www.nature.com/scientificreports

scientific reports

W) Check for updates

Critical assessment of coiled-coil
predictions based on protein
structure data

Dominic Simm??, Klas Hatje'3, Stephan Waack? & Martin Kollmar%2*

Coiled-coil regions were among the first protein motifs described structurally and theoretically. The
simplicity of the motif promises that coiled-coil regions can be detected with reasonable accuracy
and precision in any protein sequence. Here, we re-evaluated the most commonly used coiled-coil
prediction tools with respect to the most comprehensive reference data set available, the entire
Protein Data Bank, down to each amino acid and its secondary structure. Apart from the 30-fold
difference in minimum and maximum number of coiled coils predicted the tools strongly vary in
where they predict coiled-coil regions. Accordingly, there is a high number of false predictions and
missed, true coiled-coil regions. The evaluation of the binary classification metrics in comparison with
naive coin-flip models and the calculation of the Matthews correlation coefficient, the most reliable
performance metric for imbalanced data sets, suggests that the tested tools’ performance is close to
random. This implicates that the tools’ predictions have only limited informative value. Coiled-coil
predictions are often used to interpret biochemical data and are part of in-silico functional genome
annotation. Our results indicate that these predictions should be treated very cautiously and need to
be supported and validated by experimental evidence.

Coiled coils consist of two or more a-helices that twist around each other and give rise to a multitude of super-
coiled quaternary structures"*. Coiled-coil regions are characterised by hydrophobic residues at the interface
between the supercoiled a-helices and by charged and polar amino acids at the outside. This pattern is usually
found in heptads (with the amino acids marked as abcdefg) where the hydrophobic residues are located in a
and d positions, but slightly different patterns from hendecad and pentadecad repeats are also observed®~’.
The coordinates of the smallest building block, two closely packing a-helices, can be calculated from paramet-
ric equations®. This might explain why the coiled-coil dimer was likely the first structural element, for which
a sequence—structure—function relationship could be established”!?. Accordingly, one of the first tools for
predicting protein structure was COILS, which allowed the identification of coiled-coil regions from protein
sequences alone'!. Coiled-coil structures are claimed to be better understood than those of any other fold'*"?
and are increasingly used as building blocks in the emerging fields of synthetic biology and de novo protein
design'*18. The most advanced design case so far is likely a coiled coil that can switch between pentameric and
hexameric states upon pH-change". Thus, it seems well possible now to design amino acid sequences forming
coiled-coil structures with dedicated oligomeric states.

The complementary problem of detecting coiled-coil regions in amino acid sequences is considered to have
been solved as well given the deep biochemical understanding of this structural motif. Even if the oligomeric
state is not predicted correctly, it is expected that at least the presence and position of the coiled coil is properly
recognized. Multiple prediction programs have been developed using different approaches. COILS' and its suc-
cessor NCOILS (COILS2.2)*° match sequences against a fixed length position-specific scoring matrix derived
from frequencies at heptad positions. PairCoil*! and MultiCoil** expand this concept by adding pairwise residue
correlations to the matrix. PairCoil2 is similar to PairCoil but trained with more coiled-coil sequences?. Using a
different approach, Marcoil calculates posterior probabilities from a windowless hidden Markov model (HMM)*.
MultiCoil2 is an advancement to MultiCoil and combines the pairwise correlations with a HMM into a Markov
Random Field*. SOSUIcoil uses a unique concept by discriminating coiled-coil regions from other types of
regions applying the canonical discriminant analysis®*. PCOILS? is an alternative to NCOILS substituting the

1Group Systems Biology of Motor Proteins, Department of NMR-Based Structural Biology, Max-Planck-Institute
for Biophysical Chemistry, Géttingen, Germany. 2Theoretical Computer Science and Algorithmic Methods,
Institute of Computer Science, Georg-August-University Géttingen, Géttingen, Germany. 3Present address: Roche
Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel,
F. Hoffmann-La Roche Ltd., Basel, Switzerland. **email: mako@nmr.mpibpc.mpg.de

Scientific Reports |

(2021) 11:12439 | https://doi.org/10.1038/s41598-021-91886-w natureportfolio


http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-91886-w&domain=pdf

www.nature.com/scientificreports/

sequence-profile comparison with a profile-profile comparison. The tools CCHMM?* and CCHMM-PROF? also
use HMMs, trained with sequences and profiles, respectively. The latest development, DeepCoil, uses a neural
network-based method®. SpiriCoil does not really predict coiled-coil regions, but scores query sequences against
protein profiles of the SUPERFAMILY database, which is thought to represent all proteins of known structure®,
and passes SUPERFAMILY’s coiled-coil assignments to the new sequence®?. Some tools can also predict oligo-
meric states of coiled coils, such as LOGICOIL, PrOColil, Scorer, and RFCoil, but predicting the oligomeric state is
still error prone because of the low number of available protein structures with complex coiled-coil arrangements
for training the algorithms*~. In contrast to these many coiled-coil prediction tools, there is a single software,
termed SOCKET, that detects knobs-into-holes packing in protein structures®.

Given the many available prediction tools, there are multiple studies indicating high sensitivity and specificity
in comparative analyses®>***. The benchmark data used, however, were limited by restriction to a selection of
SCOP protein families containing coiled-coil regions (SCOP = Structural Classification of Proteins database)*®!,
or intersections of SCOP and SOCKET hits. These approaches assessed the sensitivity and specificity against
highly restricted data sets and, therefore, strongly overestimated the proportion of true positive coiled-coil
predictions. These results do not allow to even estimate the number of false negative cases (no prediction where
a coiled coil is present) and false positive predictions (prediction of a coiled coil where there is none) in a rep-
resentative proteome.

Coiled-coil predictions are part of the standard tool box for in-silico functional genome annotation. In the
most extensive comparative study available today, SpiriCoil was used to predict coiled coils in the proteomes
of more than 1200 sequenced genomes suggesting that 0.33 to 6.53% of a species’ proteins contain at least one
coiled-coil region®. A proteome-wide prediction with NCOILS suggested similar proportions*2. Because most of
the proteins predicted to contain coiled coils do not belong to the protein families with known extended coiled-
coil regions such as muscle myosin heavy chain and intermediate filament proteins, we wondered how many
of these proteins really contain true coiled-coil domains. The most promising approach to evaluate coiled-coil
predictions is to compare the predictions with known protein structures. Therefore, we assessed the current
status of coiled-coil prediction accuracy by running most of the available coiled-coil prediction tools against all
sequences, for which protein structures are known: the entire PDB. Each software was used with default param-
eters as recommended by the developers and as commonly done in genome annotation pipelines.

Results
Prediction of coiled coils in protein structures and their sequences. To create a ground truth to
rely on and compare against, we used SOCKET?, the de facto standard to detect coiled-coil regions within PDB
structures. Instead of using SOCKET data generated by the CC + database®, the Periodic Table of Coiled Coils*
or the Atlas of Coiled Coils** we generated our own reference to include the latest PDB release possible and for
easier integration with the other prediction data generated. The number of coiled coils that SOCKET might
miss is expected to be relatively small compared to the size of the PDB. Such cases could be NMR structures
with which SOCKET sometimes has trouble dealing with®?. Within 144,270 PDB files (PDB status 12/2018),
SOCKET detected 59,693 components (27,803 coiled coils) in 10,684 (7.4%) PDB files (Fig. 1A; Supplementary
Table S1). This means that most PDB files with SOCKET hits contain multiple coiled-coil domains, in different
copies of the same biological unit, in different regions of the same protein, or in different proteins if biological
units consist of multiple different proteins. From all PDB files we extracted 187,021 unique sequences, meaning
that exact copies of the same sequence were removed independent of whether they were present in the same or
a different PDB file, while slightly different sequences (e.g. longer N- or C-terminus, insertions) remained. With
respect to these unique 187,021 sequences, there are 14,117 (7.5%) distinct coiled-coil sequences (components)
as found by SOCKET. This occurrence is similar to that of predicted coiled coils in reported analyses of genome
annotations*.

