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The paper presents current evidence on the properties of human umbilical cord-derived mesenchymal stem cells, including origin,
proliferative potential, plasticity, stability of karyotype and phenotype, transcriptome, secretome, and immunomodulatory activity.
A review of preclinical studies and clinical trials using this cell type is performed. Prospects for the use of mesenchymal stem cells,
derived from the umbilical cord, in cell transplantation are associated with the need for specialized biobanking and transplant
standardization criteria.

1. Introduction

Many researchers consider the transplantation of mesenchy-
mal stem cells (MSCs) to be the most effective tool for cell
therapy, due to the simultaneous activation ofmultiplemech-
anisms (paracrine, trophic, immunomodulatory, and differ-
entiation), affecting all stages of the regeneration of damaged
tissues. Bone marrow-derived MSCs (BM-MSCs) are the
most extensively characterized as they are the historically
accepted “gold standard” of MSCs. Nevertheless, currently
there is active research work regarding MSCs from other
sources—adipose tissue, peripheral andumbilical cord blood,
amniotic fluid, skin, dental pulp, synovium, umbilical cord
tissue, placental complex, endometrium, and others. In fact,
evidence has suggested that MSCs may be present virtually
in any vascularized tissue throughout the whole body [1].
All these cell types meet the minimum criteria for MSCs
but have significant differences in their features. Our review
focuses on umbilical cord-derived MSCs (UC-MSCs), cells
that have a unique combination of prenatal and postnatal
stem cell properties.

2. The Origin and Morphology of the Human
Umbilical Cord

The umbilical cord develops from the yolk sac and allantois
and becomes a conduit between the developing embryo or
fetus and the placenta. The umbilical cord stroma contains
gelatinous substance called Wharton’s jelly after Thomas
Wharton (1614–1673), an English physician and anatomist.
Wharton’s jelly protects the blood vessels (two umbilical
arteries and one umbilical vein) from clumping and provides
cord flexibility. This substance is made largely from gly-
cosaminoglycans, especially hyaluronic acid and chondroitin
sulfate. Collagen fibers are the main fibrillary component,
while elastic fibers are absent. The cell component is pre-
sented by mesenchyme-derived cells (fibroblasts, myofibrob-
lasts, smooth muscle cells, and mesenchymal stem cells) [2].
In contrast tomost tissues of the body, there are no capillaries
inWharton’s jelly: there is an active process of hematopoiesis
and capillaries formation in umbilical cord stroma at week 6
of development; however, at 7–9 weeks, hematopoiesis stops
and capillaries regress [3]. Cross-section of the human umbil-
ical cord is shown in Figure 1.
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Figure 1: Cross-section of the human umbilical cord. A: artery; V: vein; WJ: Wharton’s jelly; UCL: umbilical cord lining; SA, IV, and PV:
subamnion, intervascular, and perivascular zones of Wharton’s jelly; VW: blood vessel wall. Hematoxylin and eosin staining, scale bar =
200 𝜇m.

3. The Umbilical Cord as a Source of
Mesenchymal Stem Cells

In 1974, umbilical cord blood was declared to be the source of
hematopoietic stem and progenitor cells [4], and the remain-
ing umbilical cord tissue was considered medical waste with
no scientific value. This point of view was completely revised
in 1991, when McElreavey et al. isolated fibroblast-like cells
from Wharton’s jelly and characterized them [5]. In 2004,
these fibroblast-like cells were proved to be MSCs as they
expressed CD29, CD44, CD51, CD73, and CD105, lacked
expression of CD34 and CD45, and were able to differentiate
into cells of the adipogenic and osteogenic lineages [6]. Cur-
rently, the umbilical cord MSCs include cells derived from
the total umbilical cord or its different sections (perivascular,
intervascular, and subamnion zones of Wharton’s jelly and
subendothelial layer but not from umbilical cord lining or
inner blood vessel walls) [2].

Figure 2 shows the characteristics of cultured cells derived
from Wharton’s jelly according to the minimal criteria to
define human MSCs as proposed by the Mesenchymal and
Tissue Stem Cell Committee of the International Society for
Cellular Therapy (ISCT): (1) MSCs must be plastic-adherent
when maintained in standard culture conditions; (2) MSCs
must express CD105, CD73, and CD90 and lack expression
of CD45, CD34, CD14 or CD11b, CD79a or CD19, and HLA-
DR surfacemolecules; (3)MSCsmust differentiate into osteo-
blasts, adipocytes, and chondroblasts in vitro [40].

4. The Origin of Wharton’s Jelly MSCs

In 2008, Wang et al. presumed that early in embryogenesis,
hematopoietic cells and MSCs migrate from the yolk sac and
aorta-gonad-mesonephros to the placenta and then back to

the fetal liver and bone marrow through the umbilical cord.
During these two migration waves, some cells are trapped in
Wharton’s jelly and are retained therein throughout thewhole
period of gestation. The new microenvironment changes the
properties of migrating cells, which probably explains their
differences from BM-MSCs [41].

5. Isolation of Primary Cell Culture from
Wharton’s Jelly

Most protocols for primary cell culture isolation fromWhar-
ton’s jelly consist of three steps:

(1) Removal of the epithelial, vascular, and perivascular
tissues.

(2) Mechanical grinding and enzymatic digestion using
trypsin, collagenases I, II, or IV, dispase, protease, and
hyaluronidase.

