.

Adverse maternal outcomes

Firstly, seven imputation strategies were proposed, including

Bayesian Ridge Regression, Extratree, and KNN, when the

value for the “k” nearest neighbor was equal to 2, 3,

5, 7, and 9. According to the results of the accuracy

comparison (Supplementary Figure 1), it can be verified that

the preferred imputation strategy was KNN imputer with nine

neighbors overall, and all the datasets were imputed by this

method consequently. The missing data rate can be seen in

Supplementary Table 1.

Considering 733 women with well-documented pregnancy

outcomes, we first grouped the participants according to adverse

or satisfactory maternal outcomes. The statistical description

and comparison between AMO and CON-AMO groups are

shown in Supplementary Table 2, while variables with statistical

significance are listed in Table 1.

The final target of this study is to compare the predictive

efficiency of both logistic regression models and machine

learning models in the field of pregnancy outcomes involving

preeclampsia. Before developing themodels, correlation analysis

and feature selection of variables were performed. In Figure 3A,

the generated heat map indicates the correlation relationship

between variables. The sequence of variables along both the

X and Y axes is identical to the sequence of variables in

Supplementary Table 1. After removing dependent variables,

independent variables were applied to DT models, and

the AUC values of ROC were calculated and listed in

Supplementary Table 3. The top 15 variables with higher AUC

values are listed in Table 2 and Figure 3B.

After correlation analysis and feature selection, four

variables (triglyceride, AUC = 0.72; urine erythrocytes count,

AUC = 0.67; fasting blood-glucose, AUC = 0.66; and serum

potassium, AUC = 0.66) demonstrated influential contribution

on adverse maternal outcomes which declared no statistical

significance between groups (Table 1; Figure 3B).

Different predictive models were developed from both

imputed training datasets and training datasets without

imputation. The AUC values were calculated to compare the

discrimination efficiency when models were applied to testing

datasets. The best-performing model referring to imputed

datasets was SVM, with an AUC of 0.976; the sensitivity,

specificity, positive predictive value (PPV), and negative

predictive value (NPV) of SVM were 92.3, 92.3, 83.3, and 96.6%,
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FIGURE 3

(A) The generated heat map according to correlation analysis to screen independent variables for adverse events; (B) feature selection of Top 15

adverse outcomes predictive variables according to the value of AUC calculated by DT algorithm; (C) the ROC-AUC values of machine learning

and logistic regression predictive models developed from the imputed dataset; (D) the AUC values of models developed from the dataset

without imputation; (E) the calibration curve generated from the models developed from imputed dataset.
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TABLE 2 Feature selection of TOP 15 adverse outcomes predictive variables according to the value of AUC calculated by DT algorithm.

Ranking Maternal adverse outcome Placenta abruption Neonatal adverse outcomes Low birth weight

Predictive variables AUC Predictive variables AUC Predictive variables AUC Predictive variables AUC

1 24-h urinary Protein 0.87 24-h urinary protein 0.86 Birth weight of neonates 0.90 24-h urinary protein 0.83

