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ABSTRACT
Pulmonary vascular disease is not a single condition; rather it can accompany a variety of pathologies that impact the

pulmonary vasculature. Applying precision medicine strategies to better phenotype, diagnose, monitor, and treat pulmonary

vascular disease is increasingly possible with the growing accessibility of powerful clinical and research tools. Nevertheless,

challenges exist in implementing these tools to optimal effect. The 2023 Grover Conference Series reviewed the research

landscape to summarize the current state of the art and provide a better understanding of the application of precision medicine

to managing pulmonary vascular disease. In particular, the following aspects were discussed: (1) Clinical phenotypes,

(2) genetics, (3) epigenetics, (4) biomarker discovery, (5) application of precision biology to clinical trials, (6) the right ventricle

(RV), and (7) integrating precision medicine to clinical care. The present review summarizes the content of these discussions

and the prospects for the future.

Pulmonary vascular disease is a term that encompasses a
spectrum of pathology impacting the pulmonary vasculature. A
convergent manifestation of pulmonary vascular pathology is
pulmonary hypertension (PH), defined as an elevated resting
mean pulmonary artery pressure (mPAP) above 20mmHg.
Epidemiological data are imperfect but PH may affect in excess
of 1% of individuals globally [1]. Typically, PH presents with
symptoms of exercise intolerance and it is associated with
increased mortality [1]. Patients diagnosed with PH are
assigned to one of five internationally recognized clinical
groups (Table 1). Treatments for Group 1 PH (i.e., pulmonary
arterial hypertension [PAH]) have expanded over the last two
decades [1] but there is major interest in developing new
therapeutic options as well as a particular need for effective
treatments for PH assigned to other clinical groups (i.e., non‐
PAH) and a mission to refine treatment strategies for greater
individualized efficacy.

Precision medicine, defined broadly as “providing the right
treatment at the right time to the right person,” [2] is an aspi-
ration throughout the field of medicine. In reality, it represents
a dynamic process that is continually refined [3]. Deep pheno-
typing is a cornerstone, taking into account features of clinical
history including lifestyle factors as well as diagnostic testing,
functional assessment, and omics profiling [3]. It benefits from
recognizing comorbidity and insights into the underlying
molecular drivers of ill health that enable the discovery of
biomarkers that inform diagnosis, prognosis, and response to
therapy, as well as the development of therapies targeting un-
derlying pathobiology. Precision medicine is bolstered by a
growing body of advanced research and the increasing use of
novel tools that include omics approaches, computational sci-
ence, and electronic health records, among others [4].

The 2023 Grover Conference provided an occasion to consider
in depth the application of precision medicine to pulmonary
vascular disease. New science was presented, key progress was

reviewed, and the future was discussed. The present review
summarizes the content of these discussions.

1 | Clinical Phenotypes of Pulmonary Vascular
Disorders—What We Know and What We
Don't Know

Precision medicine relies upon robust clinical phenotyping.
Since the first World Symposium on Pulmonary Hypertension
(WSPH) in Geneva in 1973 [5] the field has sought to classify
PH according to clinical presentation and underlying pathology.
The current classification adopted by the 2022 European Society
of Cardiology/European Respiratory Society Guidelines recog-
nizes five groups (Table 1), based on hemodynamic measure-
ments obtained by right heart catheterization and the presence
of comobidities [1]. Clinical phenotypes as defined by the
WSPH classification system are presented, as well as challenges
and opportunities to further delineate phenotypes within and
across the classification system.

1.1 | Clinical Phenotypes Defined by
WSPH Groups

Group 1 PH is a highly heterogenous collection of diseases that
range from idiopathic and heritable disease to PH associated
with toxins, congenital heart disease (CHD), schistosomiasis,
and connective tissue disease (CTD) as well as PAH with fea-
tures of venous or capillary involvement (e.g., pulmonary veno‐
occlusive disease and pulmonary capillary hemangiomatosis).
The current diagnostic paradigm rests upon right heart cathe-
terization (performed among patients with suspected PH)
demonstrating precapillary PH (mPAP > 20mmHg with pul-
monary artery wedge pressure [PAWP] ≤ 15mmHg and pul-
monary vascular resistance [PVR] > 2 WU), with exclusion of