To assess the accuracy of coiled-coil predictions from sequences alone, we compared the SOCKET reference
set with the results from NCOILS (COILS2.2), PairCoil, PairCoil2, MultiCoil, MultiCoil2, and Marcoil. We did
not include SOSUlIcoil because it is not accessible anymore. The tools CCHMM and CCHMM-PROF were also
excluded. A short test for prediction performance of CCHMM-PROF using the globular and coiled-coil free
myosin motor domain resulted in many predicted coiled-coil regions, which are obviously not correct (Sup-
plementary Fig. S1IA). CCHMM-PROF requires protein profiles as input. SpiriCoil is also only available via a
web interface, caused server errors when used, and was therefore excluded. We also refrained from using the
tool PCOILS, the successor of NCOILS, because it runs very slowly and is thus not applicable for the amount of
data to be analysed. The latter problem is likely the reason why NCOILS is the tool commonly used in genome
annotation projects. In addition, PCOILS was found to be less accurate than Marcoil®® and showed the highest
overlap with predictions of intrinsically disordered regions*. We did not include DeepCoil because running of
the software available at the time of performing this analysis (December 2019) was not possible without execu-
tion errors. In addition, DeepCoil is limited to sequence lengths of 500 amino acids, which is only slightly larger
than the median eukaryotic protein length and much shorter than the length of classical coiled-coil contain-
ing proteins such as myosins and kinesins. A test for the prediction performance using a 500 aa region of the
myosin-X motor protein*’ via the DeepCoil web server resulted in mis-prediction of a coiled-coil region at the
first IQ motif, which is a calmodulin binding-site, and mis-prediction of a coiled-coil region, where these class-
10 myosins contain extended SAH (single a-helix) domains*® (Supplementary Fig. 1B). The 500 aa query limit
is removed in DeepCoil2 (v. 2.0.1., 30 Nov 2020), but the available (and maybe not completely finished) version
of DeepCoil2 does not predict any coiled-coil region in mouse MyoX (Supplementary Fig. 1B; in sharp contrast
to DeepCoil “v.17) and no coiled-coil regions in many of the classical coiled-coil proteins such as the muscle and
non-muscle myosin heavy chain proteins (Supplementary Fig. 2). While DeepCoil2 might perform very well
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Figure 1. Coiled-coil regions identified by SOCKET and predicted with the respective tools at the level of
PDB files. (A) Of the 144,270 PDB files 10,684 contain a coiled coil according to SOCKET (P = positives; the
remaining 133,586 PDB files represent the negatives=N). Based on the overlap with these SOCKET hits,

the coiled-coil predictions of the tools were categorized into four classes: true positives (TP = predictions in
same PDB files as SOCKET hits), false positives (FP = predicted coiled coils in PDB files where SOCKET did
not detect any), true negatives (TN =no prediction and no SOCKET hit in PDB files), and false negatives

(FN =no prediction in PDB file in which SOCKET identified a coiled coil). (B) The tools predicted coiled
coils in 1307 (PairCoil) to 37,177 PDB files (NCOILS; left column). The numbers in the matrix denote the
overlap between SOCKET and every tool, and between any two tools, at the level of hits within the same PDB
file (upper part: total numbers; lower triangle: percentage overlap with respect to SOCKET or tool). (C) The
7-way Venn diagram shows the subsets of PDB files with SOCKET hits and predicted coiled coils found by the
respective combinations of tools colored by number in intersection. The intersection of PDB files with coiled
coils predicted by all tools is 714 PDB files, and 1210 PDB files when ignoring PairCoil, the tool with the least
predictions.

on PDB data (it was trained on 90% of all SOCKET hits from the July-2020 version of PDB), DeepCoil2 fails
on the tested non-PDB sequences from myosins. In its current status, DeepCoil2 is not a fair competitor in an
exclusively PDB-based benchmark study.

To best simulate a common functional protein annotation, we used default parameters for each tool as rec-
ommended by the developers, except for setting 21 amino acids as sliding window in all tools for comparability
(21 is default in NCOILS).

Comparing coiled-coil predictions across PDB files. Before investigating the performance of the
coiled-coil prediction tools we wanted to get a first glimpse on whether the tools predict coiled coils in the same
structures or in different structures. This should result in all possible intersections of reference and prediction
tools. Therefore, we analyzed whether coiled coils are found by SOCKET and the prediction tools in sequences of
the same PDB file. For this question, only part of a coiled coil (e.g. only one of the sequences in a heterodimeric
coiled coil) needs to be identified to classify a PDB file as “coiled coil present”. In addition, this approach ignores
whether coiled-coil predictions overlap between tools and the SOCKET reference, and whether sequences con-
tain one or more coiled-coil regions. Accordingly, by this very simplified approach the intersection between
reference and predictions is highly overestimated (the tools look better than there results are). In this scenario,
there are 10,684 PDB files containing at least one coiled coil found by SOCKET. Surprisingly, the various tools
predict coiled coils in strikingly different total numbers of PDB files with PairCoil predicting coiled coils in few-
est (1307) and NCOILS in most PDB files (37,177; Fig. 1B and Supplementary Table S1). 33.1% (PairCoil) to
80.9% (NCOILS) of the tools’ predictions were found in PDB files where SOCKET did not find any hit. SOCKET
hits are exclusive in 3401 PDB files (31.8% of all SOCKET hits).

Ignoring PairCoil, with which by far the fewest coiled coils were predicted, the minimum overlap of PDB
files with coiled-coil predictions from any two tools is 2048 (overlap of MultiCoil2 and PairCoil2 predictions;
Fig. 1B). Although this number suggests considerable overlap of predictions in the same PDB files, the opposite
is found (Fig. 1C, Supplementary Fig. S3). The predictions overlap by only 11.6% (PairCoil) to 66.6% (NCOILS)
with the PDB files containing SOCKET hits (Fig. 1B) indicating that the tools did not predict any coiled-coil
regions in the vast majority of the PDB files where SOCKET identified coiled coils. The intersection of PDB files
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with SOCKET hits and coiled coils predicted by all tools is only 714 PDB files. This number increases to 1210
PDB files if PairCoil, the tool with the fewest predictions, is ignored. All tools predicted coiled coils in 230 PDB
files (648 when ignoring PairCoil) where SOCKET did not identify any, potentially indicating structures outside
SOCKET’s default cut-off and structures difficult to resolve by SOCKET (e.g. some NMR structures). 9399 PDB
files contained coiled coils predicted by at least two tools but did not contain SOCKET hits. This number is
considerably higher than that of SOCKET hits overlapping with at least one of the tools (7283 PDB files). While
almost all PairCoil and Marcoil predictions overlapped with SOCKET hits or predictions of at least one other
tool, PairCoil2, MultiCoil, MultiCoil2, and NCOILS exclusively predicted coiled-coil regions in 41 (0.9% of
PairCoil2 predictions), 887 (6.4%), 24 (0.8%), and 20,682 (55.6%) PDB files, respectively (Fig. 1C). Irrespective
of the individual performance of each coiled-coil prediction tool, these intersection data demonstrate that the
tools predict coiled-coils in very different sequences.