2 Serum phosphorus 0.75 Serum phosphorus 0.80 Triglyceride 0.86 Admitted to NICU 0.77

3 Urinary casts 0.75 Urinary casts 0.78 Urinary casts 0.83 Urine erythrocytes count 0.75

4 Cholesterol 0.74 Early-onset type 0.78 Early-onset type 0.83 Creatinine clearance rate 0.75

5 Triglyceride 0.72 Urine leukocytes count 0.77 24-h urinary Protein 0.82 Hemoglobin 0.74

6 Random urine protein 0.71 Hemoglobin 0.75 Cholesterol 0.82 Gestational age 0.73

7 Uric acid 0.71 Creatinine clearance rate 0.75 Urine erythrocytes count 0.78 Triglyceride 0.73

8 Early-onset type 0.69 Urine erythrocytes count 0.73 Neutrophil 0.77 Fbg 0.71

9 Creatinine clearance rate 0.69 Serum calcium 0.73 Creatinine clearance rate 0.76 Urinary casts 0.70

10 Apgar score (1min) 0.68 Admitted to NICU 0.72 Albumin 0.73 Cholesterol 0.69

11 Leukocyte 0.68 Neutrophil 0.71 Apgar score (1min) 0.72 Urine leukocytes count 0.69

12 Urine erythrocytes count 0.67 Random urine protein 0.69 APTT 0.72 APTT 0.68

13 Maternal hypoproteinemia 0.67 Triglyceride 0.69 Amniotic fluid index 0.71 Neutrophil 0.68

14 Fasting blood glucose 0.66 Cholesterol 0.69 Random urine protein 0.70 Early-onset type 0.68

15 Serum potassium 0.66 Fasting blood glucose 0.68 Serum phosphorus 0.70 ALT 0.67

TABLE 3 The AUC, sensitivity, specificity, PPV, and NPV of di�erent predictive models for adverse maternal outcomes.

With imputation Without imputation

Adverse maternal outcomes AUC SEN SPE PPV NPV AUC SEN SPE PPV NPV

K-Nearest neighbor 0.911 0.708 0.968 0.902 0.888 0.894 0.698 0.988 0.949 0.912

Decision tree classifier 0.908 0.846 0.968 0.917 0.938 0.911 0.830 0.994 0.978 0.949

Random forest classifier 0.963 0.138 0.994 0.900 0.733 0.952 0.189 1.000 1.000 0.795

Support vector machine 0.976 0.923 0.923 0.833 0.966 0.973 0.849 0.988 0.957 0.954

Multi-layer perceptron 0.973 0.923 0.923 0.833 0.966 0.974 0.849 0.988 0.957 0.954

Linear discriminant analysis 0.961 0.831 0.987 0.964 0.933 0.944 0.830 0.988 0.957 0.948

Logistic regression 0.958 0.831 0.987 0.964 0.933 0.943 0.830 0.988 0.957 0.948

Placental abruption

K-nearest neighbor 0.730 0.222 0.941 0.250 0.931 0.660 0.158 0.975 0.375 0.925

Decision tree classifier 0.594 0.222 0.906 0.174 0.929 0.555 0.105 0.896 0.087 0.914

Random forest classifier 0.795 0.000 1.000 0.000 0.918 0.789 0.000 1.000 0.000 0.914

Support vector machine 0.765 0.056 1.000 1.000 0.922 0.621 0.000 1.000 0.000 0.914

Multi-layer perceptron 0.815 0.056 1.000 1.000 0.922 0.772 0.050 1.000 1.000 0.914

Linear discriminant analysis 0.752 0.167 0.970 0.333 0.929 0.785 0.000 0.990 0.000 0.913

Logistic regression 0.764 0.167 0.970 0.333 0.929 0.779 0.000 0.990 0.000 0.913

AUC, area under the receiver operating characteristic curve; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value.

“With imputation” indicates the predictive models developed from the imputed training dataset, while “Without imputation” indicates the models developed from the training dataset

without imputation. The AUC values shown in bold indicate the best performed machine learning algorithm.

respectively. The confusing matrices of different predictive

models are listed in Supplementary Table 4. However, MLP

ranked second (AUC= 0.973), as seen in Table 3 and Figure 3C.

As to the models developed from datasets without imputations,

the results were similar to those above, with MLP ranked

first (AUC = 0.974) and SVM ranked second (AUC = 0.973;

Figure 3D).

Not only did we prioritize discrimination skills, but we

were also concerned with accurate probability judgment.

According to the calibration curve in Figure 3E and

Supplementary Figure 2A, whether the dataset was imputed or

not, logistic regression was the recommended

model for better probability estimation, as well as

RF classifier.
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FIGURE 4

(A) The generated heat map according to correlation analysis to screen independent variables for adverse events; (B) feature selection of Top 15

adverse outcomes predictive variables according to the value of AUC calculated by DT algorithm; (C) the ROC-AUC values of machine learning

and logistic regression predictive models developed from the imputed dataset; (D) the AUC values of models developed from the dataset

without imputation; (E) the calibration curve generated from the models developed from imputed dataset. Referring to the adverse outcome of

placental abruption.
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TABLE 4 The AUC, sensitivity, specificity, PPV, and NPV of di�erent predictive models for adverse neonatal outcomes.

