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ABSTRACT
Hosting symbionts provides many eukaryotes with access to the products of
microbial metabolism that are crucial for host performance. On tropical coral reefs,
many (High Microbial Abundance [HMA]) but not all (Low Microbial Abundance
[LMA]) marine sponges host abundant symbiont communities. Although recent
research has revealed substantial variation in these sponge-microbe associations
(termed holobionts), little is known about the ecological implications of this
diversity. We investigated the expansion of diverse sponge species across isotopic
niche space by calculating niche size (as standard ellipse area [SEAc]) and assessing
the relative placement of common sponge species in bivariate (δ13C and δ15N)
plots. Sponges for this study were collected from the relatively isolated reefs within
the Miskito Cays of Honduras. These reefs support diverse communities of HMA
and LMA species that together span a gradient of photosymbiont abundance, as
revealed by chlorophyll a analysis. HMA sponges occupied unique niche space
compared to LMA species, but the placement of some HMA sponges was driven
by photosymbiont abundance. In addition, photosymbiont abundance explained
a significant portion of the variation in isotope values, suggesting that access to
autotrophic metabolism provided by photosymbionts is an important predictor
in the location of species within isotopic space. Host identity accounted for over
70% of the variation in isotope values within the Miskito Cays and there was
substantial variation in the placement of individual species within isotopic niche
space, suggesting that holobiont metabolic diversity may allow taxonomically diverse
sponge species to utilize unique sources of nutrients within a reef system. This
study provides initial evidence that microbial symbionts allow sponges to expand
into novel physiochemical niche space. This expansion may reduce competitive
interactions within coral reefs and promote diversification of these communities.

Subjects Biodiversity, Ecology, Marine Biology
Keywords Porifera, Stable isotopes, Isotopic niche space, Symbiosis, Microbial symbionts,
Miskito Cays

INTRODUCTION
By expanding the metabolic repertoires of foundational species, symbiotic interactions

represent important processes underlying some of the most biodiverse ecosystems
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worldwide (Moya et al., 2008; Vrijenhoek, 2010). This is exemplified on oligotrophic

coral reefs, where the autotrophic metabolism of microbial symbionts supplements

heterotrophic feeding of reef-building corals (Muscatine & Cernichiari, 1969; Boucher,

James & Keeler, 1982; Muscatine, Porter & Kaplan, 1989; Baker et al., 2013). Interestingly,

although it is well established that severe nutrient limitation has favored the evolution

of these and other host-symbiont units (termed holobionts; Rosenberg et al., 2007;

Zilber-Rosenberg & Rosenberg, 2008), it is becoming increasingly apparent that evolution

has also led to diversification in these interactions across functional groups and host

species (Thacker & Freeman, 2012; DM Baker, 2015, unpublished data).

For instance, while some sponge hosts support abundant and diverse symbiont

communities (termed High Microbial Abundance [HMA]), other sympatric sponge

species only host sparse symbiont communities (termed Low Microbial Abundance

[LMA]) (Webster et al., 2010; Schmitt et al., 2012; Thacker & Freeman, 2012; Gloeckner

et al., 2014). By hosting autotrophic symbionts, many of these HMA species are able to

assimilate both inorganic and organic sources of C and N, whereas LMA sponges may

be restricted to feeding heterotrophically on specific portions of the particulate organic

matter (POM) pool in the water column (Thurber, 2007; Taylor et al., 2007; Maldonado,

Ribes & van Duyl, 2012; Thacker & Freeman, 2012). The placement of sponges into one of

these putative guilds is widespread, but symbiont metabolism is also highly variable across

different HMA species, making such broad generalizations difficult. For instance, Freeman

& Thacker (2011) demonstrated that 3 HMA species each had a unique interaction with

their respective symbiont community and this was ultimately ascribed to the presence or

absence of productive photosymbiont taxa across different sponge species (Freeman et

al., 2013). In addition, with increasing evidence supporting the assimilation of dissolved

organic matter (DOM) (Maldonado, Ribes & van Duyl, 2012; de Goeij et al., 2013), it is

apparent that there is substantial metabolic diversity across sympatric sponge species.