No effect of sequence redundancy on binary classification metrics. To evaluate the performance
of the coiled-coil prediction tools, we analysed their overlap with SOCKET hits. Of the 187,021 unique sequences
in the PDB files, 14,117 contain SOCKET hits, which are defined as positives here. For simplicity, we required a
single amino acid overlap between SOCKET hit and coiled-coil prediction for the prediction to be classified as
“true positive”. Redundancy in the data is only a problem, if it does not apply to all binary classification categories
similarly. Therefore, every filter based on a user-defined criterion, for example selecting proteins whose SCOP
family contains coiled-coils, excluding all-beta-strand proteins, or preferentially selecting coiled-coil containing
proteins from clusters of otherwise similar proteins, would introduce a bias on the data set taking effect on only
the positives or the negatives. Previous comparative analyses used such filters and it has not been investigated
whether these filters influenced the performance metrics (Supplementary Notes). To exclude that sequence
redundancy in the PDB influences coiled-coil tool evaluation we reduced the redundancy of the 187,021 unique
sequences with CD-HIT* applying 90%, 70% and 50% sequence identity cut-offs resulting in 49,311, 39,394 and
30,397 unique sequences, respectively. The drastic reduction by 74% in sequence space from no redundancy to
90% sequence identity nevertheless did not result in considerable changes in the performance of the binary clas-
sification (Fig. 2, Supplementary Table S2). The sensitivity of the prediction tools increased by two to five percent
and the corresponding miss rates decreased by the same numbers. All other metrics are almost identical. Most
notably, there is no change in any of the performance metrics if the sequence redundancy is further decreased
from the 90% to 70% and 50% sequence identity. Although values over 90% for several metrics such as specificity
and accuracy indicate strong performance of the coiled-coil prediction tools (except for NCOILS), a close look
at other metrics demonstrates that the overall performance is instead close to random and might even strongly
misguide interpretation of bioinformatics analyses and biological experiments.

Performance of the coiled-coil prediction tools.  All described performance metrics measure the clas-
sification quality of either of true and false positives and negatives, and all rely on the characteristics of the data
set, i.e. the proportion of positives and negatives. Because the benchmark data set is the entire PDB and all its
unique sequences, the number of negatives is much higher than the number of positives (6.2% positives at 90%
sequence identity, 7.6% at 100% identity). Accordingly, the specificity and accuracy of the tools are very high,
while sensitivity and precision are rather low. It is obvious that the performance of the tools cannot be evaluated
just based on these metrics. In case of imbalanced data, the Matthews Correlation Coefficient (MCC) repre-
sents the best overall measure to evaluate the performance of binary classifiers. The MCC score ranges from —1
(totally wrong classification, or perfect classification of the opposite) to 0 (random classification) to+1 (perfect
classification)*. Here, requiring overlap of only a single amino acid between SOCKET hit and coiled-coil predic-
tion, the MCC indicates random prediction in case of NCOILS (MCC of 0.02) and close to random prediction
for all other tools (MCC of 0.22 for MultiCoil2 being the highest value; Fig. 2). It is important to note that also
the MCCs are independent of sequence redundancy reduction.

While random prediction, by wording, suggests a flipped coin chance to have a coiled coil in a sequence when
tools predict one, there are two other metrics very important for the experimental biologist. The false discovery
rates (FDR), which denote the percentage of false predictions compared to all predictions, show that the actual
percentage of false predictions is considerably higher than random, with 83% for MultiCoil and 91% for NCOILS
(Fig. 2). For the other coiled-coil prediction tools, the chance of having predicted a true coiled coil is slightly bet-
ter than flipping a coin (precision of 36-54%, Fig. 2). For the experimental biologist this means that the chance
is higher that a coiled coil predicted with one of the many available NCOILS web server is in fact not a coiled
coil than the chance that the predicted coiled coil might really be present in the protein. The other important
metric is the miss rate, which denotes the percentage of elements in the reference data that were not predicted.
The analysis shows that the prediction tools missed from 59 to 63% (NCOILS; range across the redundancy
reduced data sets) to 92-93% (PairCoil) of the SOCKET reference coiled coils. For the experimental biologist
this means that chances are considerably higher than flipping a coin that a coiled coil is present in a sequence of
interest where the prediction tools did not predict any.

Performance of the coiled-coil prediction tools compared to naive models. Because values over
90% for some of the performance metrics such as specificity and accuracy indicate good performance we com-
pared these with the results of three naive classification models (Fig. 3). First, we calculated the same metrics
assuming that all sequence is classified as coiled coil. Second, we used a coin flip model where half of the cases
are coiled coils and the others are not. Third, we assumed that we know the proportion of true coiled coils in
the data and randomly predict coiled coils with the same proportion. While the first model assumes an extreme
case and the second would provide a reasonable baseline for a balanced data set, the third model provides a good
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Figure 2. Performance of coiled-coil prediction tools in dependence of PDB sequence redundancy. The performance was analysed

for four data sets with decreasing levels of sequence redundancy. With respect to these data sets, the sequences containing a coiled

coil according to SOCKET are classified as positives while the remaining sequences represent the negatives. Based on the minimum
requirement for overlap with these SOCKET hits (a single amino acid overlap), the coiled-coil predictions of the tools were categorized
into four classes: true positives (TP = predictions overlap SOCKET hits), false positives (FP = predicted coiled coils do not overlap
SOCKET hits), true negatives (TN =no prediction and no SOCKET hit in sequence), and false negatives (FN =no prediction in
sequence region where SOCKET identified a coiled coil). The plots show the performance of the coiled-coil prediction tools based on
commonly used statistical measures. A Matthews correlation coefficient (MCC) of + 1 indicates a perfect prediction, predictions with
MCCs around 0 are no better than random, and a MCC of — 1 represents total disagreement between prediction and reference.
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Figure 3. Performance of coiled-coil prediction tools compared to three naive models.The plots present
statistical measures based on three naive models as described in the legend. The respective performance of the
coiled-coil prediction tools based on the unreduced data is plotted for comparison.

baseline for the coiled-coil prediction tools. Therefore, the base level to estimate the performance of each predic-
tion tool would be the performance obtained if the identical proportion were predicted randomly. Compared to
this naive model, the sensitivity of all prediction tools is slightly, but not considerably better (Fig. 3A). The speci-
ficity is almost exactly identical to the specificity obtained if the same number of coiled coils were predicted ran-
domly (Fig. 3B). The accuracy of Marcoil, MultiCoil2, PairCoil and PairCoil2 is lower than in the naive model,
while that of MultiCoil and NCOILS is slightly higher (Fig. 3C). The precision of the tools is highest for the tools
with the lowest number of predictions (Fig. 3D). The precision of all tools is considerably better than the naive
model, except for NCOILS, which is considerably worse. From all these metrics it is clear that the coiled-coil
prediction tools do not significantly outperform the naive model of predicting the same proportion randomly.

Effect of a length cut-off filter on coiled-coil prediction performance. Because SOCKET might
identify considerably more short coiled coils than prediction tools do, two sequence length cut-offs were applied
and reference SOCKET hits and coiled-coil predictions shorter than 14 amino acids and 21 amino acids were
excluded from each data set (Supplementary Fig. S4, Supplementary Table S2). As discussed above, this is not
a scientific decision based on data that show that short coiled coils do not exist but a subjective decision based
on the observation that coiled-coil prediction tools perform bad in predicting these types of coiled coils. With
respect to reducing redundancy of the PDB sequence space the two cut-offs don’t have any effect. At each cut-off,
the tools show the same performance for the 100, 90, 70 and 50% sequence identity data sets (Supplementary
Fig. S4), indicating again that reducing redundancy is not necessary for evaluating benchmark studies based on
PDB sequence data. However, the prediction tools show increasing performance when applying the 14 and then
the 21 amino acid cut-offs compared to no length cut-off (Supplementary Fig. S4). The sensitivities increase
considerably, and this is the main reason for the increased MCCs, although the values are below 0.4 for all tools
and all cut-offs. The increase in sensitivity is a direct consequence of the cut-offs excluding the short coiled coils
that the tools rarely predict. NCOILS highly overpredicts coiled coils, and therefore shows the highest specificity
and lowest miss rate. The miss rates for the other tools are still above 50% in case of the 14 amino acid cut-off,
and decrease to 34% (MultiCoil) to 71% (PairCoil) for the 21 amino acid cut-off (Supplementary Fig. S4). The
increase in sensitivity comes to the cost of precision, which decreases by 5-17%. Accordingly, the false discovery
rates increase by the same numbers. This analysis demonstrates that sequence redundancy in the PDB does not
matter, but, of course, applying a cut-off or filter on the positives does. The results show the performance of the
tools with respect to predicting long coiled-coils, and not with respect to predicting coiled coils in general.