With imputation Without imputation

Adverse neonatal outcomes AUC SEN SPE PPV NPV AUC SEN SPE PPV NPV

K-nearest neighbor 0.900 0.845 0.857 0.893 0.796 0.832 0.762 0.777 0.821 0.709

Decision tree classifier 0.916 0.953 0.879 0.918 0.930 0.895 0.929 0.862 0.900 0.900

Random forest classifier 0.967 0.938 0.879 0.917 0.909 0.959 0.929 0.883 0.914 0.902

Support Vector Machine 0.957 0.922 0.868 0.908 0.888 0.928 0.952 0.851 0.896 0.930

Multi-Layer Perceptron 0.967 0.922 0.868 0.908 0.888 0.935 0.952 0.851 0.896 0.930

Linear Discriminant Analysis 0.955 0.907 0.879 0.914 0.870 0.915 0.873 0.862 0.894 0.835

Logistic regression 0.957 0.907 0.879 0.914 0.870 0.935 0.873 0.862 0.894 0.835

Low birth weight

K-Nearest Neighbor 0.793 0.590 0.852 0.687 0.791 0.782 0.628 0.831 0.671 0.803

Decision tree classifier 0.862 0.705 0.901 0.797 0.848 0.904 0.808 0.915 0.840 0.897

Random forest classifier 0.893 0.423 0.937 0.786 0.747 0.866 0.551 0.873 0.705 0.780

Support Vector Machine 0.919 0.718 0.908 0.812 0.854 0.879 0.705 0.789 0.647 0.830

Multi-Layer Perceptron 0.914 0.718 0.908 0.812 0.854 0.869 0.705 0.789 0.647 0.830

Linear Discriminant Analysis 0.918 0.782 0.873 0.772 0.879 0.861 0.667 0.838 0.693 0.821

Logistic regression 0.925 0.782 0.873 0.772 0.879 0.857 0.667 0.838 0.693 0.821

The AUC values shown in bold indicate the best performed machine learning algorithm.

Placental abruption, which is a more specific adverse

maternal outcome indicating a severe emergency, was applied as

a criterion for further grouping to explore more information. As

described in Table 1 and Supplementary Table 5, twenty seven

variables demonstrated statistical differences between PA and

CON-PA, while another seven variables (serum phosphorus,

urinary casts, urine leukocytes count, hemoglobin, urine

erythrocytes count, triglyceride, and cholesterol) were selected as

more predictive contributors depending on the feature selection

process (Table 2; Figure 4B).

All predictive models for PA present lower levels of AUC

values, ranging from 0.555 to 0.815, and MLP performed best

under the imputed situation. The sensitivity, specificity, PPV,

and NPV were 5.6, 100.0, 100.0, and 92.2%, respectively, in

Table 3 and Figure 4C, while RF developed from the dataset

without imputation demonstrated the best discriminative ability

(Figure 4D). However, no model developed from this dataset

with a skew distribution achieved satisfying calibration ability

(Figure 4E; Supplementary Figure 2B).

Adverse neonatal outcomes

Referring to adverse neonatal outcomes, we observed that an

amniotic fluid index is a characteristic variable involving adverse

outcomes compared to adverse maternal outcomes (Table 4;

Supplementary Table 6). Under the same workflow mentioned

above, triglyceride and APTT are the missing informative

items neglected by statistical analysis while responding during

preprocessing steps beforemodel construction, as seen in Table 2

and Figure 5B.

RF (sensitivity: 93.8%, specificity: 87.9%, PPV: 91.7%,

NPV: 90.9%), and MLP were the top two discriminative

models when the dataset was imputed, with AUC values of

0.967 (Table 4; Figure 5C); meanwhile, RF was also the best

model for discrimination as to the dataset without imputation

(Figure 5D). The qualitative results obtained from calibration

curves revealed that the DT demonstrated optimal calibration,

whether imputation happened or not, which can be seen in

Figure 5E and Supplementary Figure 2C.