This diversity may allow for the expansion of sponge species across available niche

space within crowded tropical reef environments, potentially relaxing competition and

contributing to the diversification of these communities (Knowlton & Jackson, 1994;

Beinart et al., 2012; Joy, 2013). Unfortunately, our understanding of the relative positions

of diverse sponge species within the available niche space of a reef remains limited. The

relative placement of an organism within a food web has long been assessed using the

stable isotopes of C and N (δ13C and δ15N) (Fry, 2006). Because an organism’s position

in bivariate (δ13C and δ15N) “isotopic space” is directly related to the sources of C and N

assimilated, biochemical processing of these sources, and the habitat where an organism

is found, the relative placement of a consumer in this space has been equated with the

“niche” space it fills within a system (Layman et al., 2007a; Newsome et al., 2007; Layman et

al., 2012). Qualitative assessments of an organism’s niche are possible with δ13C and δ15N

biplots, and these analyses have been widely used to investigate sponge metabolism (Weisz,

2006; Thurber, 2007; Weisz et al., 2007; Mohamed et al., 2008; Freeman & Thacker, 2011;

Van Duyl et al., 2011; Fiore, Baker & Lesser, 2013). Quantitative assessments of niche space

have recently been described and used to study trophic diversity and investigate changes
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in the size and structure of a community or population (Layman et al., 2007a; Layman et

al., 2007b; Layman et al., 2012). Recent analytical methods also provide a means to evaluate

the relative placement of a consumer or guild within isotopic space (Turner, Collyer &

Krabbenhoft, 2010).

We adapted these methods to calculate the niche size and relative placement of HMA

and LMA groups and individual sponge species within isotopic niche space (Turner,

Collyer & Krabbenhoft, 2010; Jackson et al., 2011). Sponges for this study were collected

from 14 sites within the Miskito Cays of Honduras during a May 2013 expedition in this

archipelago (Chollett, Stoyle & Box, 2014). As part of this expedition, sponge communities

were surveyed and sampled to gain an understanding of the diversity of conspicuous,

common sponge species and to assess the status of sponge-microbe symbioses on

these largely undescribed and isolated Caribbean reefs. These reefs are distant from

chronic anthropogenic stressors (Hay, 1984; Chollett, Stoyle & Box, 2014) and thus may

provide a baseline understanding of how diverse sponges fill isotopic niche space in

oligotrophic systems that can be compared to more eutrophic systems throughout the

greater Caribbean. We test the following null hypotheses: (1) niche size is similar between

HMA and LMA groups and across individual sponge species, and (2) HMA and LMA

groups and individual sponge species occupy similar niche space within a reef system.

MATERIALS & METHODS
Study site and collection
The Miskito Cays are an archipelago of 49 small (average 0.59 hectares) islands represent-

ing about 750 km2 of benthic habitat located approximately 300 km east of the Bay Islands

and 70 km off the northeast coast of Honduras (Chollett, Stoyle & Box, 2014). Sponge di-

versity was assessed qualitatively at 14 sites within this region (Table 1; see map in Chollett,

Stoyle & Box, 2014) by recording the presence or absence of apparent, non-cryptic sponge

species. When possible, at least three replicate samples of each common species were col-

lected at a site for δ13C and δ15N values and chlorophyll a (chl a) analyses, along with a car-

boy of water collected at depth for the measurement of δ13C and δ15N values of particulate

organic matter (POM), a potential source of C and N for sponges feeding heterotrophically

(Freeman & Thacker, 2011). Because filtration of water for POM was restricted to the use of

a hand pump, collections for POM were limited to a single carboy at each site.

After each dive, sponge samples were catalogued and, because sponges could not be

frozen for the duration of the expedition, samples were dried for 36 h at 60 ◦C using the

Nesco FD-75A 700 W food dehydrator. Water samples were filtered through a 0.70 µm

GF filter under low pressure generated via a hand pump to obtain POM as in Freeman &

Thacker (2011); filters were wrapped in aluminum foil and dried for 24 h in the dehydrator

as above. These collections were organized and authorized through an agreement between

the Centre for Marine Studies, a Honduran non-governmental organization, and the na-

tional government; the Smithsonian Institution provided technical support. These sponge

species are not listed within the CITES appendices and are not protected within Honduras.
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Table 1 Names and GPS coordinates of 14 sites visited within the Miskito Cays of Honduras.