Extent of structural overlap between coiled-coil predictions and SOCKET hits. In contrast to
simple absence/presence counting, evaluation of overlap is getting more difficult the shorter the regions and
peptide segments are and the more complex the overlapping patterns become. Overlap patterns such as length
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and/or contiguity of the predictions depend on prediction tools and parameters. Therefore, considerable care
must be taken that the scoring scheme for evaluation does not prefer one over the other pattern. For example, the
muscle myosin heavy chain proteins are well known to assemble into homo-dimers based on their long, coiled
coil forming tail domains. Coiled-coil predictions on a human adult skeletal muscle myosin heavy chain protein
sequence result in different sets of coiled-coil regions with different start and end positions, different switches
in the predicted heptad registers, and different predictions of oligomerisation state from dimer and trimer to
tetramer (Supplementary Fig. S5). It is obvious that predictions of long, uninterrupted coiled-coil regions should
be preferred, and that breaks in these very extended coiled-coil regions might be attributed to over- and under-
winding of the twisted a-helices. This is very different in the opposite case, for example a-actinin, which forms
intra-sequence coiled coils by folding into helix-loop-helix segments. There, the prediction of interrupted coiled
coils would be highly preferred over single long, uninterrupted coiled coils. Coiled-coil prediction tools cannot
distinguish between intra-sequence and inter-sequence coiled coils.

A method to evaluate very short patterns is the segment overlap score (SOV) that has been developed to
compare known and predicted secondary structural elements® -, In contrast to a per-residue score, which judges
the percentage of individual overlapping positions, the SOV positively weights contiguous longer overlapping seg-
ments and reduces the influence of considered less significant features such as slightly different segment lengths
and/or positions. In the current version from 1999%%, contiguous segments are rated higher than multiple shorter
segments when compared to a long reference segment even if the total number of positions is considerably lower,
compared to the initial version from 1994°!. However, it is not clear why there is a strong difference in weighting
between the case where the reference consists of multiple segments and the prediction is contiguous and the case
where the reference is contiguous and the predictions are multiple segments, why additional splits in overlapping
segments do not contribute linearly to down weighting (and why they contribute differently with respect to a
contiguous reference or prediction), and why false positives of different features (e.g. a-helix versus B-strand)
are less disfavoured than false positives of no feature. Because coiled coils are intermediate between single large
features and (potentially) multiple short segments, we decided to apply a percentage overlap to each coiled coil.
This approach slightly favors the coiled coil predictions, which are usually longer than the reference because of
the window-based prediction algorithms, and does not average coiled-coil evaluations in case sequences contain
multiple reference coiled coils and/or predictions.

Considering possible tool-dependent bias in determining start and end positions of the predictions we deter-
mined the number of predictions overlapping SOCKET hits in dependence of reference (either SOCKET or
tool) and degree of overlap (Fig. 4, Supplementary Fig. S6, and Supplementary Table S3). At least, each predicted
coiled-coil sequence should overlap with a single amino acid of a SOCKET region. At that minimum level only
19,036 (26.7%) of the 71,393 coiled-coil regions predicted by NCOILS and found by SOCKET in the same PDB
files overlap. This indicates that the majority of the NCOILS predicted coiled coils do not overlap with SOCKET
hits, although SOCKET hits and predicted coiled coils were found in the same PDB file. The percentage of over-
lapping regions (single amino acid criterion) is highest for MultiCoil2 and SOCKET hits (5590 of 8346 regions,
67.0%; Fig. 4 and Supplementary Fig. S6). Taking the prediction tools as reference and requiring overlap of at least
50% of their predicted sequence regions with SOCKET hit regions, only 13.4% (MultiCoil) to 34.0% (PairCoil)
of the tools’ predictions match this criterion. When requiring at least 80% overlap between predicted coiled-
coil and SOCKET hit regions, the fraction of overlapping regions decreases further to 5.4% (NCOILS) to 17.5%
(PairCoil). When taking SOCKET hits as reference, 23.6% (NCOILS) to 65.0% (MultiCoil2) of the predictions
overlap with at least 50% of respective SOCKET hit regions. The percentages of overlapped SOCKET hit regions
only slightly decrease with increasing size of overlap when using SOCKET hits as reference. This shows that
predicted coiled-coil regions are in general considerably longer than SOCKET hit regions and therefore reach
into protein structural regions without knobs-into-holes packing indicative of coiled-coil helix-helix interactions.

Requiring more overlap between reference and prediction decreases prediction perfor-
mance. In the performance analyses shown so far, only a single amino acid overlap was required. By this
minimum requirement, many predictions matching unrelated structural regions were also considered true posi-
tives although they are, by inspecting the structures, in fact false positives. Because SOCKET hits are usually
shorter than coiled-coil predictions, using the SOCKET hits as reference for the comparison of the overlap will
result in better performance metrics for the prediction tools. Accordingly, we increased the required overlap in
steps of 5% for all data sets described before, the four data sets with decreased sequence redundancy and the data
sets with additional coiled-coil length cut-off. With respect to reducing redundancy of the PDB sequence space
changing the required overlap shows a marginally effect on the performance metrics (Supplementary Figs. S7
and S8; Supplementary Table S4). At each overlap proportion, the tools show almost the same performance for
the 100, 90, 70 and 50% sequence identity data sets. However, the performance decreases when increasing the
required overlap (Supplementary Fig. S8).

Patterns of coiled-coil predictions. The heptad pattern characteristic for almost all coiled-coil regions
is found in all SOCKET regions (Fig. 5 and Supplementary Fig. S9). There is a clear preference for leucines in d
positions compared to a positions, and increased propensity for isoleucines and valines in a positions compared
to d positions. There is strong discrimination against glutamates in a positions and lysines and arginines in both
a and d positions. However, there are significantly more leucines in e and g positions than in b, ¢, and f positions,
and there is no discrimination against glutamates in d positions (Fig. 5). SOCKET might also detect knobs-into-
holes packed a-helices buried within e.g. globular structures, which might not be detected by coiled-coil predic-
tion tools. However, the amino acid distributions at heptad positions were almost identical between SOCKET
hits, which overlap regions where tools also predict coiled coils, and SOCKET hits where tools did not identify
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Figure 4. Overlap of coiled-coil predictions with SOCKET hit regions. (A) Schematic drawing of a coiled-coil prediction
overlapping a SOCKET hit. The ratio of overlap between prediction and SOCKET hit is different depending on whether

the prediction or the SOCKET hit is taken as reference. (B) The plot shows the total number of coiled-coil predictions in
dependence of the degree of overlap with the SOCKET hits. The values at the left side indicate the number of PDB sequences
containing both a SOCKET hit and a coiled-coil prediction. For each tool, the number of overlapping hits is counted once
with taking the coiled-coil prediction as reference (solid lines) and once with the SOCKET hits as reference (dashed lines).
(C) This plot is similar to (B) but shows the percentage of overlapping regions with respect to the overlap ratio. The number
of sequences containing both a coiled-coil prediction and a SOCKET hit is set to 100% for each tool. A similar plot with the