2 of 34 Pulmonary Circulation, 2025



other causes of precapillary PH including lung disease and
chronic thromboembolic pulmonary hypertension (CTEPH)
through history, imaging, and other testing [1]. Among patients
with idiopathic, heritable, or drug and toxin‐associated PAH,
vasodilator i.e. vasoreactivity testing at the time of right heart

catheterization is used to identify a subset of patients with
favorable response to calcium channel blockers, and is dis-
cussed in more detail in the section “Integrating Precision
Medicine to Clinical Care.” Risk stratification tools further
delineate phenotypes according to low‐, intermediate‐ or high‐
risk disease, incorporating clinical characteristics including
functional class, 6‐min walk distance (6MWD), and N‐terminal
prohormone of brain natriuretic peptide (NT‐proBNP) [1]. Risk
assessment and comorbidities are used to guide therapy, which
for most patients relies upon pulmonary vasodilators including
phosphodiesterase 5‐inhibitors/guanylate cyclase stimulators,
endothelin receptor antagonists, and prostacyclin analogs/
prostacyclin receptor agonists, and, recently, activin signaling
inhibition [1, 6]. Most patients now commence treatment on
combination therapy and it is not uncommon to change or add
therapy as PH progresses despite best management.

Importantly, the efficacy of therapy in Group 1 PH varies across
patients [1]. For example, systemic sclerosis, the most common
CTD associated with PAH [7] is associated with a poor response
to treatment and worse survival compared to idiopathic PAH or
PAH associated with other forms of CTD [8]. Advanced phys-
iological phenotyping using invasive pressure‐volume analysis
and RV myocardium force‐calcium analysis suggests that pa-
tients with systemic sclerosis and PAH demonstrate depressed
sarcomere function and impaired RV contractile reserve during
exercise relative to those with idiopathic PAH [9–11]. Mean-
while, large cohort studies have demonstrated the existence of
phenotypes within Group 1 PH which share features of other
Groups of PH and impact response to treatment. For example,
the “Pulmonary Vascular Disease Phenomics” (PVDOMICS)
precision medicine initiative demonstrated that approximately
1/4 of patients with Group 1 PH can also be assigned secondary
Groups 2 and 3 contributing conditions [12]. The “Comparative,
Prospective Registry of Newly Initiated Therapies for Pulmo-
nary Hypertension” (COMPERA) cohort suggested that, among
patients with idiopathic PAH, approximately 1/3 may be char-
acterized by a “left heart phenotype” with shared risk factors for
heart failure with preserved ejection fraction (HFpEF) includ-
ing hypertension, obesity, diabetes, and coronary artery disease,
and approximately 1/2 may be characterized by a “cardio-
pulmonary phenotype” with prior smoking history, hypoxemia,
reduced diffusion capacity, and risk factors for left heart disease
[1, 13]. When comparing clinical phenotypes, those with idio-
pathic PAH without left heart or cardiopulmonary features
demonstrate the best response to treatment and survival [13] In
fact, patients with the cardiopulmonary phenotype demonstrate
demographic features, functional impairment, response to
PH medications, and survival that is more similar to that of
patients with Group 3 PH (e.g., worse treatment response,
functional impairment, and survival) than to those with idio-
pathic PAH without cardiopulmonary features [14].

Group 2 PH is the most prevalent form of PH worldwide and
likewise includes a heterogeneous population of patients [1].
Group 2 PH may arise from disease states including HFpEF,
heart failure with reduced ejection fraction (HFrEF), valvular
heart disease, and congenital conditions contributing to post-
capillary PH [1]. It is defined by mPAP> 20mmHg with
PAWP> 15mmHg [1]. While the presence of PH among pa-
tients with left heart disease is common and increases mortality,

TABLE 1 | Classification of PH.

