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NOTCH1 gene amplification promotes expansion
of Cancer Associated Fibroblast populations
in human skin
Atul Katarkar 1,7, Giulia Bottoni 2,3,7, Andrea Clocchiatti2,3, Sandro Goruppi 2,3, Pino Bordignon 1,

Francesca Lazzaroni 1, Ilaria Gregnanin4, Paola Ostano 4, Victor Neel5 & G. Paolo Dotto 1,2,3,6✉

Cancer associated fibroblasts (CAFs) are a key component of the tumor microenvironment.

Genomic alterations in these cells remain a point of contention. We report that CAFs from

skin squamous cell carcinomas (SCCs) display chromosomal alterations, with heterogeneous

NOTCH1 gene amplification and overexpression that also occur, to a lesser extent, in dermal

fibroblasts of apparently unaffected skin. The fraction of the latter cells harboring NOTCH1

amplification is expanded by chronic UVA exposure, to which CAFs are resistant. The

advantage conferred by NOTCH1 amplification and overexpression can be explained by

NOTCH1 ability to block the DNA damage response (DDR) and ensuing growth arrest

through suppression of ATM-FOXO3a association and downstream signaling cascade. In an

orthotopic model of skin SCC, genetic or pharmacological inhibition of NOTCH1 activity

suppresses cancer/stromal cells expansion. Here we show that NOTCH1 gene amplification

and increased expression in CAFs are an attractive target for stroma-focused anti-cancer

intervention.
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Cancer associated fibroblasts (CAFs) are a key component
of the tumor microenvironment and play a central role in
cancer initiation, progression, and metastasis1. In the skin,

conversion of dermal fibroblasts into CAFs can drive the devel-
opment of keratinocyte tumors and field cancerization, a major
clinical condition characterized by multifocal and recurrent epi-
thelial tumors associated with widespread changes of the sur-
rounding stroma2,3. While frequent gene mutations with growth-
promoting function have been found even in apparently normal
epithelium4, whether genetic changes occur also in underlying
stroma remains to be addressed.

Multiple signaling pathways converge onto CAFs activation
through a variety of epigenetic control mechanisms1,5,6. In
addition, several studies have reported chromosome and gene
copy number alterations in CAFs derived from breast, prostate,
colorectal, and ovarian cancer7–9. However, these findings could
not be confirmed by others who raised the issue of technical
artifacts10–12. Besides different methods of analysis and samples,
possible genetic changes in stromal fibroblasts need to be inves-
tigated in the context of different cancer types and stromal cell
heterogeneity13. In this regard, studies on genomic integrity in
skin CAF populations are important to conduct, given the per-
sistent exposure of the skin to exogenous clastogenic agents such
as UVA, which reaches the dermal cell compartment due to its
high penetrating power.

NOTCH signaling is an evolutionary conserved pathway with a
key role in cell proliferation, survival, and differentiation. Upon
NOTCH receptor activation by proteolytic cleavage, the NOTCH
intracellular domain (NICD) translocates into the nucleus where
it binds to CSL (RBP-Jκ), converting it from a repressor into an
activator of transcription14–16. As a result, CSL loss and NOTCH
activation can exert a similarity of effects. This is the case in
dermal fibroblasts, in which down-modulation of CSL expression,
as it can be caused by UVA exposure17, or NOTCH activation, by
ligand-producing neighboring cells, induce an overlapping pro-
gram of CAF-effector genes3.

Both CSL and NOTCH have been shown to display indepen-
dent functions15,18. We have recently unveiled a role of CSL in
human dermal fibroblasts (HDFs) and CAFs, separate from gene
transcription, as an essential component of a telomere binding/
protective complex. CSL loss or down-modulation in HDFs and
CAFs results in DNA damage and genomic instability19. Here we
show that in CAFs the NOTCH1 gene is frequently amplified and
overexpressed, preventing the DNA damage response (DDR)
through ATM association and suppression of downstream sig-
naling. Sustained NOTCH1 expression is required for CAFs
proliferation and expansion and provides a target of translational
significance of stroma-focused anti-cancer intervention.

Results
CAFs display genomic aberrations with frequent NOTCH1
gene amplification and increased expression. We recently found
that stromal fibroblasts associated with premalignant and
malignant skin squamous cell carcinoma (SCC) lesions are
characterized by increased genomic instability19. To assess whe-
ther the latter is associated with chromosomal rearrangements,
we analyzed three independent CAF strains (at 2nd passage after
tumor dissociation) by comparative genomic hybridization arrays
(aCGH). Multiple genomic aberrations were found in CAFs, with
a restricted number of common gene amplifications (Fig. 1a and
Supplementary Data 1). Among the regions with the highest
number of aCGH positive probes was the one encompassing the
NOTCH1 gene, which maps at the end of chromosome 9q
(9q34.3). Amplification of NOTCH1 and two other genes detected
by aCGH (ERCC2 and UVSSA) was further validated by qPCR

analysis, using two other genes with no detectable copy number
variations in the arrays, GAPDH and RPLP0, for normalization
and as negative control, respectively, by the same approach as in
refs. 20,21 (Fig. 1b). Similar NOTCH1 gene amplifications were
also detected by this approach in six additional CAF strains
(Fig. 1c), suggesting the high frequency of the event.

Fluorescent in situ hybridization (FISH) provides a method of
choice for quantification of gene copy number variations (CNVs)
at the individual cell level22. For the present purpose, we used a
fluorescently labeled probe spanning a 200-Kb genomic region of
the NOTCH1 locus together with a second probe for an
independent region of chromosome 9 (9q21.3), where the gene
is located. As shown in Fig. 1d, FISH analysis of the various CAF
strains, mostly at 2nd (CAF 11, 12, 13) or 3rd (CAF 8, 14, 15, 16)
passage after tumor dissociation (except for CAF9 and 10 at
passage 6), showed heterogeneous cell populations, with most
cells harboring increased copies of the NOTCH1 gene (3–5),
which were either separate from each other or juxtaposed on
chromosome 9, as gene duplications (Fig. 1d). Parallel analysis of
matched HDFs (m-HDFs), derived from flanking apparently
unaffected skin of the same patients, showed an inverse pattern,
with the great majority of cells with two NOTCH1 copies and
only a small fraction harboring extra copies, mostly gene
duplications (Fig. 1d). No increase in NOTCH1 copy number
was observed in similarly cultured HDF strains derived from
foreskin (f-HDFs), suggesting that sun-exposed areas can harbor
populations of HDFs with CNVs without displaying a pathologic
phenotype.