number of predictions overlapping a SOCKET hit with at least a single amino acid set to 100% is shown in Supplementary
Fig. 4.
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Figure 5. Amino acid preferences at heptad positions abcdefg. The spider plots show the distribution of amino
acids at each heptad position. Hydrophobic and special amino acids are shown on the left and hydrophobic
and polar amino acids on the right for better orientation. SOCKET not only detects “classical” coiled coils

but interacting a-helices within globular protein structures. To reveal possible differences in the amino

acid distributions among these two groups, SOCKET hits overlapping (shown here) and not overlapping
(Supplementary Fig. S4) coiled-coil predictions were analysed separately. The distribution of hydrophobic and
charged amino acids is slightly less biased in the latter structures. Marcoil predictions show strong bias for
leucine and isoleucine at the interior positions a and d, and for glutamate at all other positions. The heptad
patterns of the other predicted coiled coils show similar distributions. The letters at the axes denote the heptad
register positions. Data values at grid lines refer to amino acid counts at each heptad position over all heptads.
Amino acids with high proportions are shown as filled circles and amino acids with low proportions as unfilled
circles.

any (Fig. 5 and Supplementary Fig. S9). The strongest difference between the two patterns is the slightly lower
preference for leucines and less discrimination against charged residues. This comparison indicates that from
the perspective of amino acid distribution at heptad positions the SOCKET-determined coiled coils in the 3401
PDB files, where the tools did not predict any coiled coil, are not very different from the SOCKET hits overlap-
ping coiled-coil predictions. The patterns of the predicted coiled-coil regions are very similar with respect to
each other and to the SOCKET pattern although more discriminating against glutamates and lysines in a and d
positions (Fig. 5).

The different curve shapes for SOCKET hits overlapping predictions and predictions overlapping SOCKET
hits (Fig. 4) already showed that coiled-coil predictions are longer regions than SOCKET hits. This is supported
by the length distributions of the coiled-coil regions (Fig. 6). Most SOCKET hits are 10 to 19 amino acids long,
while most Marcoil, MultiCoil and NCOILS regions are 20 to 29 amino acids long, and most PairCoil and
PairCoil2 regions are 30 to 39 residues long. MultiCoil2 regions show a very different length distribution with
no specific preference for a certain length. Instead, MultiCoil2 seems to combine consecutive helices, e.g. the
repeat regions of helical bundle forming proteins such as spectrin and a-actinin, into single super-long coiled-
coil regions.

Coiled-coil predictions map to all types of secondary structural elements. The considerably devi-
ating matchings of SOCKET-determined coiled-coil regions and predicted coiled coils with respect to the PDB
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Figure 6. Length of SOCKET hits and coiled-coil predictions. SOCKET hits and coiled-coil predictions were
grouped by length in bins of ten amino acids, and the number of hits/predictions in each bin plotted in percent
with respect to the total number of hits/predictions of the respective tool.

structures prompted us to look at the secondary structural elements of matched regions. As ground truth for the
secondary structure we relied on DSSP (Define Secondary Structure of Proteins)>**>. DSSP assigns secondary
structure elements to amino acids based on hydrogen-bonded and geometrical features extracted from X-ray
coordinates and is the standard tool at the Protein Data Bank (RCSB PDB) for assigning secondary structures.
As expected by SOCKET’s algorithm, which selects a-helical regions assigned by DSSP and uses these to detect
knobs-into-holes packing in the protein structures, 99.994% of the amino acids within SOCKET hits match to
a-helical regions (H in DSSP notation) while the remaining 0.006% match to loops (“blank “; Fig. 7A and Sup-
plementary Table S5). In contrast, 20.8% (Marcoil) to 31.5% (NCOILS) of the regions predicted to be coiled coils
do not fall into a-helices, and considerable parts of MultiCoil (2.6%), MultiCoil2 (2.6%), and NCOILS (5.0%)
predictions match to B-strands (Fig. 7A and Supplementary Table S5). To allow visual inspection of these rather
surprising results and detection of potential mis-assignments or systematic deviations we implemented a web-
interface to the analysis database providing a search interface, a structure viewer, and sequence-based represen-
tations of all predictions in comparison. The web-interface can freely be accessed at https://waggawagga.motor
protein.de/pdbccviewer.

Parallel and antiparallel coiled coils, and oligomeric states. Coiled coils can have parallel and
antiparallel arrangements of the a-helices and take part in many different oligomeric assemblies*. The “clas-
sical” coiled coil is a parallel homodimer, and accordingly the protein training data of the first prediction tools
consisted of parallel homo- and heterodimers such as myosins, tropomyosins, kinesins, and intermediate fila-
ment proteins. In the PDB by far the most detected arrangement is the antiparallel 2-stranded coiled coil (72.1%)
followed by the parallel 2-stranded coiled coil (14.1%; Fig. 7B). NCOILS’ predictions have the largest overlap
with SOCKET hits and thus the most similar distribution of arrangements with SOCKET. PairCoil shows the
strongest bias of all prediction tools for detecting parallel 2-stranded coiled coils. Marcoil, MultiCoil, Multi-
Coil2, and PairCoil2 all have similar distributions with bias towards parallel 2-stranded and 3-stranded coiled
coils (Fig. 7B). These data show that the prediction algorithms do not exclude certain arrangements, be it the
direction or the number of involved a-helices.

The polyglutamine puzzle. It has been suggested that (Q/N)-rich prions and polyQ-expanded proteins
form coiled-coil structures based on the polyQ and neighbouring regions. There are 23 structures now in the
PDB containing stretches of at least six glutamines (Table 1). In only one of these structures, 3PJS, the polyQ
region is the a-helical extension of a tetrameric coiled-coil structure, while in the others these regions do not
take part in any oligomerisation. In 3PJS, the polyQ region is part of an a-helix, but this region does not interact
with any neighbouring region. The polyQ region is therefore not part of a coiled coil but part of a single a-helix
(SAH). In addition, the polyQ region is not present in any natural sequence of this protein class but the result of
multiple mutations to facilitate structural and biochemical analyses. In five structures, the polyQ region is the
C-terminal end and extends as SAH domain into the solvent. In the remaining structures, the first two to four
glutamines succeeding an extended a-helix often extend this a-helix while the remaining glutamines are mostly
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Figure 7. SOCKET hits and coiled-coil predictions matching protein structures. (A) The plots represent the
matching of all SOCKET hits and all coiled-coil predictions with secondary structure elements as determined by
DSSP. The secondary structure assignment for each amino acid was read from the DSSP output, the assignments
summed up for each element, and the distribution of elements determined for each tool in percent. (B) Coiled-
coil predictions on sequence alone are not biased for certain oligomeric states. As reference, the distribution

of oligomeric states as determined by SOCKET is shown, with parallel and antiparallel arrangement of the
a-helices separated. For each coiled-coil prediction tool, only those predictions were selected that overlap at least
50% of a SOCKET hit, and the oligomeric state assignments of the respective matched hits were collected.

flexible and not visible in the crystal structures. Thus, there is no structural support for polyQ-regions forming
coiled coils yet.