Site Latitude-N Longitude-W

Vivorillos Site #1 15.837 −83.291

Vivorillos Site #2 15.863 −83.306

Becerros Site #1 15.913 −83.255

Becerros Site #2 15.951 −83.272

Caratasca Site #1 16.024 −83.316

Caratasca Site #2 16.030 −83.319

Cajones Site #1 16.033 −83.094

Cajones Site #2 16.057 −83.100

Cajones Site #3 16.085 −83.143

Cajones Site #4 16.093 −83.173

Media Luna Site #1 15.261 −82.631

Media Luna Site #2 15.186 −82.618

Media Luna Site #3 15.139 −82.582

Media Luna Site #4 15.122 −82.587

δ13C and δ15N and Chlorophyll a analyses
At the Smithsonian Marine Station in Fort Pierce, Florida, USA, sponge samples were

placed in a 60 ◦C oven to remove any residual moisture and ground to a fine powder using

a mortar and pestle. Homogenized sponge tissue was acidified to remove carbonate and

weighed into tared silver capsules for δ13C and δ15N as in Freeman & Thacker (2011).

Sponge and POM samples were analyzed in the Stable Isotope Ratio Mass Spectrometry

laboratory (SIRMS) at the University of Hong Kong via combustion in a Eurovector

EA3028 coupled to a Perspective IRMS (Nu Instruments). Analytical precision was

determined by repeated analysis of an internal acetanilide standard (‘acet 6’; 70% C).

Mean (±SE) precision during analysis was 0.2 ± 0.04 and 0.1 ± 0.01 for δ15N and δ13C,

respectively. To assess photosymbiont abundance (chl a), analyses were carried out on

dried tissue as in Freeman & Thacker (2011) and Freeman et al. (2013).

Data analysis
Isotopic niche area of LMA and HMA groups and individual sponge species was estimated

by calculation of the standard ellipse area (SEAc) using a Bayesian approach based on

multivariate ellipse-based metrics (SIBER [Stable Isotope Bayesian Ellipses in R]; Jackson

et al., 2011). The SEAc contains approximately 40% of the data within a set of bivariate

data and thus represents the core niche area for a population or community (Jackson et

al., 2011; Layman et al., 2012). Unlike previous estimates of niche width (by measuring

the area of a convex hull enclosing all data points [Total Area TA; Layman et al., 2007a]),

SEAc calculations are less susceptible to outlying data points. In addition, estimation

of these ellipses by Bayesian inference allows for robust comparison across sets of data

with different sample sizes. We adapted these methods to first investigate differences in

the size and overlap of the SEAc of LMA and HMA sponges at sites within the Miskito
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Cays. Because our goals using SEAc were to (1) visualize the variation within each of these

well-established guilds of sponges and (2) quantify and compare the core niche areas for

each of these groups, SEAc was calculated for each group from δ13C and δ15N values of

individual sponge samples (Turner & Edwards, 2012). Likewise, to compare the niche area

of individual species, the SEAc of each species was calculated by the dispersion of δ13C and

δ15N values of each species within isotopic space (Jackson et al., 2011). For all analyses,

residuals from General Linear Models were tested for normality and equal variance using

Kolmogorov–Smirnov and Levene’s tests, respectively.

In addition to the calculation of SEAc, we compared the placement of HMA and LMA

groups and individual species in isotopic niche space using methods outlined by Turner,

Collyer & Krabbenhoft (2010). These methods calculate the Euclidean distance between

the centroids (bivariate mean) of guilds or individual species within isotopic space and

use a residual permutation procedure (RPP) and Hotelling T2 test to evaluate whether

this distance is significant (different from zero), thus placing these groups or individual

species in unique isotopic space (Turner, Collyer & Krabbenhoft, 2010). Finally, to quantify

the relative effects of microbial abundance, chlorophyll a concentration, and host species

identity on the placement of samples with the isotopic space of the Miskito Cays, we

calculated isotopic dissimilarity among samples. This was accomplished by creating a

distance matrix from our δ13C and δ15N data and analyzing sample distances using the R

function adonis in the package vegan (Oksanen et al., 2014).