With respect to instances of low birth weight neonates, LBW

and CON-LBW were grouped to explore more information

under our current data processing procedures, similarly to the

grouping idea of placental abruption. The interesting male

advantage, that male neonates have lower rates of low birth

weight, was established when gender differences were analyzed

with statistical significance between the two groups, as listed in

Table 5 and Supplementary Table 7. APTT is the only variable

excluded by the statistical method and included in the TOP

15 contributing factors screened by feature selection (Table 2;

Figure 6B).

The identified best discriminative model for an imputed

dataset is the Logistic Regression model, reporting an AUC of

0.925. The sensitivity, specificity, PPV, and NPV were 78.2, 87.3,

77.2, and 87.9%, respectively, in Table 4 and Figure 6C; referring

to the dataset without imputation, DTwas the best one, as shown

in Figure 6D. RF is the best calibration model for an imputed

dataset, while DT performed best relating to the dataset without

imputation (Figure 6E; Supplementary Figure 2D).
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FIGURE 5

(A) The generated heat map according to correlation analysis to screen independent variables for adverse events; (B) feature selection of Top 15

adverse outcomes predictive variables according to the value of AUC calculated by DT algorithm; (C) the ROC-AUC values of machine learning

and logistic regression predictive models developed from the imputed dataset; (D) the AUC values of models developed from the dataset without

imputation; (E) the calibration curve generated from the models developed from imputed dataset. Referring to an adverse neonatal outcome.
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TABLE 5 Variables with statistical significance between adverse neonatal outcomes group and control group.

Variables Adverse neonatal outcomes Low birth weight

ANO vs. CON-ANO LBW vs. CON-LBW

Demography

Gravidity 2 (1–3) vs. 2 (1–2)** 2 (1–3) vs. 2 (1–3)

Parity 0 (0–1) vs. 0 (0–1)** 0 (0–1) vs. 0 (0–1)

Complications

Thyroid disease Yes 48 (11.3%) vs. 15 (4.8%)** 33 (13.0%) vs. 30 (6.3%)**

Twin pregnancy Yes 18 (4.3%) vs. 11 (3.5%) 2 (0.8%) vs. 27 (5.6%)**

Early-onset type Yes 268 (63.4%) vs. 8 (2.6%)*** –

Maternal hypoproteinemia Yes 127 (30.0%) vs. 29 (9.4%)*** 79 (31.2%) vs. 77 (16.0%)***

Thrombocytopenia Yes 53 (12.5%) vs. 7 (2.3%)*** 27 (10.7%) vs. 32 (6.7%)

Impaired liver function Yes 34 (8.0%) vs. 4 (1.3%)*** 16 (6.3%) vs. 21 (4.4%)

Cardiovascular disease Yes 20 (4.7%) vs. 6 (1.9%)* 11 (4.3%) vs. 14 (2.9%)

Renal insufficiency Yes 24 (5.7%) vs. 1 (0.3%)*** 16 (6.3%) vs. 25 (5.2%)

Placental abruption Yes 61 (14.4%) vs. 10 (3.2%)*** 34 (13.4%) vs. 37 (7.7%)*

HELLP syndrome Yes 36 (8.5%) vs. 5 (1.6%)*** 9 (3.6%) vs. 17 (3.5%)

Feature of deliveries

Gestational age (weeks) 32.9± 4.0 vs. 38.3± 1.9*** 34.0 (31.4–36.1) vs. 37.3 (34.9–39.0)***

Delivery mode vaginal delivery 14 (3.3%) vs. 45 (14.5%)*** 7 (2.8%) vs. 52 (10.8%)***

forceps delivery 0 (0%) vs. 3 (1.0%) 0 (0%) vs. 3 (0.6%)

cesarean section 338 (79.9%) vs. 262 (84.5%) 222 (87.7%) vs. 378 (78.8%)