In the initial report of (Q/N)-rich and polyQ regions in human proteins forming coiled-coil structures
in vitro, the coiled-coil propensities of these regions were predicted with COILS and PairCoil2¢. However, it
has already been reported in 1995 and was described as major intention to develop a new algorithm, that COILS
predicts coiled coils in homopolymers of charged amino acids*!. This did not change with the second and cur-
rent COILS version, NCOILS. NCOILS predicts coiled coils in homopolymeric polyK, polyE, polyN, and polyQ
peptides, and in polyR and polyA peptides if additional amino acids are inserted somewhere in the homopolymer.
A single leucine within polyR is enough to turn this homopolymer into a “coiled coil”, and for polyA to become
a “coiled coil” two glutamates or a glutamate and a lysine are needed. The latter polyA[+2E/EK] is also predicted
to be a “coiled coil” by Multicoil. Marcoil also predicts “coiled coils” for homopolymeric polyK, polyE, and polyQ
peptides. These predictions can easily be reproduced by the reader using Waggawagga, a webserver for the com-
parative analysis and visualisation of coiled-coil predictions of the most common coiled-coil prediction software
packages®’. Thus, the prediction of coiled coils for such homopolymers is rather an artefact of these software.
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PDB id Poly“X” stretch | Observed structure

1U6F QLQQLQg Turn, bend

2DMS Q, Turn, bend

2NB1, 4A9Z QHQ Helical, SAH

20TU, 20TW Q,,G Turn, bend

1QB3 Q,:HQTQ No structure

3104, 3106, 3I0R, 310T, 310U, 310V, 310W Q, hMelllilCt;}]ﬂe conformations, mainly turn and bend, partially
3PJS QEQ, Helical, SAH

5LTY, 6ES2, 6ES3 Qs Helical, SAH

4FE8, 4FEB, 4FEC, 4FED, 4WTH Q;HQHQHQ,, Helical, turn, -hairpin

1QBK EDGEID, Disordered, turn, helical, SAH
2WGO Dy Disordered

5GAP, 5GAN DIDEVDy Turn, beta-bridge

5GRQ DND Bend, disordered

1APO, IGUW Eq Turn, disordered

1LOL, INTK Eg Helical, SAH

1IMHS EDDEDEDID, E; | Bend, disordered

2MKE, 2MKG, 2RR9 QE, Helical, SAH

IXZE EDE, (I;I_eéiei?i, coiled coil with oppositely charged (multiple K)
2555’631{[12/% 5BK4, 3]C5, 3]C7, 5XF8, SH7L, 5U8S, SUST, Eq Helical, orthogonal to another helix
5A6C NE,D Turn

5E26 Eq Helical, SAH

51Y6, 51Y7, 51Y8, 51Y9, 5IVW DKDE, Turn, disordered

5XIS, 5XIT, 5YDK Eq Helical, SAH

5XTE Eq Helical, SAH

Table 1. Crystal structures of proteins containing stretches of at least six glutamines, aspartates or glutamates.

Inspection of stretches of at least six consecutive aspartates and glutamates in protein structures supports this
conclusion (Table 1). Homopolymers of at least six asparagines are not present in the PDB.

While polyK, polyE, polyQ, and polyN regions might transiently fold into partially a-helical structures, it is
extremely unlikely that these cause specific protein interactions or form coiled coils. Even if such regions formed
an a-helix, the helix surface would be indistinguishable and would lead to uncontrolled aggregation in all direc-
tions. However, organisms with massive homopolymeric regions such as Dictyostelium discoideum® do not
show more protein aggregation than any other species, which in turn suggests that these homopolymeric regions
rather form single a-helices and not aggregates. Therefore, we suggest using the term “coiled coil” exclusively in
the original sense coined by Francis Crick for two or more a-helices in a dedicated structural packing, and not
for any stretch of amino acids that might partially fold into a-helices and aggregate. In this sense, polyK, polyE,
polyQ, and polyN (and polyR and polyA) regions do not form coiled coils.

Discussion

Coiled coils consist of a minimum building block of just an a-helix and can be designed on a drawing board based
on a poly-alanine backbone and subsequently substituting alanines by hydrophobic, charged, and polar amino
acids to obtain structures with certain characteristics, mainly a certain length and topology'*">. The simplicity
in design should, in principle, allow a relatively accurate and precise prediction of these motifs in real-world
sequences. For the evaluation of the performance of coiled-coil predictions in the context of a functional genome
annotation the reference data set should be large and diverse, should contain only a few percent sequences with
coiled-coil regions, and should allow structural verification. To our knowledge the protein structure databank
(PDB) represents the most comprehensive reference data set given the broad sampling of species, protein families
and protein folds. As ground truth and reference we used the coiled coils detected by SOCKET, which identifies
knobs-into-hole packings of a-helices within protein structures. We evaluated the performance of coiled-coil
prediction tools against all unique sequences within the PDB using all common binary classification metrics.
The specificity and accuracy of all prediction tools is very high, which is a natural result from the large propor-
tion of true negatives within the data set. In contrast, the sensitivity and precision are rather low. This is, in part,
due to the lower total numbers of predictions compared to the number of SOCKET hits (however, NCOILS
predicted about four times more coiled coils), but more importantly the result of the large proportion of false
positive predictions (predicted coiled coils where SOCKET did not find any). Coiled coils were predicted in
31,040 PDB files where no SOCKET hits were found, and thousands of coiled coils were detected within PDB
files that do not overlap with SOCKET hits. The structures for which SOCKET might fail explain some dozens
of these predicted coiled coils and even a few hundreds, but not the thousands of false positive predictions. It is
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highly unlikely that SOCKET missed many “classical coiled coils”, which are the supposed primary target of the
prediction tools. Without having inspected all predictions manually, we suspect that it is more likely that most
of these predictions are in fact false positive hits. Very obvious cases of false positive hits include the prediction
of coiled coils in polyQ regions, which are not supported by structural data, and the prediction of coiled-coil
regions in sequences that form B-strands, loops and other non-a-helical structures.

The low sensitivity of the prediction tools comes with a high number of false negatives (SOCKET-detected
coiled coils that were not predicted). In 3401 PDB files coiled coils were exclusively found by SOCKET. At first
instance, the most likely explanation for these cases is that the coiled-coil prediction tools are thought to be
specific for solvent-exposed, left-handed coiled-coil dimers, and are not expected to detect types of coiled-coil
a-helices buried within globular domains or as part of transmembrane structures. And because most coiled-coil
prediction tools were developed before next-generation sequencing boosted sequence databases, the relatively
low number of training data for tool development could have also been limiting in detecting more divergent
coiled-coil types. However, the false negative rates (1—sensitivity; also called miss rate) of the individual tools at
the sequence level are in the range of 63.5% (NCOILS) to 93.4% (PairCoil) indicating that the majority of even
the classical coiled coils are not detected. Our analysis also shows that the amino acid patterns at the heptad
positions of SOCKET hits overlapping and not overlapping with predictions are very similar. This implies that
classical coiled coils and coiled coils within globular structures have similar amino acid distributions suggesting
that most of the SOCKET hits in the 3401 PDB files could have been identified by coiled-coil prediction tools
just as well as those that were detected.

The discussed metrics depend on the proportion of true and false positives and negatives in the benchmark
data set. As discussed, if the fraction of true positives (coiled coils) is low compared to true negatives (no coiled
coil), specificity and accuracy will automatically be high, if only 50% of the predictions are correct (Fig. 1). If the
fraction of true positives is high compared to true negatives, the sensitivity will automatically be high. Fortunately,
there is a metric termed the “Matthews correlation coefficient” (MCC) that is insensitive to the proportion of
true positives (coiled coils) in the data set and that gives a balanced assessment of the performance®. According
to this metric, the performance of the coiled-coil prediction tools at the PDB file level was rather poor (MCCs
between — 0.05 and 0.19 when requiring only the overlap of a single amino acid between SOCKET hits and
coiled-coil predictions) and did not significantly change at the sequence level (MCCs between 0.02 and 0.22).
The MCCs do not considerably increase if the 3401 PDB files with exclusive SOCKET hits are regarded as true
negatives (no coiled coils to be detected by prediction tools) and if the 230 PDB files with coiled coils predicted by
all tools but not detected by SOCKET are regarded as true positives. Requiring only a single amino acid overlap
is a rather weak criterion and balances possible biasing effects from software parameters such as the SOCKET
packing-cutoff and window sizes or cutoffs from prediction tools. When requiring a more realistic overlap of at
least 50% of predictions and SOCKET hits the quality of the prediction tools is no better than random, based
on the MCCs (Supplementary Fig. S8). Independent of whether comparisons and analyses of coiled-coil predic-
tion tools report high sensitivities, specificities, accuracies, and precisions, this analysis of the entire PDB using
the MCC as a balanced measure demonstrates that it is random whether a predicted coiled coil in an unknown
sequence is a coiled coil or not. In fact, the performance of the tools is very similar to a naive model assuming
that the prediction is random but knows and reproduces the proportion of the reference category in the data set.