RESULTS
Sponges were sampled at 14 sites spanning over 100 km of the Miskito Cays (Table 1;

Chollett, Stoyle & Box, 2014). We catalogued 25 species of sponges, with substantial

variation in species diversity (Table 2) across sites. Because collections were limited to

single dives at each site and not all species were abundant at each site, replicate individuals

of a species observed were not always collected. For instance, although site ML4 was

extremely diverse, we were only able to collect replicate individuals of five species from

this site. Collections at two of the most diverse sites, Media Luna #s 2 and 3 (ML2 and

ML3), were the most complete (Table 2), so within site comparisons are focused on these

sites. Particulate organic matter (POM) from 6 sites within Miskito Cays had a mean (±SE)

value of 3.7h ± 0.6 and −22.7h ± 0.5 for δ15N and δ13C, respectively, with a range in

δ15N values of 0.9h (Site ML4) to 5.5h (Vivorillos Site 1) and δ13C values of −24.1h
(Site ML2) to −21.2h (Site ML4). We were unable to obtain accurate C and N values of

POM at some sites due to low signal strength resulting from low organic biomass on filters.

Photosymbiont abundance (as measured by chlorophyll a [chl a]) was highly variable

across the 19 most common sponge species collected within this region. Of these species,

10 have been previously categorized as HMA and 8 as LMA (Weisz, 2006; Weisz et al.,

2007; Thacker & Freeman, 2012; Maldonado, Ribes & van Duyl, 2012; Gloeckner et al.,

2014). Although Desmapsamma anchorata has yet to be placed within one of these

groups, because this species is characterized by low chl a concentration and lacks defined

symbionts (Fig. 1; Erwin & Thacker, 2007), it has been included within the LMA group.
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Figure 1 Mean Chlorophyll a (Chl a) concentration (±SE) of 19 common sponge species collected
within the Miskito Cays of Honduras. Sponges are categorized based on their overall microbial abun-
dance into High Microbial Abundance (HMA) and Low Microbial Abundance (LMA) groups (Weisz,
2006; Erwin & Thacker, 2007; Maldonado, Ribes & van Duyl, 2012; Gloeckner et al., 2014). The horizontal
black line represents the cutoff above which sponges are considered to have high chl a (>125 µg of chl a
[g of sponge tissue]−1; Erwin & Thacker, 2007). Abbreviations represent the first letter of the genus name,
followed by the first three letters of the specific epithet.

Six of the 19 species (all of which are HMA species) are considered to have high chl a

concentrations (chl a >125 µg of chl a; as in Erwin & Thacker, 2007), while all of the LMA

species were well below this cutoff. Four of the 10 HMA species had low concentrations of

chl a (Fig. 1; Gloeckner et al., 2014).

Although SIBER analyses showed a 31% overlap of HMA and LMA species within the

isotopic niche space of the Miskito Cays, HMA sponges displayed a broader niche width

(greater SEAc) than LMA sponges (P < 0.0001) (Fig. 2A). We have included the TA metric

(Total Area of convex hulls) in the figures as a reference, but the remaining results and

discussion will focus solely on SEAc as a measure of niche area, which is less sensitive to

variation in sample size than TA based on convex hulls (Fig. 2A; Layman et al., 2007a;

Jackson et al., 2011). Each of these two groups fills unique isotopic niche space within

the Miskito Cays (distance between centroids = 1.45; Hotelling’s T test: T2
= 119.21,

F = 58.85, P < 0.0001) (Fig. 2A). When HMA sponges are further delineated into species

with high (HMA-H) and low (HMA-L) chl a values, the SEAc of HMA-H species is

significantly larger than that of both HMA-L and LMA groups (P < 0.01) (Fig. 2B). In

addition, HMA-H sponges occupied a unique location in isotopic niche space compared

to both HMA-L (57% SEAc overlap; distance between centroids = 1.50; Hotelling’s T test:

T2
= 43.68, F = 21.28, P < 0.001) and LMA sponges (<0.1% SEAc overlap; distance

between centroids = 1.71; Hotelling’s T test: T2
= 177.21, F = 87.38, P < 0.001). Although

the SEAc of the HMA-L species was significantly larger than that of the LMA group

(P = 0.029), LMA and HMA-L species occupied similar isotopic niche space (66.7%

SEAc overlap; distance between centroids = 0.25; Hotelling’s T test: T2
= 1.44, F = 0.70,