(2nd-trimester) labor

induction

50 (11.8%) vs. 0 (0%) 20 (7.9%) vs. 30 (6.3%)

stillbirth delivery 21 (5.0%) vs. 0 (0%) 4 (1.6%) vs. 17 (3.5%)

Feature of neonates

Gender of neonates Male 188 (44.4%) vs. 152 (49.0%) 102 (40.3%) vs. 238 (49.6%)*

Admitted to NICU Yes – 179 (70.8%) vs. 123 (25.6%)***

Birth weight of neonates (g) 1,736.3± 777.2 vs. 3,247.9± 627.4*** 1,547.8± 501.1 vs. 2814.9± 974.6***

Apgar score (1min) 8 (5–10) vs. 10 (9–10)*** 9 (7–10) vs. 9 (9–10)***

Apgar score (5min) 10 (8–10) vs. 10 (10–10)*** 10 (9–10) vs. 10 (10–10)**

Physical examination

Weight (kg) 79.6± 12.2 vs. 83.8± 15.6*** 78.8± 11.5 vs. 82.9± 14.8***

BMI 29.5± 3.9 vs. 31.1± 5.1*** 29.1± 3.6 vs. 30.7± 4.8***

Systolic pressure (mmHg) 152.8± 25.0 vs. 146.3± 20.4*** 152.6± 23.5 vs. 148.7± 23.2*

Diastolic pressure (mmHg) 98.4± 18.3 vs. 94.8± 14.0** 98.2± 17.3 vs. 96.2± 16.4

Laboratory examination

Leukocyte (× 10(9)/L) 10.58± 3.76 vs. 9.48± 5.36** 9.70 (7.96–11.53) vs. 9.24 (7.48–11.26)

Neutrophil (× 10(9)/L) 63.00 (8.44–74.93) vs. 7.18 (5.52–51.60)*** 59.80(7.96–74.67) vs. 9.28 (5.94–69.74)***

Hemoglobin (g/L) 122.5± 22.4 vs. 118.3± 15.1** 125.4± 20.8 vs. 118.4± 18.6***

Hematokrit (%) 36.9± 6.9 vs. 36.0± 4.8* 37.6± 6.8 vs. 35.9± 5.5***

Platelet (× 10(9)/L) 172.2± 75.0 vs. 197.9± 55.3*** 176.7± 78.0 vs. 186.6± 62.9

PT (s) 10.66± 1.45 vs. 11.83± 7.92** 10.55± 1.56 vs. 11.47± 6.43*

Fbg (g/L) 4.11± 1.42 vs. 4.55± 1.59*** 4.05± 1.52 vs. 4.42± 1.48**

ALT (U/L) 21.0 (16.0–32.0) vs. 14.0 (10.0–20.0)*** 22.0 (16.5–33.0) vs. 17.0 (11.0–23.0)***

AST (U/L) 18.0 (12.0–30.0) vs. 17.0 (12.0–22.1)* 19.0 (13.0–30.0) vs. 17.0 (12.0–24.0)**

Total protein (g/L) 53.13± 7.29 vs. 58.15± 6.24*** 53.27± 6.87 vs. 56.24± 7.28***

Albumin (g/L) 28.62± 4.57 vs. 31.90± 4.19*** 28.79± 4.17 vs. 30.65± 4.84***

Globulin (g/L) 24.56± 5.16 vs. 27.81± 28.53* 24.43± 5.02 vs. 26.69± 23.19

(Continued)
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TABLE 5 (Continued)

Variables Adverse neonatal outcomes Low birth weight

ANO vs. CON-ANO LBW vs. CON-LBW

Urea (mmol/L) 5.43± 3.02 vs. 3.93± 1.38*** 5.47± 2.14 vs. 4.44± 2.71***

Creatinine (µmol/L) 64.90± 22.16 vs. 54.35± 12.29*** 64.35± 19.99 vs. 58.41± 18.66***

Creatinine clearance rate 151.76± 54.15 vs. 185.90± 64.35*** 150.87± 54.68 vs. 175.04± 63.49***

Uric Acid (µmol/L) 407.77± 106.88 vs. 349.90± 89.27*** 419.24± 114.77 vs. 364.08± 91.59***