To rule out possible artifacts due to culturing conditions, the
analysis was extended to the excised tissue samples from which
the CAF and m-HDF strains studied above were derived.
Fluorescence-guided laser capture micro-dissection (LCM) fol-
lowed by FISH assays showed NOTCH1 gene amplification in the
analyzed CAFs. Similar amplifications were also found in a
restricted fraction of fibroblasts captured from flanking appar-
ently unaffected skin, confirming the findings obtained with
cultured cells (Fig. 2a).

In agreement with the above findings, qPCR analysis of laser-
captured CAFs showed NOTCH1 gene amplification in all
examined samples except one (SCC CAF14; Fig. 2b), in which
significant levels of NOTCH1 gene amplification were detected
only in cultured CAFs (Fig. 1c). Gene amplification is often
connected with increased expression. RT-qPCR analysis of the
same LCM samples showed increased NOTCH1 expression in the
CAFs carrying the amplified gene, with parallel CSL down-
regulation and increased HES1 levels (Fig. 2c), consistent with the
negative regulation of CSL expression by increased NOTCH1
activity demonstrated further below, and the fact that HES1 is a
common target of CSL repression and NOTCH1 activation14.
The results were complemented by similar analysis of freshly
derived CAFs versus matched HDFs from these and additional
three patients’ samples with similar statistically significant results
(Fig. 2d). Immunofluorescence analysis of the cultured CAFs
showed a higher fraction of cells with elevated cleaved nuclear
NOTCH1 (ICN1) levels than in m-HDFs (Fig. 2e). Parallel
immunoblot analysis confirmed increased ICN1 expression in
CAFs relative to matched and foreskin-derived HDFs, used as
outside controls (Fig. 2f and Supplementary Fig. 1b, c).

Thus, CAFs from skin SCCs consist of heterogeneous
populations with NOTCH1 gene amplification and increased
expression, which are also present in a lesser fraction of
fibroblasts of flanking unaffected skin.

NOTCH1 up-regulation ensures sustained CAF effectors gene
expression and proliferation. A complex relationship exists
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between NOTCH1 and CSL activity in HDFs and CAFs. CSL
functions as a constitutive negative repressor of a large battery of
CAF effector genes, which are all induced by decreased CSL
expression as it occurs at early steps of CAF activation3,17,23,24.
Separately from its role in transcription, CSL is essential for
maintenance of genomic stability as part of a telomere protective
complex that is lost in CAFs19. CAF effector genes under negative
CSL control can be induced by increased levels of activated
NOTCH1, which, by binding to CSL, converts it from a repressor
into an activator of transcription3. NOTCH1 activation can also
suppress CSL expression as part of a negative feedback loop
mediated by induction of HES/HEY family of transcriptional
repressors14.

In agreement with previous findings3,19, silencing of the CSL
but not NOTCH1 gene in f-HDFs resulted in up-regulation of a
number of CAF effector genes with a key tumor-promoting
function (Fig. 3a and Supplementary Fig. 2a). Expression of all
these genes was induced, while that of CSL decreased, by
enhanced NOTCH1 activity, by either lentiviral-mediated
expression of ICN1 or ligand stimulation of the endogenous
receptor (Fig. 3b and Supplementary Fig. 2b, d). Conversely,
silencing of NOTCH1 in CAFs caused significant down-
modulation of CAF effector genes, with similar changes elicited
by treatment with a γ-secretase inhibitor (Deshydroxy LY-
411575, DBZ) that suppresses endogenous NOTCH1 activa-
tion (Fig. 3c and Supplementary Fig. 2c). In many cellular
systems, expression of JAGGED ligands is under positive
NOTCH1 control as part of a self-reinforcing positive feedback

loop14. Even in f-HDFs, JAGGED 1 and 2 expression were
induced by increased NOTCH1 activity (Fig. 3b and Supple-
mentary Fig. 2b). In CAFs, JAGGED 1 and 2 expression was
higher than in m-HDFs (Supplementary Fig. 2e) and sup-
pressed by NOTCH1 silencing (Fig. 3c and Supplementary
Fig. 2c).

As expected from previous findings19, knockdown of CSL in
foreskin-derived HDFs resulted in DNA damage and growth
suppression, which were not elicited by NOTCH1 silencing
(Fig. 3d–f). In contrast to f-HDFs and m-HDFs, NOTCH1
silencing suppressed the proliferation of CAFs (Fig. 3g, left
columns), without affecting the elevated levels of DNA
damage resulting from loss of CSL in these cells19 (Supple-
mentary Fig. 2f, g), but inducing downstream events of the
DNA Damage Response (DDR) shown further below. In
contrast to foreskin-derived and matched HDFs, proliferation
of CAFs was unaffected by UVA treatment (Fig. 3g, h), with
inhibition of CAF proliferation by sustained NOTCH1
silencing being further decreased by UVA treatment (Fig. 3i).
NOTCH1 silencing did not increase apoptosis in either HDFs
or CAFs under basal conditions as well as after UVA exposure
at the doses used for these experiments (Supplementary
Fig. 2h).