Group 1: PAH

Idiopathic

Non‐responders at vasoreactivity testing

Acute responders at vasoreactivity testing

Heritable

Associated with drugs and toxins

Associated with:

Connective tissue disease

HIV infection

Portal hypertension

CHD

Schistosomiasis

PAH with features of venous/capillary involvement (pulmonary
veno‐occlusive disease/pulmonary capillary hemangiomatosis)

Persistent PH of the newborn

Group 2: PH associated with left heart disease

Heart failure:

With preserved ejection fraction

With reduced or mildly reduced ejection fraction

Valvular heart disease

Congenital/acquired cardiovascular conditions leading to post‐
capillary PH

Group 3: PH associated with lung diseases and/or hypoxia

Obstructive lung disease or emphysema

Restrictive lung disease

Lung disease with mixed restrictive/obstructive pattern

Hypoventilation syndromes

Hypoxia without lung disease (e.g. high altitude)

Developmental lung disorders

Group 4: PH associated with pulmonary artery obstructions

CTEPH

Other pulmonary artery obstructions

Group 5: PH with unclear and/or multifactorial
mechanisms

Hematologic disorders

Systemic disorders

Metabolic disorders

Chronic renal failure with or without hemodialysis

Pulmonary tumor thrombotic microangiopathy

Fibrosing mediastinitis

Note: Adapted from 2022 European Society of Cardiology and European
Respiratory Society Guidelines for the Diagnosis and Treatment of Pulmonary
Hypertension [1].
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there are no recommended PH‐specific treatments [1]. In fact,
Group 1 PH medications are mostly contraindicated in Group 2
PH due to lack of demonstrated efficacy in randomized con-
trolled trials and in some cases evidence of harm [1]. The less
favorable response to pulmonary vasodilators observed in
Group 2 PH may relate in part to underlying differences in
pulmonary vascular remodeling arising in response to chroni-
cally elevated left heart filling pressures. In particular, intimal
thickening of pulmonary veins has a strong association with
pulmonary artery pressure elevation [15]. In turn, pulmonary
vein remodeling can contribute to an increased transcapillary
hydrostatic pressure gradient which can predispose patients to
pulmonary edema in response to pulmonary vasodilators [15].
Beyond pulmonary vascular remodeling, elevated PAWP
increases the pulsatile afterload of the RV which contributes to
eventual RV failure [16]. As in Group 1 PH, advanced physio-
logical phenotyping can elucidate distinct physiology and phe-
notypes. For example, myocardial force analysis of RV
cardiomyocytes suggests that patients with PH associated with
HFrEF demonstrate reduced myosin response to preload (i.e.,
less Frank‐Starling reserve) relative to controls [17]. Addition-
ally, cardiomyocytes from patients with PH associated with
HFrEF with compensated vs decompensated clinical RV func-
tion can be differentiated by calcium‐activated isometric tension
[17]. Meanwhile, among patients with HFpEF, pressure‐volume
analysis reveals increased RV myocardial stiffness and, during
hand‐grip exercise, prolonged RV diastolic relaxation which
impairs RV filling and limits cardiac output augmentation [18].
The latter suggests that RV diastolic dysfunction contributes to
symptoms and pathobiology in HFpEF [18]. Further efforts to
phenotype PH due to left heart disease as well as to investigate
therapeutics to modulate physiologic abnormalities are needed
to improve the poor outcomes associated with Group 2 PH.

In Group 3 PH, patients with PH associated with lung diseases
and/or hypoxia are commonly classified according to under-
lying disease as well as hemodynamic severity (i.e., “non‐
severe” vs “severe”) [1]. A distinct “pulmonary vascular phe-
notype” among patients with lung disease has been proposed,
characterized by mild impairments in spirometry but low dif-
fusion of carbon monoxide, hypoxemia, and exercise limitation
[1]. However, even non‐severe PH among patients with lung
disease is associated with adverse effects on symptoms and
survival [1]. In the PVDOMICS cohort, patients with
PH associated with lung disease demonstrated poorer prognosis
than those with other types of PH [12]. Additionally, a pro-
portion of PVDOMICS participants with predominant Group 3
PH had a mixed phenotype with secondary sources of PH due to
comorbidities associated with Groups 1 (20%) and 2 (24%) [12].
Meanwhile, limited treatment options exist. Inhaled treprostinil
increased functional capacity among patients with interstitial
lung disease [19] but was associated with increased serious
adverse events among patients with chronic obstructive pul-
monary disease (COPD) [20]. Outside of inhaled treprostinil for
patients with PH associated with interstitial lung disease, pul-
monary vasodilators are not specifically recommended for
Group 3 PH [1]. Nevertheless, many patients with Group 3
PH are prescribed vasodilators [21]. Among patients with
PH and COPD enrolled in the COMPERA registry who received
treatment with pulmonary vasodilators, 28.5% of patients
demonstrated improvement in functional capacity, and patients