(3) Transfer into the culture medium (standard culture
media with human or fetal calf serum which may be
supplemented with growth factors FGFb, EGF, PDGF,
and VEGF) [2, 7, 42].

In addition, an explant culture method can be applied; it
avoids the damaging effects of enzymes on cells and reduces
the processing time of the biomaterial (“plate and wait”
procedure) [43]. The common explant method of isolating
UC-MSCs involves mincing the umbilical cords into small
fragments, which are then attached to a culture dish bottom
from which the cells migrate. One of the disadvantages of
this method is that the fragments frequently float up from the
bottom of the dish, thereby reducing the cell recovery rate. In
some protocols, a stainless steel mesh is used to protect the
tissue from floating [44].
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Figure 2: The characteristics of cultured cells derived from Wharton’s jelly according to minimal criteria to define human MSCs proposed
by ISCT. (a) Analysis of immunophenotype with BD Stemflow� hMSC Analysis Kit (BD Biosciences). Negative MSC cocktail includes PE
CD45, PE CD34, PE CD11b, PE CD19, and PE HLA-DR antibody conjugates. (b) Phase contrast capture of UC-MSCs at the fourth passage.
Scale bar: 200 𝜇m. (c) Adipogenic differentiation with StemPro� Adipogenesis Differentiation Kit (Gibco). Lipid droplets are stained with
Sudan III. Scale bar: 200𝜇m. (d) Osteogenic differentiation with StemPro Osteogenesis Differentiation Kit (Gibco). Calcificated nodules are
stained with Alizarin red S (pH = 4.1). Scale bar: 200 𝜇m. (e) Chondrogenic differentiation with StemPro Chondrogenesis Differentiation
Kit (Gibco). Mucopolysaccharides are stained with Alcian blue (pH = 2.5). Scale bar: 200 𝜇m.

According to some reports, the explantmethod allows the
selection of a cell fraction with higher proliferative potential
[45, 46], but a remarkable variation of cell phenotype expres-
sionswas distinguished compared to enzymatic digestion [47,
48]. In a recent study, three explant culturemethods and three
enzymatic methods were compared. MSC isolation using the
10mm size tissue explant method led to shorter primary
culture time, higher numbers of isolated cells, and higher

proliferation rates compared with other isolation methods.
Immune phenotype andmultilineage differentiation capacity
did not differ significantly among six groups [49]. It was also
found that UC-MSCs isolated by explant technique always
reached proliferation arrest earlier, irrespective of initial
population doubling times, but the mechanism explaining
this effect is still unclear [50]. On the contrary, later studies
showed that cells obtained from explants presented similar
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characteristics (morphology, population doubling time, post-
thaw survival, differentiation capacity, and phenotype) to
those from enzymatic protocols [51].

According to published data [52, 53] and our own labo-
ratory data, the efficacy of isolation of primary cell culture
from Wharton’s jelly amounts to 100%. In comparison, the
efficacy of MSC isolation from umbilical cord blood does not
exceed 60%; amniotic fluid is 90%; placenta varies from62.5%
to 100% [52, 53]. Wharton’s jelly tissue yields the highest
concentration of allogeneic mesenchymal stem cells: yields
for bone marrow ranged from 1 to 317,400 cells/mL; yields for
adipose tissue ranged from 4,737 to 1,550,000 cells/mL of tis-
sue; and yields for umbilical cord tissue ranged from 10,000 to
4,700,000 cells/cm of umbilical cord [54].

It should be particularly noted that almost all culture
laboratories use umbilical cords obtained after Caesarean
sections, because vaginal delivery significantly increases the
risk of contamination of primary biological material. Some
researchers suppose that viable MSCs can only be isolated
from fresh umbilical cord tissue, not from frozen tissue frag-
ments [55]. According to another report, MSCs derived from
frozen cord tissue exhibited decreased plating efficiency and
increased doubling times but near equivalent maximum cell
expansion compared with fresh cord tissue [56].

6. The Proliferative Potential and
the Karyotype Stability of UC-MSCs

UC-MSCs have higher proliferative potential than BM-MSCs
(the “gold standard” for MSCs comparison) or MSCs from
other postnatal (adipose tissue) and neonatal sources (pla-
centa and amniotic membrane) [13, 16, 17, 57, 58]. The mean
of CFU-F (colony-forming unit-fibroblast) colonies per 1 ×
10

6 nucleated cells was significantly higher inUC-MSCs (800,
range 300–2000) than in BM-MSCs (36, range 16–64) as
determined by the CFU-F assay based on Castro-Malaspina’s
method [57]. CFU-F frequency determined by limiting dilu-
tion assay also confirmed a higher frequency of CFU-F in
UC-MSCs (1 : 1609± 0.18) than in BM-MSCs (1 : 35700± 0.01)
[57]. According to another report, typical CFU-F efficiency
(the ratio of number of cells forming colonies under clonal
conditions and number of cells seeded directly after isolation)
for BM-MSCs ranged from 0.001% to 0.01%, while for UC-
MSCs it reached 0.2–1.8% [59].

It has been reported that cell doubling time for UC-MSCs
approximates 21 h [58], 24 h [57], 40 h [13, 46], and 45 h [56].
Importantly, according to recent data, each individual UC-
MSCs sample exhibited different population doubling rates
and reached senescence at different passages due to unique
genetic and epigenetic profiles, irrespective of isolation pro-
tocol [50]. A sufficient amount of the starting biomaterial
(umbilical cord weight is nearly 40 g) and high telomerase
activity ofUC-MSCs permit obtaining 109 cells fromone cord
while maintaining their normal karyotype for 6 passages [60,
61]. Since passage 7, the telomerase activity of UC-MSCs is
significantly reduced; but cell karyotype is stable for at least 25
passages [22, 62].