Serum sodium (mmol/L) 136.17± 9.67 vs. 137.29± 2.76* 136.17± 8.79 vs. 136.91± 6.85

Serum calcium (mmol/L) 2.01± 0.20 vs. 2.07± 0.15*** 2.01± 0.19 vs. 2.05± 0.18**

Serum phosphorus (mmol/L) 1.36± 0.26 vs. 1.26± 0.20*** 1.40± 0.27 vs. 1.28± 0.21***

Urine leukocytes count 22.24 (2.10–65.05) vs. 2.78 (1.00–15.00)*** 21.68 (2.00–54.49) vs. 4.65 (1.00–31.14)***

Urine protein negative 25 (5.9%) vs. 83 (26.8%)*** 20 (7.9%) vs. 88 (18.3%)***

(±) 20 (4.7%) vs. 43 (13.9%) 6 (2.4%) vs. 57 (11.9%)

(+) 53 (12.5%) vs. 72 (23.2%) 33 (13.0%) vs. 92 (19.2%)

(++) 125 (29.6%) vs. 57 (18.4%) 72 (28.5%) vs. 110 (22.9%)

(+++) 152 (35.9%) vs. 42 (13.5%) 91 (36.0%) vs. 103 (21.5%)

(++++) 48 (11.3%) vs. 13 (4.2%) 31 (12.3%) vs. 30 (6.3%)

Urine erythrocytes count 17.79 (6.67–38.92) vs. 1.98 (0.00–11.12)*** 16.68 (4.78–32.25) vs. 6.67 (0.45–23.91)***

Urine ketone negative 389 (92.0%) vs. 270 (87.1%)* 238 (94.1%) vs. 420 (87.5%)**

(±) 13 (3.1%) vs. 12 (3.9%) 5 (2.0%) vs. 20 (4.2%)

(+) 4 (0.9%) vs. 4 (1.3%) 3 (1.2%) vs. 5 (1.0%)

(++) 14 (3.3%) vs. 12 (3.8%) 5 (2.0%) vs. 22 (4.6%)

(+++) 1 (0.2%) vs. 9 (2.9%) 0 (0%) vs. 9 (1.9%)

(++++) 2 (0.5) vs. 3 (0.9%) 2 (0.8%) vs. 4 (0.8%)

Urinary casts 1.97 (0.90–5.12) vs. 0.88 (0.00–2.36)*** 2.15 (0.88–5.38) vs. 1.00 (0.00–2.77)***

24-h urinary protein (mg) 5,520.0 (2,063.8–9,820.0) vs. 675.6

(236.6–1984.5)***

5,064.7 (1,960.2–10,940.0) vs. 1,380.0

(350.0–4,820.4)***

Cholesterol (mmol/L) 7.12± 2.46 vs. 6.37± 1.28*** 7.37± 2.78 vs. 6.47± 1.50***

Triglyceride (mmol/L) 4.57± 2.94 vs. 3.89± 1.32*** 4.62± 3.00 vs. 4.08± 2.01*

Ultrasonic examination

Amniotic fluid index (cm) 5.7± 3.1 vs. 8.3± 3.9*** 5.7± 3.2 vs. 7.3± 3.8***

*P < 0.05, **P < 0.01, ***P < 0.001.

Discussion

Machine learning methods were applied in three procedures

in our research: the imputation of missing values, the feature

selection of variables, and the development of predictive models.

Missing data is an inevitable and challenging issue in our

retrospective study, which may lead to a biased conclusion if

handled inappropriately. The K-nearest neighbors rule is an

effective algorithm to impute missing data (34), although it

should not be the fundamental solution. The reasons for missing

data are probably because (1) the clinical significance of a

series of laboratory indicators was not evidenced sufficiently as

the biomarkers to predict adverse outcomes of preeclampsia.

Therefore, the lack of standard clinical examination procedures

limits clinicians from collecting data according to a unified

scheme; (2) the emergencies of clinical practice prevent

practitioners from collecting required indicators in time. For the

above reasons, more research is still needed to investigate the

relationship between reliable biomarkers and adverse outcomes

persuasively based on big medical data. The development of

efficient predictive models may promote the avoidance of

most emergencies.