As HDFs from unaffected skin of SCC patients contain a
population with NOTCH1 gene amplification, we tested
whether these cells have a proliferative advantage under
conditions of persistent DNA damage as can result from
repeated UVA exposure. To test this hypothesis, we established
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Fig. 1 NOTCH1 gene amplification in SCC-derived CAFs. a List of genes commonly amplified in at least 2 out of 3 CAF strains (CAF 8, 9, 10) as identified
by Comparative Genomic Hybridization array (aCGH). For each gene, the chromosomal location, number of positive probes, and number of common
probes are indicated. A complete list of copy number variations (CNVs) identified by aCGH of each CAF strain is provided in Supplementary Data 1.
b Validation of NOTCH1, ERCC2, and UVSSA gene amplifications in the same CAFs as in a, by qPCR analysis of two independent culture experiments
(individual results indicated by dots) of the same strains. GAPDH was used for the internal normalization and RPLP0 was used as negative control. DNA
copies were calculated relative to three foreskin-derived HDF strains (f-HDF) as outside reference following the same approach as in refs. 20,21. Data are
presented as mean ± s.d. One sample t-test, *p < 0.05, **p < 0.01. n(CAF strain)= 3, n(f-HDF strain)= 3. c Quantification of NOTCH1 gene copy number in
six additional CAF strains (CAFs 11-16) from three independent culture experiments of the same strains (individual results indicated by dots). DNA copies
were calculated relative to three foreskin-derived HDF strains (f-HDF) strains as outside reference as in b. Data are presented as mean ± s.d. One sample
t-test, ****p < 0.0001. n(CAF strain)= 6, n(f-HDF strain)= 3. d Representative images and quantification of percentage of cells with NOTCH1 gene copy
number variations in 9 CAF strains as in b and c, their respective m-HDFs and three unmatched f-HDFs from healthy donors as assessed by FISH with a
NOTCH1-specific probe (magenta) in parallel with a probe for chr9 q21.3 localization (green). Gene duplications are defined as multiple proximal NOTCH1
positive dots per chromosome. The number of analyzed nuclei (n) obtained from two independent experiments are shown on top of the corresponding bar.
Overall quantification and statistical significance of percentage of cells with NOTCH1 amplifications in CAFs versus m-HDFs. Scale bar, 50 μm. Values
for each strain are indicated as dots with mean ± s.d. Two-tailed paired t-test between m-HDF and CAF, ****p < 0.0001. n(CAF strains)= 9, n(m-HDF
strains)= 9, n(f-HDF strains)= 3.
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a dose response of γ-H2AX induction, as a marker of DDR, in
three patient-derived m-HDF strains after repeated UVA
treatments (Supplementary Fig. 3a). FISH analysis of the
treated cultures showed that the fraction of m-HDF cells
harboring NOTCH1 gene amplifications doubled upon repeated
UVA exposure (Fig. 4a). Results were validated by qPCR
analysis, showing a dose-dependent increase of NOTCH1 gene
copy number in the UVA-treated versus control cultures
(Fig. 4b). A similar increase of NOTCH1 gene copy number
was found in independent experiments with the same m-HDF
strains upon chronic UVA treatment (Fig. 4c and Supplemen-
tary Fig. 3b). Importantly, similar treatment of multiple
foreskin-derived f-HDF strains resulted in no increased in

NOTCH1 gene copy number, indicating that the increase of
NOTCH1 copies is not a direct consequence of UVA treatment
(Fig. 4c).

The increased percentage of m-HDFs with NOTCH1 gene
amplification in UVA-treated cultures was paralleled by an
increased fraction of cells with nuclear ICN1 expression, while no
such increase was found with similarly treated f-HDFs (Fig. 4d).
In fact, UVA treatment of these cells at the doses used for these
experiments was not sufficient to induce expression of the
NOTCH1 or JAGGED 1 and 2 genes, while causing down-
modulation of CSL (Supplementary Fig. 3c).

Thus, elevated NOTCH1 levels and activity are required for
sustained expression of CAF effector genes and CAF proliferation;

a

R
el

at
iv

e 
co

py
 n

um
be

r

C
el

ls
 (

%
)

d

m-HDF 13

ICN1 α-SMA

CAF 13

ICN1 VIMENTIN DAPI

N
uc

le
ar

 IC
N

1
 in

te
ns

ity
 (

A
U

)

e

f

S
ig

na
l i

nt
en

si
ty

 (
A

U
)

R
el

at
iv

e 
ex

pr
es

si
on

R
el

at
iv

e 
ex

pr
es

si
on

NOTCH1NOTCH1

NOTCH1

CSL HES1

HES1

c

R
el

at
iv

e 
ex

pr
es

si
on

CSL

b

C
el

ls
 s

ho
w

in
g

 N
ot

ch
1 

am
pl

ifi
ca

tio
n 

(%
)

100

PDGFR

50

0

n 
= 

58
n 

= 
58

n 
= 

52
n 

= 
60

n 
= 

62

n 
= 

55

n 
= 

53

2 Copies
3 Copies
4 Copies
5 Copies
Gene
duplication

100 6

4

2

0

80

60

40

20

0

m
-H

DF
CAF

m
-H

DF
CAF

p = 0.0026

p = 0.0181

Patient 11
Patient 13
Patient 16

m
-H

DF
CAF

m
-H

DF
CAF

m
-H

DF
CAF

3

2

1

0

1.5

1.0

0.5

0.0 R
el

at
iv

e 
ex

pr
es

si
on

3

2

1

0

Patient 11

Patient 13
Patient 14

Patient 12

Patient 15
Patient 16

p = 0.001 p = 0.0008 p = 0.001

Patient 11

Patient 13
Patient 14

Patient 12

Patient 15
Patient 16

m
-H

DF1
1

CAF1
1

m
-H

DF1
3

m
-H

DF1
6

CAF1
3

CAF1
6

Patient 8
Patient 9
Patient 10
Patient 11
Patient 12
Patient 13
Patient 14
Patient 15
Patient 16R

el
at

iv
e 

ex
pr

es
si

on

5 1.5

1.0

0.5

0.0

4

3

2

1

0

m
-H

DF
CAF

m
-H

DF
CAF

m
-H

DF
CAF

m
-H

DF1
3

CAF1
3

m
-H

DF1
4

CAF1
4

m
-H

DF1
6

CAF1
6

150

100

50

0

f-
H

D
F

1

MW (kD)