Table 1: The expression of cell surface markers on UC-MSCs
(according to [2, 7–9]).

Positive markers Contradictory data Negative markers
CD10 CD58 CD54 CD3 CD49a
CD13 CD59 CD105 CD11b CD50
CD29 CD61 CD106 CD14 CD53
CD44 CD73 CD117 CD19 CD56
CD49b CD90 CD144 CD31 CD71
CD49c CD106 CD146 CD33 CD80
CD49d CD166 CD34 CD86
CD49e CD325 CD38 CD133
CD51 HLA-I CD40 CD140𝛼
CD56 CD45 HLA-II

Table 2: The expression of pluripotency markers on UC-MSCs
(according to [2, 7–11]).

Positive markers Contradictory data
REX2 STRO-1
GD2 OCT4
SOX2 SSEA-4
NANOG
Tra-1-60
Tra-1-81
SSEA-1
DNMT3B
GABRB3

7. UC-MSCs Phenotype

Todate, the expression profile of surfacemarkers andpluripo-
tency markers of UC-MSCs has been investigated extensively
(Tables 1 and 2).

Particular attention is drawn toCD105 (endoglin, a part of
the TGF beta receptor complex). According to ISCT decision,
CD105 is a required marker for MSCs verification [40];
however, different data contradict each other. Inmost studies,
it has been shown that CD105 presents on UC-MSCs surface
[2, 7–9], and its expression is maintained during long-term
cultivation (at least 16 passages) [63]. However, a few studies
have demonstrated that UC-MSCs do not express CD105 at
all [64] or until passage 5 [65]. Reduction in mesenchymal-
marker (CD73, CD90, and CD105) expression on UC-MSCs
may occur under ischemic conditions influenced mainly by
hypoxia [66]. In accordance with our laboratory data, more
than 98% of the UC-MSCs express CD105 on passages 2–5 as
measured by flow cytometry (Figure 2).

Data about the expression of pluripotent specific markers
on UC-MSCs are contradictory. In different reports, the
expression of these markers was shown only under certain
conditions: solely on early passages [67], or when grown in
the presence of human embryonic stem cells medium on
mouse feeder cells [10], or after lowering O

2
concentration

from 21% to 5% level [68], or after the selection of CD105+
cells and their subsequent cultivation under suspension
culture condition [69]. Flow cytometric analysis revealed



Stem Cells International 5

Table 3:The genes expressed at higher levels in UC-MSCs compared toMSCs derived from adipose tissue, bonemarrow, and skin (according
to [12]).

Genes Functions Expression levels in UC-MSCs compared to
BM-MSC AT-MSC Skin-MSC

HAND1
Heart and neural crest derivatives
expressed 1

Plays a critical role in heart development Higher∗ Higher Higher

AFP
Alpha-fetoprotein

The major plasma protein produced in the liver during
fetal life Higher Higher Higher

DKK1
Dickkopf homolog 1

An inhibitor of the WNT-signaling pathway critical for
endodermal development Higher ns Higher

DSG2
Desmoglein 2

An important component of desmosomes in epithelial
cell type Higher ns Higher

KRT8,19
Keratin 8, 19

The major intermediate filament proteins of epithelial
cells Higher Higher Higher

KRT18
Keratin 18

The major intermediate filament proteins of epithelial
cells Higher ns Higher

∗Significantly increased mRNA expression between mutually compared stem cell types (fold change > 2; 𝑃 value < 0.05). ns: not significant.

that neural ganglioside GD2(+)-sorted UC-MSCs showed
increased expression of SSEA-4, OCT4, SOX2, and NANOG
in comparison to unsorted or GD2-negative cells [70].

8. Transcriptomic Profile of UC-MSCs

In 2012, DeKock et al. studied the global gene expression pro-
files of four humanmesoderm-derived stem cell populations.
Human UC-MSCs showed significant enrichment in func-
tional gene classes involved in liver and cardiovascular sys-
tem development and function compared to MSCs derived
from adipose tissue, bone marrow, and skin [12]. The most
significant differences were found for genes presented in
Table 3.

In 2010, Hsieh et al. published interesting data comparing
the gene expression profiles of BM-MSCs and UC-MSCs.
It was found that, for the two MSC types, there were no
common genes among the top 50 known genes most strongly
expressed! Top 10 for UC-MSCs included genes encoding
somatostatin receptor 1,member 4 of immunoglobulin super-
family, gamma 2 smoothmuscle actin, reticulon 1, natriuretic
peptide precursor B, keratin 8, desmoglein 2, oxytocin recep-
tor, desmocollin 3, and myocardin. The study also showed
that genes related to cell proliferation (EGF), PI3K-NFkB sig-
naling pathway (TEK), and neurogenesis (RTN1, NPPB, and
NRP2) were upregulated in UC-MSCs compared to in BM-
MSCs [71].

The UC-MSCs and BM-MSCs were also screened for
their surface expression of HLA antigens, costimulatory
factors, and immune tolerancemolecules [9, 13]. It was found
that the expression of MHCII molecules (HLA-DMA, -DRA,
and -DPB1) in the BM-MSCs was 16-fold, 36-fold, and 4-
fold higher, respectively, compared with the UC-MSCs. The
expression levels of immune-related genesTLR4,TLR3, JAG1,
NOTCH2, and NOTCH3 in the BM-MSCs were 38-fold, 4-
fold, 5-fold, 3-fold, and 4-fold higher, respectively, compared
with the UC-MSCs [13]. These results promise successful
future use of allogeneic UC-MSCs for clinical trials.