P = 0.492) (Fig. 2B). The placement of individual samples within the isotopic space

of the Miskito Cays was significantly impacted by microbial abundance (adonis effect
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Figure 2 Bivariate δ13C and δ15N plot depicting the placement of HMA and LMA (A) and HMA
sponges with high and low chl a concentrations (HMA-H and HMA-L, respectively) and LMA groups
(B) within the isotopic niche space of the Miskito Cays. Standard ellipse areas (SEAc) depicted by solid
lines provide estimates of the niche area of each of these groups using Bayesian inference as in Jackson
et al. (2011). Convex hulls depicting total niche width of each group are shown using dashed lines for
reference Layman et al. (2007a).
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of HMA/LMA: df = 1, F = 62.12, R2
= 0.21, P < 0.01), but was better explained by

modified microbial abundance (adonis effect of HMA-H, HMA-L, and LMA: df = 2,

F = 44.59, R2
= 0.27, P < 0.01). An equal amount of variance in sample placement within

isotopic space was explained by chlorophyll a concentration alone (adonis effect of chl a

concentration (high or low): df = 1, F = 88.57, R2
= 0.27, P < 0.01). In addition, when

chlorophyll a concentration and modified microbial abundance were tested together in the

same equation using adonis, it was apparent that these factors explained the same portion

of the variance, implying that chlorophyll a concentration was the main explanatory factor

for determining sponge placement within isotopic space.

At ML2, the SEAc of HMA species was also significantly larger than that of LMA species

(P < 0.01), there was no overlap in the SEAc of these two groups, and each of these

groups occupied unique niche space (distance between centroids = 1.84; Hotelling’s T

test: T2
= 85.95, F = 40.50, P < 0.0001) (Fig. 3A). Likewise, at site ML3, the SEAc of

HMA species was significantly larger than that of LMA species (0% of the simulated LMA

SEAc were greater than those of HMA holobionts) (Fig. 3B) and each of these two groups

occupied unique isotopic niche space (distance between centroids = 1.39; Hotelling’s

T test: T2
= 24.68, F = 11.55, P < 0.0001). At site ML3, there was substantial (31.7%)

overlap in the SEAc generated by LMA and HMA holobionts. Because collections at ML3

included members of both HMA-H and HMA-L species, we repeated this analysis with the

three groups (HMA-L, HMA-H, and LMA). Although the SEAc of HMA-H and HMA-L

groups were similar in size (P = 0.671), the SEAc of both HMA groups were greater than

that of LMA sponges (P < 0.007). While there was no overlap between HMA-H and either

HMA-L or LMA sponges, these latter two groups overlapped by almost 40% (Fig. 3C).

Each of these 3 groups occupied unique isotopic niche space within ML3 (HMA-H and

HMA-L: distance between centroids = 1.89; Hotelling’s T test: T2
= 23.85, F = 9.69,

P = 0.001; HMA-H and LMA: distance between centroids = 2.55; Hotelling’s T test:

T2
= 58.08, F = 25.81, P < 0.0001; HMA-L and LMA: distance between centroids = 0.71;

Hotelling’s T test: T2
= 7.19, F = 3.15, P = 0.046).

Separate SIBER analysis on each of the 19 sponge species from across all sites within

the Miskito Cays increased our resolution of the dispersion of different holobionts within

isotopic space (Fig. 4). Although pairwise differences in the size of SEAc were widespread,

we limit our discussion of these data, as some but not all species were collected from

disparate sites. Within the isotopic niche space of the Miskito Cays, 4 of the 6 HMA-H

species (Aplysina spp., I. campana, and C. caribensis) were isolated from LMA sponges,

while the other 2 HMA-H species (N. rosariensis and V. rigida) overlapped with one or

more LMA species. Likewise, the HMA-L Agelas spp. overlapped with at least one LMA

sponge, while the HMA-L species E. ferox overlapped with A. cauliformis and was distant

in space from LMA species. The ellipses representing the LMA species were concentrated

in one region of isotopic niche space, with substantial overlap, whereas the SEAc of HMA

species were more widespread (Fig. 4). Host species identity accounted for nearly 75%

of the variation in isotope values across all individuals (adonis effect of species: df = 18,

F = 34.38, R2
= 0.74, P < 0.01).
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Figure 3 Bivariate δ13C and δ15N plot depicting the placement of HMA and LMA sponges within the
isotopic niche space of Media Luna Site #2 (A) and Media Luna Site #3 (B). In addition, (C) depicts the
placement of HMA sponges with high and low chl a concentrations (HMA-H and HMA-L, respectively)
and LMA groups within the isotopic niche space of Media Luna Site #3 (C). As in Fig. 2, standard ellipse
areas (SEAc) are depicted by solid lines and convex hulls are depicted using dashed lines for reference.
Note the difference in the scale of the δ15N axis between (A) and (B) and (C).
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Figure 4 Bivariate δ13C and δ15N plot depicting the placement of 19 sponge species within the
isotopic niche space of the Miskito Cays. As in Fig. 2, solid lines depict standard ellipse areas (SEAc)

and dashed lines depict convex hulls for reference. Species abbreviations are the same as in Fig. 1.