150
100
50
37

50
37

f-
H

D
F

2

f-
H

D
F

3

m
-H

D
F

8

m
-H

D
F

9

C
A

F
8

C
A

F
9

m
-H

D
F

10

C
A

F
10

m
-H

D
F

11

C
A

F
11

m
-H

D
F

12

m
-H

D
F

13

C
A

F
12

C
A

F
13

m
-H

D
F

14

C
A

F
14

m
-H

D
F

15

C
A

F
15

m
-H

D
F

16

C
A

F
16

ICN1

SMA

TUBULIN

2.0

1.5

1.0

0.5

0.0

f-H
DF

m
-H

DF
CAF

f-H
DF

m
-H

DF
CAF

p < 0.0001 p < 0.0001 p < 0.0001

p = 0.0091

p = 0.0003

p = 0.0091

p = 0.0091

p = 0.0091

p = 0.0088

Chr9 DAPI
NNOTCH1

p < 0.0001 p = 0.0006 p < 0.0001

2.378414

R
el

at
iv

e 
ex

pr
es

si
on

12

8

4

0

Fig. 2 NOTCH1 gene amplification and overexpression in CAFs. a Fluorescence-guided laser capture micro-dissection (LCM) followed by FISH analysis of
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immunofluorescence analysis of ICN1 (magenta) coupled with VIMENTIN (green) of m-HDF and CAF strains. ICN1 signal intensity for each individual cell
is indicated by scatter dot plot. Scale bar, 10 μm. >343 cells were counted per sample. Mean ± s.d, two-tailed Mann–Whitney test, ****p < 0.0001. n(CAF
strain)= 3, n(m-HDF strain)= 3. f Immunoblotting with antibodies against ICN1, α-SMA, and γ-TUBULIN of f-HDFs, m-HDFs, and CAFs as in Fig. 1d.
Densitometric quantification of ICN1 protein levels after γ-TUBULIN normalization. Mean ± s.d, two-tailed Mann–Whitney test, **p < 0.0, ***p < 0.001.
n(CAF strain)= 9, n(m-HDF strain)= 9, and n(f-HDF strain)= 3.
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NOTCH1 gene amplification together with other factors not
present in normal foreskin-derived HDFs can contribute to CAFs
response to chronic UVA exposure.

NOTCH1 up-regulation in CAFs blocks the DDR/ATM sig-
naling cascade. As mentioned above, separately from its CSL-
mediated role in transcription, the activated intracellular domain
of NOTCH1 (ICN1) was previously reported to bind to ATM in
cancer cells and to prevent the ATM/P53 phosphorylation cas-
cade25. More specifically, by competitive binding, ICN1 was
previously shown to prevent ATM association with FOXO3A,
thereby impairing ATM phosphorylation of substrates down-
stream of γ-H2AX26. Such a mechanism could also apply to CAFs
and account for their sustained proliferation in spite of their

persistent genomic instability under basal conditions and upon
UVA-induced DNA damage.

Proximity ligation assays (PLAs) showed low association of
NOTCH1-ATM in foreskin and matched HDFs, while multiple
complexes were detectable in CAFs already under basal
conditions (Fig. 5a). NOTCH1 binding to ATM was substantially
reduced and ATM-FOXO3A association was increased in CAFs
by treatment with DBZ (Fig. 5b, c), which suppresses NOTCH1
proteolytic cleavage and activation27 (Supplementary Fig. 4b).
ATM-FOXO3A association was induced by UVA treatment of m-
HDFs irrespectively of whether or not NOTCH1 was silenced
(Fig. 5d). By contrast, ATM-FOXO3A complexes were not
induced in CAFs by UVA exposure unless the treatment was
combined with NOTCH1 silencing, which was by itself sufficient
to induce these complexes in CAFs already under basal
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conditions (Fig. 5d). Conversely, ICN1 expression in multiple
foreskin-derived HDF strains blocked UVA induction of ATM-
FOXO3A complexes (Fig. 5e).

These results were verified by co-immunoprecipitation assays
showing the exclusive association of ATM with ICN1 and not
FOXO3A in multiple CAF strains; strong ATM-FOXO3A
association was found in these cells upon suppression of
NOTCH1 activation by the γ-secretase inhibitor DBZ (Fig. 5f).
Consistent with the above results, immunofluorescence and
immunoblot analysis of multiple CAF strains showed that γ-
H2AX levels were not significantly affected by NOTCH1
silencing, while phosphorylation levels of ATM, CHK2, p53,
and other downstream ATM substrates (as detected by anti-pS/
TQ antibodies), were all strongly induced by NOTCH1 gene
silencing or γ-secretase inhibitor treatment (Fig. 6a–d and

Supplementary Fig. 4a, b). Phosphorylation levels of ATM,
CHK2, p53, and γ-H2AX were only induced in HDFs by UVA
treatment but not NOTCH1 gene silencing (Supplementary
Fig. 4c). On the other hand, ICN1 expression in these cells was
by itself sufficient to suppress phosphorylation of all these
proteins in response to UVA exposure (Fig. 6e).

The findings are of functional significance, as proliferation and
clonogenicity of CAFs was markedly suppressed by NOTCH1
knockdown, with no growth suppressing effects occurring in the
same CAF strains with CRISPR-mediated TP53 gene deletion,
which impairs the ATM/p53 pathway (Fig. 7a, b and Supple-
mentary Fig. 5a, b). Treatment with DBZ and two other γ-
secretase inhibitors (DAPT and RO4929097) mirrored the growth
inhibitory effects of NOTCH1 silencing in various CAF strains
(Fig. 7c, d). The effects were again specific, since treatment with
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DBZ caused no growth suppression of CAFs with TP53 deletion
(Fig. 7c). As predicted from all our other findings, proliferation
and clonogenicity of HDFs was unaffected by either NOTCH1
silencing or inhibition (Fig. 7b, c). The NOTCH inhibitor DBZ
was also without effects on proliferation of skin squamous
carcinoma cells (SCC13; Fig. 7e), as expected by the growth and
tumor suppressing function that NOTCH activation plays in
these cells28. Supporting the ATM-dependency of the effects,
growth inhibition of CAFs by NOTCH1 silencing was also
rescued by treatment with a pharmacological ATM inhibitor at
lower doses than those used to suppress growth of cancer

cells29,30, which by themselves caused little or no effects on
proliferation of these cells (Fig. 7f and Supplementary Fig. 5c).