A more detailed comparative analysis of the UC-MSCs
transcriptome is presented in the review by El Omar et al. [9].

9. The Multilineage Differentiation
Potential of UC-MSCs

In vitro UC-MSCs showed very high differentiation capac-
ity: these cells were able to differentiate into chondro-
cytes, adipocytes, osteoblasts, odontoblast-like cells, dermal
fibroblasts, smooth muscle cells, skeletal muscle cells, car-
diomyocytes, hepatocyte-like cells, insulin-producing cells,
glucagon-producing cells, and somatostatin-producing cells,
sweat gland cells, endothelial cells, neuroglia cells (oligoden-
drocytes), and dopaminergic neurons [8, 15, 21, 42, 72–75]. In
2014, it was found that under specific conditions UC-MSCs
expressed markers of male germ-like cells and primordial-
like germ cells; such a possibility had previously been shown
only for embryonic stem cells (ESCs) or induced pluripotent
stem cells [76, 77].

Comparison of the differentiation potential of UC-MSCs
and MSCs from other sources (bone marrow and adipose
tissue) is the subject of numerous studies presented in Table 4.

A number of studies have demonstrated the possibil-
ity of UC-MSCs’ differentiation after genetic modification
(transduction or transfection). UC-MSCs overexpressing
hepatocyte growth factor (HGF) could differentiate into
dopaminergic neuron-like cells secreting dopamine, tyrosine
hydroxylase, and dopamine transporter [78] and promoted
nerve fiber remyelination and axonal regeneration one week
after transplantation in rats with collagenase-induced intrac-
erebral hemorrhage [30]. After infection with adenovirus
containing SF-1 cDNA, UC-MSCs had significantly higher
expression of all steroidogenic mRNAs (including P450 side-
chain cleavage enzyme, 3𝛽-HSD, 17𝛽-HSD type 3, LH-R,
ACTH-R, P450c21, and CYP17), secreted significantly more
steroidogenic hormones (including testosterone and corti-
sol), and had significantly higher cell viability than differen-
tiated BM-MSCs [79].
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Table 4: Comparison of the differentiation potential of UC-MSCs and MSCs from other sources.

Induction Parameter UC-MSCs BM-MSCs AT-MSCs Reference

Osteogenic (35 days) The average number of bone nodules
from one well 19 ± 1.8 7.5 ± 1.3 11 ± 1.7 [13]

Adipogenic (21 days) The ratio of differentiated adipocytes
from the total cells 45 ± 1.5% 39 ± 1% 52 ± 3.2% [13]

Neuronal (20 days)

The number of primary neurospheres 118 ± 5.2 80.4 ± 3.4 26 ± 3.12

[14]

The average size of a primary
neurosphere 175 ± 2.2 𝜇m 100 ± 3.2 𝜇m 57 ± 0.7 𝜇m

The number of secondary
neurospheres 47 ± 4.6 7 ± 1.2 Unable to form

The percentage of nestin+ cells 91.3 ± 2% 78 ± 1.2% 30.3 ± 6.4%
The percentage of 𝛽 III tubulin+ cells 12.5 ± 0.7% 5.6 ± 0.4% 2.4 ± 0.4%

Neuronal (9 days)

The percentage of 𝛽 III tubulin+ cells 94.6 ± 1.3% 95 ± 1.2%

ND [15]

The percentage of cells expressing
neuron-specific markers c. 65% c. 65%

The level of constitutively released
dopamine 610 ± 21.7 pg/mL 559 ± 33.5 pg/mL

The level of ATP-stimulated release of
dopamine 920 ± 45.6 pg/mL 813.5 ± 47.7 pg/mL

Endothelial (12 days)

Flk-1 expression 17-fold increase 6-fold increase

ND [16]
vWF expression 13-fold increase 5-fold increase

VE-cadherin expression 16-fold increase 4.5-fold increase
Total tubule length of network in

Matrigel angiogenesis assay 15mm 11mm

Pancreatic (3 days)

Diameter of formed islet-like cell
clusters

Larger
(100–200 𝜇m) Smaller (<100𝜇m)

ND [17]
The percentage of differentiated cells
expressing pancreatic-specific marker

C-peptide
53.3% 30.9%

Insulin secretion on day 1 after
differentiation 14mIU/L 7mIU/L

Interestingly, the plasticity of UC-MSCs may depend on
the conditions of pregnancy. UC-MSCs from preeclamptic
patients were more committed to neuroglial differentiation:
the protein expressions of neuronal (MAP-2) and oligoden-
drocytic (MBP) markers were significantly increased in cells
from preeclampsia versus gestational age-matched controls
[80]. At the same time, preterm birth had no effect on
neuronal differentiation of UC-MSCs when compared to
termdelivery [81] but led to a decrease in osteogenic potential
[82]. UC-MSCs obtained from gestational diabetes mellitus
patients expressed similar levels of CD105, CD90, and CD73
when compared with UC-MSCs from normal pregnant
women but showed decreased cell growth and earlier cellular
senescence with accumulation of p16 and p53, displayed
significantly lower osteogenic and adipogenic differentiation
potentials, and, furthermore, exhibited low mitochondrial
activity and significantly reduced expression of themitochon-
drial function regulatory genes ND2, ND9, COX1, PGC-1𝛼,
and TFAM [83]. Thus, impaired metabolism of the maternal
organism during pregnancy has a significant impact on the
biological properties of neonatal MSCs. This fact should be

taken into account when choosing a source of cells for clinical
use.