The finding that coiled-coil prediction tools show low performance when benchmarked with sequences from
heterogeneous protein structures is not completely new. A comparison of SpiriCoil, Marcoil, and PairCoil2
revealed a similar low absolute performance, with SpiriCoil, the supposed best performing coiled-coil prediction
tool in this comparison, displaying a sensitivity of 41.7% and an FDR of 84.6% at the level of sequences®?. In this
comparison, 2.7% of the sequences in the test data contained coiled coils, which is slightly lower than the percent-
age of likely coiled-coil regions in our data set (7.4% of 144,270 PDB files contained SOCKET hits). However,
SpiriCoil just passes the coiled-coil assignment from SUPERFAMILY protein profiles on query sequences based
on global sequence comparisons without ever verifying the presence of a coiled coil. This approach therefore
ignores domain gain, loss, and rearrangement processes, which are very common in eukaryotic genomes. In
contrast, the latest comparison showing good sensitivity and specificity of the prediction tools was based on a
highly biased sequence data set with 63.4% of the 1643 test sequences containing coiled coils, and each of these
sequences containing 2.09 coiled-coil regions on average®. Already an even and random assignment of coiled
coils to sequences of this data set would result in sensitivity and specificity of 79% and 100%, respectively. Because
of the biased benchmark dataset, the implied quality of the coiled-coil prediction tools based on the excellent
values for the metrics is completely misleading. In addition to these general shortcomings in approach and data
set, in both previous studies the precise location of the coiled coils with respect to reference SOCKET hits and
secondary structural elements was not determined.

Given this analysis and the application of the evaluated prediction tools, especially NCOILS, in the functional
annotation of genomes it is highly questionable that many of the proteins with predicted regions really contain
coiled-coil domains. In addition it is highly likely that coiled-coil domains have been missed in many proteins.
Given the broad application of coiled-coil prediction tools, as citation rates suggest, and the high interest in this
structural motif, as publication numbers suggest, we see a high demand for accurate coiled-coil prediction. We
suggest improving the tools’ performance against unbiased and not pre-selected data and to use approaches that
combine sequence profiles and secondary structure assignments, or that discriminate against certain atypical
features. Secondary structure information, for example, was included in WDSP, a pipeline to predict WD40
repeats and domains®®. WD40 repeats have very low sequence homology, are therefore notoriously difficult to
detect, and are usually present in a chain of seven repeats folding into a domain®®®'. In WDSP, protein sequences
are filtered by selecting fragments with p-sheets according to PSIPRED®. Subsequently, WD40 repeats are
detected using a profile generated by aligning repeats by secondary structure elements and not global similar-
ity, and finally WD40 domains are assigned when chains of at least six WD40 repeats are present. As another
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example, Waggawagga uses the discriminative approach to detect stable single a-helices (SAH domains), which
coiled-coil prediction tools mis-predict as coiled coils™%*%4. Waggawagga searches for networks of oppositely
charged residues and discriminates against helix-breaking residues, networks of residues with identical charge,
and networks of hydrophobic residues as found in the hydrophobic seams of coiled coils. Approaches similar to
those used by WDSP and Waggawagga could be implemented to improve coiled-coil predictions. For example,
protein sequence regions could be pre-filtered and/or coiled-coil predictions could be post-filtered by second-
ary structure predictions. A selection filter for potentially coiled-coil domain containing regions could also be
the detection by at least two tools. Training the prediction tools against unbiased data such as the entire PDB
could also improve tools’ performance. The evaluation of multiple tools to predict the pathogenicity of SNPs®
and protein stability®® also demonstrated low performance (low to medium MCCs), but the results stimulated
substantial tool improvement with respect to the benchmark data sets.

In conclusion, at best, the evaluated tools predict coiled-coil regions in well described and well analysed
coiled-coil forming proteins with reasonable accuracy. For predicting coiled coils in large data sets with balanced
proportion of all protein folds, such as present in gene prediction datasets, the tested tools have only limited
applicability. One possibility to reduce the number of false predictions in such functional genome annotations
would be to only accept coiled-coils regions if predicted by multiple prediction tools and to only predict coiled
coils in regions not already covered by other protein domain predictions.

Methods

Benchmark dataset. To benchmark the performance of coiled-coil prediction software as fairly and reli-
ably as possible, we created a copy set of the current state (15/12/2018) of all available 147,073 PDB structures
from the RCSB Protein Data Bank®. The flatfiles were downloaded, stored locally and parsed with BioRuby
v.1.5.1%. Removing nucleotide-only structures and some PDB-files with handling issues reduced the number
of usable structures to 144,270. Main reasons for handling issues were unavailability (moved/renamed/discon-
tinued) at the RCSB servers (761 files), and BioRuby parsing issues with some of the structures in the PDBx
format, some early structures from last century, and structures with non-natural amino-acids. We refrained
from any attempt to manually remove PDB files, which could be part of the training data of some of the tools.
All six tools benchmarked used mainly collections which are known to contain coiled-coil sequences, such as
intermediate filament proteins, muscle myosins, kinesins, tropomyosins, dyneins (for an extended list see?),
and, if at all, only a few sequences derived from the PDB. Given the number of sequences used in this bench-
mark here, the effect of the few PDB sequences already present in the training data of some of the tools should
be marginal. In any case, the performance of the tools might look slightly better in the benchmark than is in
practice. The information from PDB files and all additional data generated were stored in a PostgreSQL database.
To facilitate data handling and analysis of the PDB, DSSP, SOCKET, and coiled-coil prediction information a
relational database scheme was designed, which stores the relevant data for the evaluation with low redundancy
and depicts each data type into its assigned classes (Supplementary Fig. S10). Protein sequences were extracted
from the ATOM records of the PDB files. Identical sequences (from start to end including identity of possible
gaps) were removed independent of whether they were present in the same or different PDB files. This means
that sequences differing by a single amino acid at, for example, the N- or C-terminus because of their presence
in different structures or independent molecules within the asymmetric unit are treated as different sequences.
The remaining sequences break down to 187,776 unique sequences. In order to create a broad, representative
data set, these unique sequences remained unreduced in terms of similarity or other criteria, even very short
sequences were left in the data set. Only the 755 sequences containing amino acids labeled “unknown’, one-letter
code “X”, which are handled very differently by the coiled-coil prediction tools, were removed from the analysis.
The remaining 187,021 sequences were used as reference for all analyses. Accordingly, the secondary structure
for every single amino acid within the reference sequences is known. The overall size of the database for the
current PDB structure data set amounts to 2.9 GB, the flatfiles in combination with the predictions sum up to
around 159 GB in 2.8 million files.