Thus, suppression of NOTCH1 expression or activity in CAFs
unleashes the DDR/ATM signaling cascade and TP53-dependent
growth suppression.

Loss of NOTCH1 expression impairs cancer/stromal cell
expansion. A defining property of CAFs is to promote pro-
liferation of neighboring cancer cells1,5. We recently developed an
in vitro cancer/stromal cell expansion assay based on the co-
culture in matrigel of fluorescently labeled SCC cells and CAFs23.
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Fig. 5 NOTCH1-ATM and ATM-FOXO3A complex formation in HDFs and CAFs. a Proximity ligation assays (PLAs) with antibodies against ATM and
NOTCH1 of multiple f-HDF, m-HDF, and CAF strains. b, c PLAs of CAF strains plus/minus treatment with DBZ (10 μM) for 5 days with antibodies against
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were used as negative controls. Shown are representative images and quantification of average number of PLA puncta (dots) per cell per strain, counting in
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As shown in Fig. 8, the formation of large clusters of SCC13 cells
was severely reduced in the presence of multiple CAF strains with
NOTCH1 gene silencing, with similar suppressive effects being
elicited by treatment of these cultures with the γ-secretase inhi-
bitor DBZ, which, as shown above (Fig. 7e), causes no direct
growth inhibition of SCC cells.

To validate the above findings in vivo, we resorted to an
orthotopic skin cancer model, based on mouse ear injections of
combinations of cells plus/minus various genetic manipula-
tions3,24. Parallel injections were performed with DsRed-
expressing SCC cells (SCC13) admixed with two different CAF
strains (CAF14 and CAF16) plus/minus NOTCH1 silencing. In
vivo imaging over a 2 weeks period showed reduced time-
dependent expansion of the fluorescently labeled SCC13 cells in
the presence of CAFs with silenced NOTCH1 versus controls and
a smaller tumor volume at the time of collection (Fig. 9a).
Immunofluorescence analysis at the end of the experiment

showed significantly lower Ki67 positivity of CAFs with NOTCH1
silencing and of associated SCC cells relative to both types of cells
in control lesions (Fig. 9b and Supplementary Fig. 6a). CAFs were
identified by the use of human-specific anti-VIMENTIN
antibodies with parallel staining with pan-Vimentin antibodies
detecting these cells and also mouse fibroblasts further away from
the tumor area (Supplementary Fig. 6c). Levels of the CAF
marker PERIOSTIN (POSTN) as well as markers of macrophage
infiltration (CD68) and angiogenesis (CD31) were also signifi-
cantly reduced in lesions formed by CAFs with silenced NOTCH1
(Fig. 9c and Supplementary Fig. 6b). CAFs in these lesions were
characterized by strong positivity for the phosphorylated forms of
ATM, CHK2, p53, and other ATM substrates, paralleling the
in vitro findings (Fig. 9d).

The similar effects of DBZ treatment and NOTCH1 silencing
on cultured CAFs and on SCC/CAF co-cultures suggested that
this compound could also be beneficial in vivo, for suppression of
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cancer/stromal cell expansion. This possibility was assessed by the
same assays described above, by mouse ear injection of
fluorescently labeled SCC13 cells admixed with CAFs, followed,
24 h after injection, by topical treatment with DBZ in parallel
with ethanol vehicle alone. As observed upon NOTCH1 silencing,
in vivo DBZ-treatment reduced expansion of lesions over time,
decreasing both SCC cells and CAFs proliferation (Fig. 10a, b).
Levels of the POSTN, CD68, and CD31 markers were also
significantly reduced in lesions treated with the DBZ compound
(Fig. 10c), while phosphorylation of ATM, CHK2, p53, and other
ATM substrates was strongly increased (Fig. 10d).

Thus, in an orthotopic skin cancer model, genetic or
pharmacologic inhibition of NOTCH signaling in CAFs is
sufficient to suppress CAF effectors gene expression and impair
cancer and stromal cell expansion.

Discussion
The NOTCH/CSL signaling pathway plays a key role in early
steps of CAF activation. Loss of CSL transcription repressive

function leads to concomitant induction of stromal fibroblast
senescence and up-regulation of a large battery of CAF-effector
genes3,23,24. This can be the combined result of down-modulation
of CSL expression by exogenous pro-carcinogenic insults, such as
UVA or smoke exposure17,31, and of NOTCH activation, which
converts CSL from a repressor into an activator of transcription3.
While converging on gene expression, both NOTCH and CSL can
play additional independent functions15,32. Separately from
NOTCH, we recently found that CSL can bind directly to telo-
meric DNA and anchor other protective proteins to telomeres
thereby ensuring chromosomal integrity in HDFs19. On the other
hand, we have shown here that, in CAFs with compromised CSL
function and increased genomic instability, NOTCH1 gene
amplification and elevated expression inhibit the DDR/
p53 signaling cascade and growth arrest. At the same time,
increased NOTCH1 activity in these cells ensures elevated
expression of a battery of CAF effector genes with established
tumor-promoting functions. Both mechanisms are interrupted by
genetic or pharmacological inhibition of NOTCH1 activation in
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CAFs, thereby accounting for suppression of cancer/stromal cell
expansion.