10. Secretome of UC-MSCs

MSCs produce a variety of bioactive compounds that supply a
paracrine mechanism for their therapeutic activity. However,
UC-MSCs’ secretome differs significantly from MSCs from
other sources (bone marrow and adipose tissue). The most
obvious dissimilarity is the almost complete absence of
synthesis of themain proangiogenic factor VEGF-A: the level
of secretion is 102 less than AT-MSCs and 103 less than BM-
MSCs [59, 84, 85].Wherein, transcription level of VEGF gene
expression is detectable [85] and, according to some reports,
is very similar to that of BM-MSC [57]. The production
of some proangiogenic factors (including angiogenin and
PLGF) by UC-MSCs is also reduced, and the production of
some antiangiogenic factors (including thrombospondin-2
and endostatin) is increased compared with BM-MSCs and
AT-MSCs [84, 85]. Contrariwise, UC-MSCs expressed higher
levels of angiogenic chemokines such as CXCL1, CXCL,
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CXCL5, CXCL6, and CXCL8 and angiogenic growth factors
like HGF, bFGF, VEGF-D, PDGF-AA, TGF-𝛽2, G-CSF, and
TGF-𝛽2 [59, 84, 86, 87]. Consequently, UC-MSCs realize
their proangiogenic capacity by a VEGF-A-independent
pathway [20, 85].

It has also been reported that UC-MSCs exhibited
increased secretion of neurotrophic factors such as bFGF,
nerve growth factor (NGF), neurotrophin 3 (NT3), neu-
rotrophin 4 (NT4), and glial-derived neurotrophic factor
(GDNF) compared to BM-MSCs and AT-MSCs [14]. Based
on these and published data, the authors of the study believe
that UC-MSCs could be precommitted to an ectodermal fate.

Additionally, UC-MSCs secrete significantly higher
amounts of several important cytokines and hematopoietic
growth factors, including G-CSF, GM-CSF, LIF, IL-1𝛼, IL-6,
IL-8, and IL-11, compared to BM-MSCs, and thus are better
candidates for hematopoietic stem cells expansion [88].

11. The Immunomodulatory Properties
of UC-MSCs

In 2008, Weiss et al. were the first to investigate the immuno-
modulatory properties of UC-MSCs. In vitro study supported
five main conclusions:

(1) UC-MSCs suppressed the proliferation of Con-A-
stimulated rat splenocytes (xenograft model) or acti-
vated human peripheral blood mononuclear cells
(allogeneic model).

(2) UC-MSCs did not stimulate the proliferation of allo-
geneic or xenogeneic immune cells.

(3) UC-MSCs produced an immunosuppressive isoform
of human leukocyte antigen HLA-G6 that inhibited
the cytolytic activity of NK cells.

(4) UC-MSCs did not express immune response-related
surface antigens CD40, CD80, and CD86, which
participated in T lymphocytes activation.

(5) UC-MSCs produced anti-inflammatory cytokines,
which provided their immunomodulatory properties
[89].

It is currently believed that the immunomodulatory activ-
ity of UC-MSCs is provided by the paracrine mechanism.
For example, UC-MSCs produce IL-6 that instructs dendritic
cells to acquire tolerogenic phenotypes [90], prostaglandin
E2 (PGE2) that suppresses NK cells cytotoxicity [91] and
CD4+ and CD8+ T-cell proliferation [92], and indoleamine
2,3-dioxygenase (IDO) that inhibits the differentiation of
circulating T follicular helper cells [93]. In contrast to BM-
MSCs and AT-MSCs, UC-MSCs secrete anti-inflammatory
cytokine IFN-𝛼 [84]. After exposure with proinflammatory
cytokine IL-1𝛽 for 48 hours, UC-MSCs exhibited compara-
tively elevated expression of immunomodulatory molecules
TGF𝛽1, IDO, TNF-stimulated gene 6 protein (TSG-6), and
PGE2, when compared to MSCs from bone marrow or pla-
centa [22]. PGE2 secreted by activated MSCs drives resident
macrophages with M1 proinflammatory phenotype toward
M2 anti-inflammatory phenotype and TSG-6 interacts with

CD44 on residentmacrophages to decrease TLR2/NF𝜅-B sig-
naling and thereby decrease the secretion of proinflammatory
mediators of inflammation. These findings place MSCs (and
especially UC-MSCs due to their secretome) at the center of
early regulators of inflammation [94].

Interestingly, culture conditions may influence the UC-
MSCs’ immunomodulatory properties: UC-MSCs-mediated
suppression of T-cell proliferation in an allogeneic mixed
lymphocyte reaction is more effective in xeno-free (contain-
ingGMP-certified human serum) and serum-freemedia than
in standard fetal bovine serum-containing cultures. There-
fore, the removal of xenogeneic components of the culture
medium is important for future clinical study design in
regenerative and transplant medicine [95].

12. Mitochondrial Transfer between
UC-MSCs and Damaged Cells

About ten years ago the unexpected observation that MSCs
can rescue cells with nonfunctional mitochondria by the
transfer of either mitochondria or mitochondrial DNA was
made [96]. The observation had broad implications for the
therapeutic potentials of MSCs because failure of mitochon-
dria is an initial event in many diseases, particularly with
ischemia and reperfusion of tissues [97].