Although there was no significant difference in the size of the SEAc across species within

sites ML2 and ML3 due to limited statistical power in SIBER as a result of low sample

size, there was substantial variation in the placement of each species within isotopic niche

space within these sites (Figs. 5A and 5B). Within ML2, some species were present in

unique niche space (I. campana, C. caribensis, C. fallax, and A. compressa), while other

species shared niche space with at least one other species (the HMA Aplysina spp; the HMA

species V. rigida and the LMA species M. arbuscula and N. erecta; and the LMA species C.

vaginalis and I. birotulata and M. laevis; Fig. 5A). Similar results were observed in the 11

species collected from ML3 (Fig. 5B), where the HMA species A. cauliformis, E. ferox and

I. campana each occupied a unique location within isotopic space at this site, while other

species shared niche space with at least one other species.

DISCUSSION
This study supports the contention that biogeochemical cycling of C and N is highly

variable across sponge species and provides initial evidence that this variation is driven

more by host species identity than by overall symbiont abundance. These reefs within the

Miskito Cays of Honduras support diverse sponge communities that are taxonomically

similar to those of other Caribbean reefs (Dı́az, 2005; Erwin & Thacker, 2007; Chollett,

Stoyle & Box, 2014) and include species hosting both abundant and sparse microbial taxa

(HMA and LMA, respectively; Thacker & Freeman, 2012). In addition, species from this
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Figure 5 Bivariate δ13C and δ15N plot depicting the placement of 12 species within the isotopic niche
space of Media Luna Site #2 (A) and 11 species within the isotopic niche space of Media Luna Site #3
(B). As in Fig. 2, standard ellipse areas (SEAc) are depicted by solid lines and convex hulls are depicted
using dashed lines for reference. Species abbreviations are the same as in Fig. 1. Note the difference in the
scale of the d15N axis between (A) and (B).
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region spanned a striking gradient of photosymbiont abundance (Erwin & Thacker, 2007)

with some, but not all HMA sponges support abundant photosymbiont communities.

Symbionts within HMA species appear to increase holobiont metabolic diversity,

leading to broader niche area (SEAc) than that observed in LMA species (Boucher, James

& Keeler, 1982; Vrijenhoek, 2010). In addition, the separation of HMA and LMA groups

suggests that biogeochemical cycling of C and N is distinct between HMA and LMA species

and that, by hosting abundant symbiont communities, HMA species expand into novel

isotopic niche space (Weisz et al., 2007). Although microbial abundance accounted for a

significant portion of the variance in isotopic values across the Miskito Cays, this variance

was better explained by chlorophyll a concentrations, implying that photosymbiont

metabolism is an important predictor in the placement of species in isotopic space

(Wilkinson, 1983; Stanley, 2006; Venn, Loram & Douglas, 2008). While species lacking

photosymbionts may be largely restricted to heterotrophic feeding to meet their energy

demands, abundant microbial communities within HMA-L sponges may assimilate diverse

sources of DOM (Maldonado, Ribes & van Duyl, 2012) or may utilize chemoautotrophic

pathways to fix nutrients (Taylor et al., 2007). With increasing evidence that sponge cells

can directly assimilate DOM and that many LMA species have moderate OTU richness,

supplemental nutrition via DOM may also occur in some LMA species (de Goeij et al.,

2013; Easson & Thacker, 2014).