While genetic alterations have widely been explored in the
epithelial compartment of tumors, their presence in cancer
stromal fibroblasts has been an argument of contention (as
reviewed by refs. 5,12,13). Persistent DNA damage, telomere
abrasion, and chromosome alterations occur in dermal fibroblasts
with silencing or deletion of the CSL gene as well as in skin SCC-
derived CAFs, in which CSL is down-modulated19. Genomic
instability resulting from decreased CSL levels and recurrent
UVA exposure, with cumulative effects in human aging popula-
tions, could provide a platform for selection of aberrant stromal
cells capable of expanding in skin cancer fields. Consistent with
this possibility, aCGH analysis revealed multiple CNVs in CAFs
at very early passage from SCC dissociation. A high number of
aCGH positive probes encompassed the NOTCH1 gene, which
was found amplified in the majority of cultured CAFs as well as in
the corresponding laser-captured fibroblasts of SCC lesions from
which CAFs were derived.

While aCGH and qPCR approaches provide an average signal
coming from a pool of cells, FISH analysis conveys a more
definitive assessment of specific CNVs at the single cell level.
Analysis of CAF strains with the latter technique showed het-
erogeneous cell populations, with a significant fraction of cells
harboring NOTCH1 gene duplication and gains of up to five
copies. NOTCH1 copy number variations, mostly duplications,
were also found in a minority of HDFs from apparently

unaffected skin surrounding the SCC lesions. Importantly, direct
FISH analysis of laser-captured CAFs and matched HDFs, in the
absence of possible artifacts introduced by culturing conditions,
confirmed the presence of genetic alterations in fibroblast
populations that extend beyond areas of overt tumor formation in
cancer fields.

We found an overall agreement between NOTCH1 gene
amplification in CAFs and increased expression relative to mat-
ched and foreskin HDFs. Various levels of NOTCH1 expression
in CAFs are likely due to several possible mechanisms besides
increased copy number, including different duplication end-
points, with differential impact on distinct regulatory elements,
and other co-determining factors, including genomic alterations
at other loci.

The findings are of likely functional significance, as CAFs with
NOTCH1 gene amplification and increased expression were
resistant to UVA-induced growth arrest, and m-HDFs from
flanking skin with NOTCH1 gene amplification were selectively
expanded upon repeated UVA exposure.

Previous publications showed that the proteolytically cleaved
form of the NOTCH1 receptor can suppress the DNA damage
response downstream of γ-H2AX phosphorylation in multiple
cancer cell lines25,26. Mechanistically, the ICN1 protein was
shown to bind to ATM and block its interaction with FOXO3A,
thus impairing anchoring and phosphorylation of downstream
components of the ATM cascade26. Our findings indicate that
this mechanism of action takes place also in CAFs, which display
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elevated levels of DNA damage and ICN1-ATM complex for-
mation. Suppression of NOTCH1 expression or activity in these
cells resulted in increased ATM-FOXO3A complex formation,
under both basal conditions and upon UVA exposure, and
restored the ATM/P53 signaling cascade. Consistent with this
mechanism of action, increased ICN1 expression in normal
foreskin-derived HDF strains was by itself sufficient to block
UVA-induced ATM-FOXO3A complex formation and down-
stream ATM signaling.

An interesting possibility is that, in parallel with the above,
ICN1 binds and sequesters CSL away from telomeres, thereby
enhancing the recently demonstrated phenotype of genomic
instability19. Consistent with this possibility in ongoing work we
have found that ICN1 expression in multiple f-HDF strains
results in loss of CSL at telomeres and DNA damage. However,
this could also be an indirect consequence of down-modulation of
CSL expression caused by NOTCH1 activation. Increase genomic
instability in f-HDFs with activated NOTCH1 expression was not
associated with apoptosis but growth suppression, which can

result from a second independent mechanism, involving induc-
tion of CDKN1A expression, a direct target of CSL transcriptional
repression overcome by NOTCH activation. Because of the
complexities involved, further detailed studies will be required to
investigate this interesting topic.

While inhibition of the DDR/p53 signaling cascade by
increased NOTCH1 activity has the potential of increasing DNA
damage, the apoptotic response is also blocked and the identifi-
cation of bypassing mechanisms triggering this process could be
of substantial translational significance. It has also been pre-
viously reported that ATM deficiency can be linked to aberrant
double-strand DNA repair and chromosomal alterations leading
to thymic lymphoma development33. Even in the present setting,
ATM deficiency may not only be a consequence but to some
degree a cause of NOTCH1 gene amplifications and increased
expression. Experimentally, however, treatment of foreskin-
derived HDFs with an ATM inhibitor plus/minus prolonged
UVA treatment caused no increase in NOTCH1 gene copy
number; this was instead increased in cultures of patients-derived
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m-HDFs, consistent with our other results showing the presence
in these cultures of subpopulations of cells with NOTCH1 gene
amplification that are selectively expanded upon prolonged UVA
treatment (Fig. 4c).

The findings are of functional significance as NOTCH1 gene
silencing or pharmacological inhibition impaired CAFs prolifera-
tion, without any effects on normal HDFs, and suppressed skin
SCC/CAF cells expansion. Multiple NOTCH inhibitors are cur-
rently being tested for their possible application in cancer treatment.
Our findings indicate that these compounds could be effectively
used in stroma-targeted cancer prevention and treatment. More
specifically, topical treatment with NOTCH inhibitors could be of
special interest for organ transplant recipient patients undergoing
immune suppressive therapies, for whom skin field cancerization
represents an important cause of morbidity and mortality.

Methods
Cell manipulations. HDFs were prepared from discarded foreskin or abdomino-
plasty skin samples at the Department of Dermatology, Massachusetts General
Hospital (Boston, Massachusetts, USA) with institutional approval (2000P002418),
or were previously obtained3. Conditions for culturing cells, viral shRNA infection,
siRNA transfection, qPCR, and RT-qPCR were as in refs. 2,3,34. Pairs of CAFs and
matched HDFs from discarded skin SCC and flanking unaffected areas from the
same (anonymized) patients, derived as in Goruppi et al.34, were given specific

identifiers as indicated in the different panels. CAF strains were used at very early
passage of culturing (2nd–3rd passage) unless otherwise specified. A list of cell
strains is provided in Supplementary Data 2. For in vivo approaches, skin-derived
SCC13 cells35 were infected with a DsRed2-expressing lentivirus3. 2D co-culture
assays in CAFs were performed as in Clocchiatti et al.23.