In a recent study, the capability of UC-MSCs to transfer
their ownmitochondria intomitochondrialDNA- (mtDNA-)
depleted 𝜌(0) cells was shown.The survival cells had mtDNA
identical to that ofUC-MSCs, whereas they expressed cellular
markers identical to that of𝜌(0) cells. Importantly, these𝜌(0)-
plus-UC-MSC-mtDNA cells recovered the expression of
mtDNA-encoded proteins and exhibited functional oxygen
consumption and respiratory control, as well as the activity
of electron transport chain (ETC) complexes I, II, III, and
IV. In addition, ETC complex V-inhibitor-sensitive ATP pro-
duction and metabolic shifting were also recovered. Further-
more, cellular behaviors including attachment-free prolifera-
tion, aerobic viability, and oxidative phosphorylation-reliant
cellularmotility were also regained aftermitochondrial trans-
fer byUC-MSCs.The therapeutic effect of UC-MSCs-derived
mitochondrial transfer was stably sustained for at least 45
passages [98].

The transfer of mitochondria therefore provided a ratio-
nal for the therapeutic use of UC-MSCs for ischemic injury
or diseases linked to mitochondrial dysfunction.

13. Tumorigenic Potential of UC-MSCs

Perinatal stem cells possess the characteristics of both embry-
onic stem cells and adult stem cells as they possess pluripo-
tency properties, as well as multipotent tissue maintenance;
they represent a bridge between embryonic and adult stem
cells [99]. Expression of markers of pluripotency in the UC-
MSCs is higher than in BM-MSCs [8, 11, 72] but lower than
in ESCs [41, 100]. Perhaps this explains the crucial difference
between UC-MSCs and ESCs: UC-MSCs do not induce
tumorigenesis, unlike ESCs. In one of the first works devoted
to the subject, the tumor-producing capabilities of UC-MSCs
were comparedwith humanESCs using the immunodeficient
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mouse model. Animals that received human ESCs developed
teratomas in 6 weeks (s.c. 85%; i.m. 75%; i.p. 100%) that
contained tissues of ectoderm, mesoderm, and endoderm.
No animal that received humanUC-MSCs developed tumors
or inflammatory reactions at the injection sites when main-
tained for a prolonged period (20 weeks) [101]. Moreover,
it was shown that UC-MSCs could be immortalized by
transduction with a lentiviral vector carrying hTERT (human
telomerase reverse transcriptase) catalytic subunit gene but
even then transfected UC-MSCs showed no transformation
into tumors in nude mice [102].

In vitro model of cell culture transformation (cells were
grown in the presence of breast and ovarian cancer cell con-
ditioned medium for 30 days) demonstrated that no changes
were observed in UC-MSCs’ morphology, proliferation rates,
or transcriptome compared to BM-MSCs that transformed
into tumor-associated fibroblasts [103].

Therefore, human UC-MSCs, being nontumorigenic,
have the potential for safe cell-based therapies.

14. Preclinical Studies regarding
the Use of UC-MSCs

Promising results were obtained in recent preclinical studies
regarding the use of UC-MSCs for the treatment of different
diseases using animal models. Table 5 shows the most
interesting data.

Reports from the early period of MSC-based cell therapy
for tissue repair demonstrated that injected MSCs may
survive, engraft, and differentiate into specific cell types and
repair injured tissues. However, subsequent studies sup-
ported the notion that the level of UC-MSCs engraftment in
the host organs of recipient animals was low after systemic
administration and rather high after local administration.
There is little evidence for the differentiation of UC-MSCs
into relevant cells; it may be related to xenogeneic transplan-
tation used in most of the studies. Presently, proposed mech-
anisms of UC-MSCs therapeutic activity include trophic and
paracrine effects on cells of the immune system, remodeling
of the extracellular matrix, angiogenesis, apoptosis, and stim-
ulation of themigration and proliferation of resident progeni-
tor cells [18, 19, 21–29, 31, 104]. All of the studies show amazing
prospects for clinical use of UC-MSCs.

15. Clinical Studies regarding
the Use of UC-MSCs

Currently, the FDA has registered dozens of clinical trials
(phases 1–3) on the safety and efficacy of allogeneic unmodi-
fied UC-MSCs transplantation for the treatment of socially
significant diseases. According to https://www.clinicaltrials
.gov/ data [105] (search queries “wharton jelly msc” and
“umbilical cord msc”, results that contain “blood-derived”
were excluded), UC-MSCs are used for the treatment of
acute myocardial infarction, cardiomyopathies, critical limb
ischemia, bronchopulmonary dysplasia in infants, HIV infec-
tion, diabetes mellitus types I and II, both acute and chronic
liver diseases, autoimmune hepatitis, cirrhosis of various eti-
ologies, ulcerative colitis, severe aplastic anemia, Alzheimer’s

17

13

13

10
7

6

5

5

5

4

3

3

21

Liver disorders
Cardiovascular disorders
Autoimmune disease
Respiratory disorders
Osteoarthritis
Diabetes mellitus
Spinal cord injury

Skin deseases
Brain injury
GvHD
Muscular dystrophy
Alzheimer desease
Other diseases

Figure 3: Number of clinical trials for UC-MSCs based therapy
(https://ClinicalTrials.gov/).

disease, systemic lupus erythematosus, rheumatoid arthritis,
myelodysplastic syndrome, hereditary ataxia, spinal cord
injury, ankylosing spondylitis, osteoarthritis, multiple scle-
rosis, Duchenne muscular dystrophy, acute and resistant
to steroid therapy “graft versus host” reactions, and other
diseases. The diagrammatic representation of clinical appli-
cations of UC-MSCs is shown in Figure 3.