Running coiled-coil software. The SOCKET algorithm detects knobs-into-holes packed a-helices based
on secondary structure assignments from DSSP v.2.0.4 (Define Secondary Structure of Proteins)****, which we
generated according to the software documentation. DSSP only needs specification of an input and an output
file. For the determination of coiled-coil regions SOCKET* was run with the reccommended parameter settings,
especially the packing-cutoff was left at the default 7 A as described in the documentation. The coiled coils were,
according to the database model, split into their superordinate structure and building/participating components,
which contain registers, sequences and position information. To prevent mis-assignment of any amino acid due
to sequence gaps or other unexpected shifts, the register assigned sequence of each SOCKET-determined coiled-
coil component is searched in the respective PDB sequence and a potential offset is added to the component
database entry.

Each coiled-coil prediction software was run with its reccommended default settings and a search window of
21 amino acids, except for Marcoil and MultiCoil2, which are implemented to run without a respective window
setting. Accordingly, quite conservative thresholds were set for coiled-coil selections. For Marcoil a lower limit
0f90.0 (minimum) was chosen (HMM training file 9FAM, with default transition and emission parameters). For
MultiCoil and MultiCoil2, the “CoiledCoil-Threshold” was set to 0.25 (minimum). For NCOILS, the “CoiledCoil-
Threshold” was 0.5 (minimum), and the latest provided MTIDK-matrix was used. For PairCoil and PairCoil2,
the “CoiledCoil-Threshold” was 0.84 (minimum) and 0.025 (maximum), respectively. Because the reference
sequences do not contain the gap information as present in protein structures, coiled-coil prediction tools handle
all sequences as continuous entities. This might affect the length of some predicted coiled coils.
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Data reduction. For generating data sets with reduced sequence redundancy, the PostgreSQL database was
copied three times and the unique sequences were subjected to CD-hit*’ applying 90%, 70% and 50% sequence
identity cut-offs, respectively. Each of the now four databases were copied another two times and region length
cut-offs of 14 and 21 amino acids were applied to the stored reference SOCKET regions and the coiled-coil
predictions.

Determining overlap between assignments and predictions. Assigning SOCKET hits, DSSP
assignments, and coiled-coil predictions globally to PDB files and chains is trivial. However, precisely determin-
ing overlapping regions within sequences is more challenging because amino acid numbering schemes change
with data parsing and gaps in structures. Numbering of amino acids in DSSP features and SOCKET hits follows
the numbering of the amino acids in the structures, which either start with the first amino acid of the protein
construct, the first amino acid of the sequence of interest (excluding any terminal amino acids from protein
expression plasmids), or follow the numbering of the analysed protein with respect to the numbering in the
gene or transcript. The numbering of amino acids in the structures is usually aware of gaps. When extracting
sequences from PDB files all position-wise numbering information including gaps is discarded, only start- and
end-positions in PDB numbering are retained. Sequences themselves are stored plain without any numbering
in the database, meaning a sequential numbering starting with “1” when referred to from other tools. Instead of
fitting the results from the prediction tools to the complex numbering in the structure files, the numbering of the
initial register sequences of the SOCKET hits was shifted to the position-independent numbering as described.
Accordingly, the matching between SOCKET hits and coiled-coil predictions is independent of any peculiarities
in structure numbering and independent of any gaps in the structures. Similarly, the sequences corresponding to
every contiguous DSSP feature in a structure are located in the number-less sequences and the DSSP features are
subsequently numbered according to the matching. A problem with this approach could be that very short DSSP
features (1-3 amino acids), which are surrounded by sequence without feature (“loop”), might match to more
than one position. However, these very short DSSP features are very likely not part of SOCKET hits or coiled-coil
predictions so that the matching of DSSP and SOCKET/coiled-coil prediction is not affected.

Handling difficult cases. There are a few cases which cannot be resolved consistently without introduc-
ing multiple subcategories, which in turn would considerably detract from the main message without adding
additional understanding. One of these problems is handling cases of overlapping SOCKET hits and coiled-coil
prediction when one overlaps multiple of the other. In such cases we treated every overlap independently. For
example, a long coiled-coil prediction could overlap with a SOCKET hit in its N-terminal half and another
SOCKET hit in its C-terminal half. Such cases were treated as two independent overlap instances.

The actual data categories and assigned categories (true and false positives and negatives) for computing the
Matthews correlation coeflicient at the level of PDB files are clearly defined. It is, however, difficult to define the
same categories (true and false positives and negatives) in case of evaluating the cases of overlapping SOCKET
hits and coiled-coil predictions. The problem is that multiple hits were found in many PDB files, and those
hits can be overlapping and non-overlapping. As a rough approximation for an upper bound we computed for
each tool the percentage of overlapping hits within PDB files, and applied this percentage onto the number of
overlapping PDB files. With this approach we rather overestimate the number of true overlapping hits, because
for most tools there are more non-overlapping than overlapping hits in PDB files with both SOCKET hits and
coiled-coil predictions, and the false positive PDB files contain, to some extent, multiple coiled-coil predictions
whose contribution is ignored.

Viewer for coiled coils mapped to PDB structures. For visual inspection of SOCKET hits and coiled-
coil predictions, a simplified search interface to the analysis database and a 3D molecule viewer were integrated
into the coiled-coil project site Waggawagga. Structures can be searched by PDB ID and results are displayed for
each structure on a single page. The result page presents the structure in JSmol, a JavaScript—only version of
Jmol®, for interactive viewing, some general information about the PDB file, and all SOCKET hits and coiled-
coil predictions if found. The SOCKET hits and coiled-coil predictions are shown in the sequence-based and
interactive Waggawagga format®” providing access to all information down to the amino acid level. SOCKET hits
and coiled-coil predictions can be loaded and combined into the JSmol viewer by simple selection. Intersect-
ing regions between SOCKET hits and predictions are marked separately allowing the structure-based visual
inspection of coiled-coil assignment by SOCKET versus prediction tools.

Handling of multimers not present in the PDB files. Having finished the entire benchmarking study
we were made aware by a reviewer comment that we might have missed a substantial part of coiled coils because
we did not include multimers, which are not present in the PDB files. PDB files contain the coordinates of the
molecules present in the asymmetric units. In few cases, a biologically relevant multimer might be present in
the crystal structure, of which only a monomer is present in the asymmetric unit. These multimers can be
reconstructed using the transformation matrices present in the BIOMT part of the PDB files. To reconstruct all
possible multimers we used the tool MakeMultimer.py (http://watcut.uwaterloo.ca/tools/makemultimer/index).
7180 PDB files were missing BIOMT information. 760 PDB files generated a “__main__.PdbError: invalid pdb
code “ error, 675 generated a “list index out of range” error, and 10 generated key or value errors. Subsequently,
DSSP and SOCKET were run on all multimers. DSSP failed on 2081 of the generated multimer PDB files. 875
PDB files were obtained that contain coiled coils that were not present in the initial data set. Of these, 9 are not
based on multimers but the result of various bugs in the SOCKET output that we were not aware of when check-
ing the SOCKET output files of the benchmark data. In contrast, 487 coiled coils are only present in the initial
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dataset and not in the makeMultimer.py generated dataset due to the missing BIOMT data and the error mes-
sages described above. The total number of missed coiled coils is small compared to the number of coiled coils
in the benchmark data, and the coiled coils likely distribute on true positives and false negatives similar to the
benchmark data. A few false positives might turn to true positives, but most of the missed coiled soils (SOCKET)
will add to the false negatives (no coiled coil predicted), thus numbers of the predictions will mainly shift from
true negatives to false negatives. For an example see Supplementary Fig. S11. Given the low number of PDB files
with coiled coils, which were predicted by all tools but are not present in the SOCKET reference dataset (see
Venn diagram in Fig. 1C, only presence in same PDB file was tested but not overlap) the missed coiled coils will
show a similar distribution for true positives and false negatives for each prediction tool as show the coiled coils
in the analysed data set.

Data availability
The data are freely available at figshare https://doi.org/10.6084/m9.figshare.9994706.
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