CAFs and/or SCC13 cells were treated with the following chemicals at the
indicated concentrations every 24 h for 5 days: 2 or 10 μM of DBZ (Deshydroxy LY-
411575, Sigma), 0.5 or 2 μM of KU-60019 (Sigma), 10 μM of DAPT (γ-secretase
inhibitor IX CAS 208255-80-5, Calbiochem), and 10 μM of RO4929097
(Selleckchem) versus vehicle alone. HDFs were treated with a Bio-Link cross-linker
UV irradiation system (Vilber Lourmat) equipped with a UVA lamp (375 nm), as
indicated in the figure legends. For acute UVA experiments, HDFs were treated the
day after seeding with 500mJ/cm2 UVA and samples were collected 72 h after
exposure. For chronic UVA experiments, HDFs were treated the day after seeding
with incremental doses of UVA (100mJ/cm2, 200mJ/cm2, 300mJ/cm2, 400mJ/cm2,
and 500mJ/cm2). Treatments were performed every other day for three times and
samples were collected 72 h after the last exposure. A portable photometer IL1400A
(International Light Technologies) was used for dosage determination.

For disruption of the TP53 gene, CRISPR technology was applied using the same
viral vector as in Procopio et al.3. Analysis of TP53 deletion was performed by PCR
with a forward primer spanning the deletion site (Supplementary Data 3 and
Supplementary Fig. 5a) and by immunoblot in comparison with HDFs upon
overnight treatment with 1 μM Doxorubicin versus control (Supplementary Fig. 5b).

HDFs or CAFs were infected with retroviruses as in Procopio et al.3. All
experiments were carried out with antibiotic resistance selection.

The oligonucleotides used in qPCR and RT-qPCR are provided in
Supplementary Data 3 and 5. A detailed list of all the antibodies and the conditions
used is in Supplementary Data 4. The siRNA oligonucleotides identifiers for CSL

p < 0.0001
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Fig. 10 Topical treatment with NOTCH1 inhibitors impairs cancer/stromal cell expansion in vivo. a DsRed2-expressing SCC13 cells admixed with CAFs
(CAF13) were injected into ears of NOD/SCID mice, followed by topical treatment with DBZ (1 mM) or Ethanol vehicle alone daily for 1 week starting 24 h
after injection. Mice were killed 15 days after injection. Shown are images of two ear pairs 15 days after injection, quantification of red fluorescence signal
(normalized to day 1 after injection) corresponding to SCC13 cell expansion and tumor volumes (V= (length × width2) × 0.5). Statistical analysis of
fluorescence intensity values over time course of the experiment was calculated by Two-way ANOVA, *p < 0.05. Tumor volume values are indicated as
dots with mean ± s.d. two-tailed unpaired t-test, *p < 0.05. n(CTR ear lesion)= 3, n(DBZ ear lesion)= 3. b–d Representative images and quantification of
immunofluorescence analysis of ear lesions with antibodies against the indicated proteins as in Fig. 9b–d. Scale bar, 50 μm. Values for each lesion are
indicated as dots with mean ± s.d. two-tailed unpaired t-test, **p < 0.01, ***p < 0.001. n(CTR ear lesion)= 3, n(DBZ ear lesion)= 3.
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and NOTCH1 silencing are provided in Supplementary Data 6. CAF strains were
stably infected with a lentiviral vector for silencing of NOTCH1 in parallel with
empty vector control, a gift from Dr. T. Kiyono. HDF strains were stably infected
with a lentiviral expression vector for inducible expression of activated NOTCH1 in
parallel with empty vector control using the pInducer20 system as in Lefort et al.36.

Treatment of HDFs with Jagged-1 ligand was performed as in Procopio et al.3

using Rabbit Anti-Human IgG (Sigma-l2011) plus/minus Jagged-1 (human):Fc
(human) (recombinant protein, AG-40A-0081) for coating of the dishes.

Co-immunoprecipitation, immune detection, and cell assays. Co-IPs of CAFs
treated with DBZ (10 μM for 5 days) versus vehicle were performed as in Procopio
et al.3. Briefly, cells were lysed in NP-40 buffer and 500μg protein extracts were
incubated overnight at 4 °C with 10 μg primary antibodies against the total ATM
protein in parallel with corresponding non-immune IgGs. This incubation was
followed by the addition of 25 μl of packed Dynabeads Protein A (Invitrogen™,
10002D) and further incubation for 4 h at 4 °C. Beads were washed five times with
NP-40 buffer, eluted in 60 µl 2x SDS sample buffer at 95 °C for 15 min, and
analyzed by immunoblotting.

Immunofluorescence and immunoblot analyses were performed as in refs. 3,34.
For immunofluorescence, cells were seeded on coverslips, fixed in 4%
paraformaldehyde (PFA), and processed as in Goruppi et al.34.
Immunohistochemistry of tumor and tissue sections was performed as in
refs. 2,3,37. Quantification of γ-H2AX, P-ATM, P-CHK2, pS/TQ, and P-S15-P53
protein levels was made using the watershed algorithm (http://imagej.nih.gov/ij/
plugins/watershed.html) and ImageJ 1.8 (NIH). Quantification of all other tissue
immunofluorescence staining was performed using ImageJ. Unprocessed original
scans of immunoblots are shown in Supplementary Figs. 7–9.