At present, the results of only a small part of the clinical
studies are published. Table 6 shows the most promising
results of clinical trials (phases 2-3).

In all clinical studies UC-MSCs administration had no
side-effects except for several cases of fever. In all clinical
trials, only allogeneic transplantation of UC-MSCs is studied.
This can be explained quite simply: UC-MSCs banking
started a few years ago, so a set of recipient groups for autolo-
gous transplantation is not possible for the present. However,
there is evidence that the efficacy of autologous and allogeneic
MSCs transplantation is comparable [106–108].

The results of clinical trials usingUC-MSCs are encourag-
ing, particularly for treatment of autoimmune and endocrine
diseases.

16. Requirements for the Standardization of
Transplant Based on UC-MSCs

Themain problem with comparing the results of experimen-
tal studies and clinical trials is the lack of a standardized
protocol for the isolation, expansion, and cryopreservation
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Table 6: Clinical studies regarding the use of UC-MSCs.

Disease
Number of clinical trials
(NCT)

The number of recipients
(age)
The number of transplanted
UC-MSCs
The route of administration
The frequency of
administration

Main results Reference

Type 1 diabetes mellitus
NCT01219465

15 (≤25 years)
2,6 ± 1,2 × 106
i.v.
Twice, 4-week interval

(1) During the whole study (24 months), there was no
statistical difference between treatment and control groups
in mean fasting plasma glucose (FPG) and results of
glutamic acid decarboxylase antibody (GADA) test
In treatment group compared to control group:
(2) Mean postprandial plasma glucose (PPG) levels and
glycated hemoglobin HbA1c levels were lower since month
9
(3) Fasting C-peptide levels and mean C-peptide/glucose
ratio (CPGR) levels were higher since month 6
(4) The dosage of insulin per day was progressively
reduced since month 6. In 8 patients, the daily insulin
dosage was reduced by more than 50% of the baseline, and
in 3 patients insulin was discontinued.
(5) No adverse reactions and no ketoacidosis appeared in
treatment group, while in control group ketoacidosis
appeared in 3 patients

[32]

Systemic lupus
erythematosus
NCT01741857

Six (15–60 years)
1 × 106 per 1 kg
i.v.
Once

One month after transplantation:
(1) Serum indoleamine 2,3-dioxygenase (IDO) activity
increased
(2) Percentages of peripheral blood CD3+CD4+T-cells
decreased

[33]

Systemic lupus
erythematosus
NCT00698191

16 (17–55 years)
1 × 106 per 1 kg
i.v.
Once

(1) Significant improvements in the SLEDAI (Systemic
Lupus Erythematosus Disease Activity Index) score in all
patients 3 months after transplantation and in 2 patients
24 months after transplantation
(2) In all patients with lupus nephritis (𝑛 = 15),
proteinuria reduced 3 months after transplantation, 6
months after in 8 patients; 12 months after in 2 patients; 18
months after in 1 patient
(3) In 13 patients with hypoproteinemia, serum albumin
levels increased
(4) In 6 patients with refractory cytopenias, the platelet
count increased
(5) The percentage of CD4+FoxP3+ T-cells (Treg cells) in
peripheral blood increased
(6) Serum levels of TGF𝛽 increased, and serum levels of
IL-4 decreased 3 months after transplantation
(7) There was no significant difference in IL-10 levels
between treatment and comparison groups

[34]

Bronchopulmonary
dysplasia
NCT01297205

Nine (preterm infants with
birth weight of 630–1030 g)
10–20 × 106 per 1 kg
Intratracheally
Once

(1) There were no significant differences in the duration of
intubation between treatment and comparison groups
(2) BPD severity was lower in treatment group, regression
coefficient 1.7
(3) In treatment group, levels of IL-1𝛽, IL-6, IL-8, IL-10,
MMP-9, TNF𝛼, and TGF𝛽1 in tracheal aspirates at day 7
were significantly reduced compared with those at
baseline or at day 3 posttransplantation

[35]



12 Stem Cells International

Table 6: Continued.

Disease
Number of clinical trials
(NCT)

The number of recipients
(age)
The number of transplanted
UC-MSCs
The route of administration
The frequency of
administration

Main results Reference

HIV-1
NCT01213186

Seven (26–49 years)
0,5 × 106 per 1 kg
i.v.
Three transfusions at 1-month
interval