Species accounts for a significant (∼74%) portion of the variance in isotope values

within the Miskito Cays, suggesting that biogeochemical C and N cycling is highly variable

across host species. Indeed, the unique placement of individual species within isotopic

niche space may reflect the assimilation of unique sources of C and N or species-specific

biological and chemical processes occurring during the transformation and cycling of

these nutrients within the holobiont (Weisz, 2006; Newsome et al., 2007; Taylor et al., 2007;

Southwell, Popp & Martens, 2008; Fiore et al., 2010; Layman et al., 2012; Fiore, Baker &

Lesser, 2013). For instance, some holobionts may fix and further transform inorganic

sources of C and N (Mohamed et al., 2008; Maldonado, Ribes & van Duyl, 2012; Freeman

et al., 2013), while other holobionts could be utilizing a combination of inorganic and

organic sources or relying solely on local sources of dissolved or particulate organic matter

(Van Duyl et al., 2011; Maldonado, Ribes & van Duyl, 2012; Thacker & Freeman, 2012).

In addition, disparity in the placement of species could be reflective of specialization on

particular size fractions of the pelagic microbial loop (Thurber, 2007) or variation in the

proportional use of diverse DOM sources (coral mucus, phytoplankton, and benthic algae

[including crustose coralline algae-CCAs] Van Duyl et al., 2011). Coupling these analyses

with comprehensive sampling of potential sources of nutrients, feeding experiments with

labeled organic and inorganic sources of C and N, and fatty acid analysis may help to better

elucidate resource use by diverse holobionts in reef systems (Thurber, 2007; Van Duyl et al.,

2011; Maldonado, Ribes & van Duyl, 2012).

The strong effect of host species identity on the placement of individuals within isotopic

space may be driven by a high degree of host-specificity in these interactions. For instance,

a recent study by Easson & Thacker (2014) showed that microbial community diversity
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within 20 HMA and LMA species (including 9 species from the current study) was strongly

influenced by host phylogeny. More importantly, even closely related host species had

strikingly different microbial communities, implying a strong selection for divergent

microbial communities across sympatric sponge species and suggesting a potential role

of microbial symbionts in niche differentiation (Easson & Thacker, 2014). Although we

did not evaluate the microbial community composition in sponges from the Miskito Cays,

additional work directly investigating how microbial community composition (Webster et

al., 2010; Webster & Taylor, 2012; Schmitt et al., 2012) and function (Stat, Morris & Gates,

2008; Thomas et al., 2010; Radax et al., 2012) impact the placement of sponges in isotopic

niche space is certainly warranted.

Coral reefs contain a staggering diversity of potential sources of C and N that are

available to sponges, and our understanding of these sources, how they change across

sites, and their respective isotope values is still being expanded (Freeman & Thacker, 2011;

Maldonado, Ribes & van Duyl, 2012; de Goeij et al., 2013). With so many sources, some

of which may have overlapping isotope values, it is difficult to construct effective and

accurate mixing models, especially with only two isotopes (Layman et al., 2012). Thus,

instead of estimating the relative contribution of nutrient sources to each holobiont, we

used standardized methods to visualize the relative position of diverse holobionts within

the isotopic niche space of oligotrophic reefs, providing an important baseline to which

future research can be compared. For instance, across gradients from pristine to impacted

or tropical to temperate reefs, we might hypothesize that the abundance and diversity of

potential nutrient sources would increase, potentially relaxing holobiont dependence on

symbiont metabolism and resulting in increased overlap in the SEAc of HMA and LMA

groups, as well as of individual species in isotopic niche space (Turner, Collyer & Krabben-

hoft, 2010; Layman et al., 2012). Research using these methods to understand how sponge

communities and individual species respond to environmental gradients is ongoing as

part of the Smithsonian Institution’s Marine Global Earth Observatories (MarineGEO)

initiative. Conducting similar studies in unison with community-based metrics outlined

by Layman et al. (2007a) may also help us understand how dominant functional groups

partition available resources within reef systems and the community-wide response to

environmental change (Layman et al., 2007b).

In conclusion, we show that diverse sponge species fill available isotopic niche space

within oligotrophic reefs and that, by hosting abundant symbiont communities, sponges

are able to expand beyond the isotopic space occupied by LMA species. The placement of

individual sponges within this isotopic space, however, may be driven more by the presence

or absence of particular microbial taxa than by overall symbiont or photosymbiont

abundance (Thacker & Freeman, 2012). We posit that, as these interactions have evolved,

the acquisition and establishment of physiologically unique symbionts may have enabled

some host species to expand into novel physiochemical niches (Moran, 2007; Taylor et al.,

2007; Thacker & Freeman, 2012). Such expansion may support the coexistence of diverse

sponge taxa within crowded reef systems.
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