EdU labeling assays were performed using Click-iT EdU Alexa Fluor 488
Imaging kit C10337 (Thermo Fisher Scientific) adding 10 μM EDU (for 3 h in
SCC13 and for 5 h in CAFs/HDFs) prior to fixation according to the
manufacturer’s protocol. Apoptosis assays were performed using Apoptosis/
Necrosis Assay Kit ab176749 (Abcam) adding Apopxin Green (for 45 min)
according to the manufacturer’s protocol. Cell proliferation assays were carried out
by measuring the production of ATP using the CellTiter-Glo luminescent assay
(Promega) as per the manufacturer’s instructions. Images were obtained with a
Zeiss Observer Z1 inverted microscope. Clonogenicity assays and alkaline comet
assays were performed as in Procopio et al.3 and Bottoni et al.19, respectively.

NOTCH1 gene FISH. NOTCH1 gene copy number variation was assessed by FISH
with a commercially available probe for the NOTCH1 locus (spanning a 203-Kb
region) combined with one for an independent region of chromosome 9 (9q21.3)
following the manufacture’s instructions (Empire Genomics, Buffalo, NY). Briefly,
cell pellets were resuspended in 0.2% trisodium citrate, 0.2% KCl for 10 min at
room temperature. After centrifugation pellets were fixed with freshly made cold
Carnoy’s fixative and dropped onto glass slides. Slides were heated in denaturation
buffer (70% formamide, 2X SSC ph 7.0–8.0) at 73 °C for 5 min and dehydrated
sequentially with 70%, 85%, and 100% ethanol for 1 min. In all, 10 μl of
NOTCH1/Chr9 probes mixture (2 μl of probe in 8 μl of hybridization buffer) were
applied per slide and incubated at 37 °C for 16 h. Slides were washed with 0.4X
SSC, 0.3% NP40 (ph 7.0–7.5) at 73 °C for 2 min followed by one wash with 2X SSC,
0.1% NP40 for 1 min. Slides were counterstained with DAPI and analyzed by Zeiss
Axiolmager Z1.

Proximity ligation assays. Proximity ligation assays (PLAs)38 were performed
using Duolink PLA kit (Sigma) according to the manufacturer’s protocol as in
Goruppi et al.34. Briefly, samples were fixed in 4% paraformaldehyde (PFA), per-
meabilized in 0.1% Triton and processed as in Goruppi et al.34. Images were
obtained with a Nikon Eclipse Ti confocal microscope.

Array CGH. For comparative genomic hybridization array (aCGH), total DNA was
isolated from CAFs using a DNeasy blood and tissue kit (Qiagen). DNA digestion,
labeling, hybridization, and washing were performed following manufacturer’s
instructions. Briefly, CAF samples were labeled with Cy5 and hybridized to Agilent
human genome CGH+ SNP Microarrays (Agilent Technologies) together with a
Cy3-labeled reference genome (Promega). Agilent SurePrint G3 Cancer CGH+
SNP Microarrays contained 180K probes across the whole genome based on the
NCBI Build 37. Scanning with an Agilent G2505C Microarray Scanner (Agilent
Technologies) was followed by image and data processing using Feature Extraction
software version 12 (Agilent Technologies) and Agilent Genomic Workbench
version 7 (Agilent Technologies). Aberrant regions were detected using ADM-2
algorithm with threshold set to 6. To avoid false positive calls the minimum
number of consecutive probes for amplifications/deletions was set to 3, together
with a minimum average absolute Log Ratio ≥ 0.25.

aCGH data are deposited in the public repository (GSE113577).

LCM experiments. Skin and SCC frozen samples used for LCM followed by RT-
qPCR, qPCR, or FISH were provided by the Department of Dermatology, Mas-
sachusetts General Hospital (Boston, Massachusetts, USA), with institutional
review boards approvals and informed consent. LCM was performed using an

Arcturus XT micro-dissection system (Applied Biosystems) as in refs. 2,3. Nuclei
isolation for NOTCH1 FISH analysis was performed as in DiFrancesco et al.39. The
oligonucleotides used in qPCR and RT-qPCR are provided in Supplementary
Data 3 and 5.

Animal studies. Mouse ear injections of cells were carried out in 8–10-week-old
female NOD/SCID/IL2rγ-/- mice as in Procopio et al.3. DsRed2-expressing SCC13
cells (1 × 105) were admixed with equal numbers of CAFs (plus/minus shRNA-
mediated NOTCH1 silencing) and injected (3 µl per injection) using a 33-gauge
micro syringe (Hamilton). Mice were kept under standard housing conditions with
12 light/12 dark cycle and temperatures of 65–75 °F (~18–23 °C) with 40–60%
humidity. Starting the day after injection, mouse ears were imaged using a fluor-
escent stereomicroscope (Leica MZ-FLIII), every 7 days for 15 or 21 days. After
mice killing, images of the ears were taken using bright field and fluorescence
stereomicroscopy. All animal studies were approved by the Massachusetts General
Hospital Institutional Animal Care and Use Committee (2004N000170) or were
performed according to the Swiss guidelines and regulations for the care and use of
laboratory animals, with approved protocol from the Canton de Vaud veterinary
office (animal license No. 1854.4e). For in vivo DBZ assays, similar ear injections
were performed with DsRed2-expressing SCC13 cells admixed with CAFs. One day
after injection, mice were topically treated daily for 1 week with DBZ (10 µg in 20 µl
of Ethanol) or vehicle alone, on the right and left ears respectively.

Statistical analysis. Data are presented as mean ± SD or ratios among treated and
controls, with two to three separate CAF/HDF strains in independent experiments
as indicated in the Figure legends. Statistical testing was performed using Prism 8
(GraphPad Software). For genomic analysis and functional testing assays, statistical
significance of differences between experimental groups and controls was assessed
by one sample t-test, two-tailed unpaired or paired t-test or 1- or 2-way ANOVA. P
values < 0.05 were considered as statistically significant. The researchers were not
blinded and no strain or result was excluded from the analysis.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
aCGH data for this study is deposited in GEO with the accession codes GSE113577
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE113577). All other relevant
data generated in this manuscript that support the findings of this study are available
upon request from the authors. Source data are provided with this paper.
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