(1) CD4 T-cell counts and CD4/CD8 ratio increased after
6 months of treatment compared with the individual
baseline data as well as with controls
(2) No significant alterations in counts of CD3 and CD8
T-cells, CD19+ B cells, CD3−CD56+ NK cells,
CD3+CD56+NK T-cells, Lin-1−HLA-DR+CD11c+ mDCs,
Lin-1−HLA-DR+CD123+ pDCs, and 𝛾𝛿T cells were
observed
(3) The percentages of naive and central memory T-cells
subsets were gradually increased, whereas the effector
memory and terminally differentiated effector T-cells
subsets were gradually decreased
(4) Significantly decreased PD-1 (programmed cell death 1)
expression on total CD4, CD8 T-cells, and HIV-1-specific
pentamer + CD8 T-cells at months 6, 9, and 12, and
significantly increased BTLA (B-lymphocyte attenuator
and T-lymphocyte attenuator) expression levels on total
CD4 and CD8 T-cells were found at months 9 and 12
(5) Plasma levels of proinflammatory cytokines IFN-𝛼2,
TNF-𝛼, IFN-𝛾, IL-9 (month 6), IL-1ra, IL-12p70, and IL-6
(months 6 and 12), chemokines MIP-1𝛽, IP-10, IL-8,
MCP-1, and RANTES (months 6 and 12), growth factors
PDGF-BB (month 6), and G-CSF and VEGF (months 6
and 12) levels were significantly reduced

[36]

Primary biliary cirrhosis
NCT01662973

Seven (33–58 years)
0,5 × 106 per 1 kg
i.v.
Three transfusions at 4-week
interval

(1) There was a significant decrease in serum alkaline
phosphatase and 𝛾-glutamyltransferase levels at the end of
the follow-up period (48 weeks) as compared with
baseline
(2) No significant changes were observed in serum alanine
aminotransferase, aspartate aminotransferase, total
bilirubin, albumin, prothrombin time activity,
international normalized ratio, or immunoglobulin M
levels

[37]

Acute-on-chronic liver
failure
NCT01218464

24 (24–59 years)
0,5 × 106 per 1 kg
i.v.
Three transfusions at 4-week
interval

(1) The survival rates in patients were significantly
increased during the 48-week follow-up period
(2) There were increased levels of serum albumin and
cholinesterase (12 weeks after the first transfusion),
prothrombin activity (1 week after the first transfusion),
hemoglobin level, and platelet counts (36 weeks after the
first transfusion)
(3) Serum total bilirubin (1 week after the first transfusion)
and alanine aminotransferase (throughout the 48 weeks of
follow-up) levels were significantly decreased

[38]

Myocardial infarction
NCT01291329

58 (18–80 years)
6 × 106
Intracoronary infusion
Once

(1) The absolute increase in the myocardial viability and
perfusion within the infarcted territory was significantly
greater than in the placebo group at four months.
(2) The absolute increase in the global left ventricular
ejection fraction at 18 months was significantly greater
than that in the placebo group.
(3) The absolute decreases in left ventricular end-systolic
volumes and end-diastolic volumes at 18 months were
significantly greater than those in the placebo group

[39]
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of UC-MSCs [42] and of uniform requirements for the final
product. The most complete published list of these require-
ments includes the following items:

(1) Tests for virology (HIV-1/2, HBV, HCV, HTLV-1/2,
HPV, B-19, CMV, and EBV), syphilis, mycoplasma,
and sterility being negative.

(2) Phenotype: the percentages of CD73+, CD90+, and
CD105+ cells ≥ 98% and the percentages of CD34−,
CD45−, HLA-DR−, CD14− or CD11b−, CD79a−, or
CD19− ≤ 2%.

(3) Viability ≥ 80% after thawing.

(4) The content of endotoxin < 2 EU/mL and residual
bovine serum albumin < 50 ng/package.

(5) No significant upregulation of transcriptase (hTERT)
gene and oncogenes during large-scale expansion.

(6) No significant downregulation of tumor suppressor
genes during large-scale expansion.

(7) Confirmed potency [109].

17. UC-MSCs Are Registered
Trademark as UCX„

In the EU, UC-MSCs-based product was registered under
the UCX trademark, manufactured by ECBio (Amadora,
Portugal). Currently, UCX cells are being used as an active
substance for the production of several off-the-shelf biophar-
maceutical medicines at the point of initiating clinical trials.
Research study for the UCX cells continues toward the use
of these cells as an Advanced Therapy Medicinal Product
(ATMP) [110].

18. UC-MSCs Banking for Clinical Use

Due to the properties demonstrated in vitro and in vivo, UC-
MSCs have attracted the attention not only of the experimen-
tal groups but also of clinicians. It is no wonder that biobanks
that had specialized previously only in umbilical cord blood
storage introduced a new type of service, the storage of
cultured MSCs from umbilical cord tissue. Among these
biobanks, there are Cryo-Cell International, Inc. (Tampa
Bay, USA), Precious Cells BioBank HQ (London, UK),
Reliance Life Sciences (Navi Mumbai, India), Thai Health-
Baby (Bangkok, Thailand), Cryosite (Granville, Australia),
Pokrovsky Stem Cells Bank (Saint-Petersburg, Russia), and
other biobanks. The only restriction is that biomaterial must
be obtained by Caesarean section; the total number of stored
samples exceeds tens of thousands [109]. It is considered that
long-term cryopreservation does not change the biological
properties of UC-MSCs [111]. From our point of view, the
optimal solution in terms of future clinical use is simultane-
ous banking of cord blood (as a source of hematopoietic stem
cells [4]) and culturedMSCs from umbilical cord tissue [112].

19. Conclusion

The human umbilical cord is a source of MSCs that have

(i) a unique combination of prenatal and postnatalMSCs
properties;

(ii) no ethical problems with obtaining biomaterial;
(iii) significant proliferative and differentiation potential;
(iv) lack of tumorigenicity;
(v) karyotype stability;
(vi) high immunomodulatory activity.

Currently isolated and cultured umbilical cord MSCs are
a promising storage object of the leading biobanks of the
world, and the number of registered clinical trials on their use
is currently growing.
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