The feature selection process, which employs the DT

machine learning model and is evaluated by the AUC of ROC,

provides a novel screening strategy for influential candidate

variables. Some screened variables may be neglected if statistical

significance is the only selection criteria. However, there was

a significantly lower level of AUC values referring to all the

predictive models for placental abruption and unsatisfactory

calibration ability. Indeed, placental abruption is not only
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FIGURE 6

(A) The generated heat map according to correlation analysis to screen independent variables for adverse events; (B) feature selection of Top 15

adverse outcomes predictive variables according to the value of AUC calculated by DT algorithm; (C) the ROC-AUC values of machine learning

and logistic regression predictive models developed from the imputed dataset; (D) the AUC values of models developed from the dataset

without imputation; (E) the calibration curve generated from the models developed from imputed dataset. Referring to the adverse outcome of

low birth weight.
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challenging but also a daunting task for obstetricians. The

variables we collected from a routine prenatal examination

may not be sufficiently influential predictors for this emergency

issue. Seeking for a definite indicator, as well as assessing

the influence of individual variables on the prediction of this

adverse outcome, which depends on the explainable feature

selection techniques, for instance, SHAP (SHapley Additive

exPlanations) (35), probably is a promising research tendency

besides traditional statistics.

The idea of “statistical significance should retire” is not

what we are appealing to. Instead, clinicians would better

abandon the exaggerated criticism about statistics, be alert to the

booming ML domain, realize the relevance between traditional

biostatistics and machine learning algorithms, explore the

characteristics of different strategies and facilitate the combined

benefits for clinical practices. Overall, MLP, RF, and SVM

demonstrated better discriminative ability when the models

were developed from imputed datasets to predict adverse

pregnancy outcomes. In addition, LR was the best discriminator

for low birth weight; while RF, MLP, and DT discriminated

against populations with unsatisfactory outcomes better by

referring to the original datasets with missing values; moreover,

DT, RF, and LR demonstrated more accurate probability

estimation according to the calibration curves regardless of

whether imputation was proposed or not. This research

provided evidence of modeling preference when adverse

pregnancy outcomes were predicted. However, the models are

only preferred depending on the current datasets they were

trained on. A larger number of medical records is still needed

for further evaluation between the LR and ML models.

Although we still cannot reveal the definite reasons for all

the results we achieved (36), it remains a promising direction

for clinical prediction. Predictions with a long time span may

have low accuracy, while the separated short-term predictions

of different events will be combined as a customized predictive

package for individual risk assessment. Limited work has been

done on real-time automated predictive models that could

be embedded in an electronic medical record system. Using

alert thresholds, we observed that the onset of preeclampsia

in a population with high risk in pre-pregnancy or early

pregnancy and the susceptibility of involved women to adverse

outcomes in late pregnancy could all be flagged timely. Beneficial

interventions could be conducted for the well-being of patients

(37). Taken together, this is what we are aiming for.

As mentioned above, validating the reasonable applied range

of statistical and machine learning techniques seems to be a

more appropriate way forward, not relying solely on statistical

significance or overusing machine learning inappropriately.

Medical statistics have come a long way, and combining

statistics and machine learning is a long way to go with the

interdisciplinary cooperative efforts.

Conclusion

Statistical analysis and machine learning are two scientific

domains sharing similar themes, while the modeling procedures

for predictive models developed by the two domains still

demonstrate various characteristics. The influential variables

screened by preprocessing steps did not overlap with those

determined by statistical differences. Moreover, MLP, RF, and

SVM performed better discriminative power for prediction

overall, while DT, RF, and LR yielded better calibration

capability. Future work will focus on accumulating more

evidence about applying different algorithmic predictive models

to structural medical records. The long-term goal is to combine a

series of real-time predictive models as chronological predictive

packages embedded in electronic medical record systems to

alarm the adverse situations automatically and effectively.
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