who demonstrated treatment response demonstrated improved
survival compared to those who did not demonstrate treatment
response [22]. Coupled with PVDOMICS, such findings suggest
the existence of overlapping phenotypes, with some Group 3
patients demonstrating Group 1 treatment response character-
istics and vice versa. Further precise phenotyping offers the
potential to identify subgroups of patients who may benefit
from targeted treatment.

In Group 4 PH, precapillary PH arises from chronic thrombo-
embolic PH or other pulmonary artery obstructions. Approxi-
mately 3% of acute pulmonary embolism survivors develop
CTEPH [23]. A major challenge relates to a better under-
standing of the determinants that trigger transition from acute
pulmonary embolism to CTEPH. Careful examination of the
index computed tomography scan is critical to ascertain signs of
already existing CTEPH [24] and to identify completely occlu-
sive acute pulmonary embolism as an imaging phenotype with
a threefold increased odds of progression to chronic disease
[25]. This progression arises from more than simple persistence
of the pulmonary emboli, additionally reflecting distal pulmo-
nary vascular remodeling [23]. Physiologically, this is observed
through the greater PVR relative to the degree of macroscopic
pulmonary vascular obstruction observed in CTEPH compared
to acute pulmonary embolism [23]. The pathophysiology is
incompletely understood but depends in part upon shear stress
and endothelial dysfunction [23]. Specifically, redistribution of
pulmonary blood flow to non‐obstructed areas and collateral
circulation with systemic pressures to pulmonary vasculature
distal to occluded areas are postulated to precipitate micro-
scopic vasculopathy [23]. Emerging evidence suggests a key role
of chronic inflammation including macrophage and T‐cell
modulation of smooth muscle cells in the pathogenesis of
microvascular remodeling [26]. Some patients may have
symptoms from chronic thromboembolic pulmonary vascular
disease without resting PH [27]. Careful exercise testing to
ascertain sub‐phenotypes of ventilatory inefficiency, exercise‐
induced PH, or both can suggest potential benefit from treat-
ment with pulmonary endarterectomy or balloon pulmonary
angioplasty [27]. However, at present our ability to detect and
treat microscopic vasculopathy is limited. Advanced imaging
techniques, such as hyperpolarized gas magnetic resonance
imaging, may in the future refine our ability to clinically detect
microvasculopathy [28]. Additionally, objective tools are needed
to define the clinical phenotypes of operable and technically
inoperable CTEPH and to identify those at higher risk for
residual PH after pulmonary endarterectomy. Such tools may
leverage deeper clinical phenotyping, advanced imaging, and/or
multi‐omic techniques.

Group 5 PH, which includes disease of unclear and/or multi-
factorial mechanisms, is a heterogeneous group of disorders.
Sickle cell disease serves as an example of a Group 5 entity
which itself is associated with multiple clinical and hemo-
dynamic phenotypes of PH [29]. PH occurs in 6%–11% of adults
with sickle cell disease and increases mortality [30]. Sustained
hemolysis with pulmonary vascular iron accumulation and red
blood cell and endothelial microparticle‐induced endothelial
dysfunction contributes to pulmonary vascular disease patho-
genesis [31]. Additionally, vaso‐occlusive crises with associated
tissue ischemia as well as oxidative stress and inflammatory
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signaling contribute to pulmonary and systemic vasculopathy
[29, 32]. Resultant PH is precapillary in ~40% of patients and
postcapillary in ~60% [30] Precapillary PH can represent a
Group 1‐like phenotype or CTEPH [33] as patients with sickle
cell disease suffer a significantly increased risk of venous
thromboembolism [30]. Screening for PH through TTE can be
challenging in sickle cell disease, as associated high cardiac
output may lead to overestimation of tricuspid regurgitation
pressure gradient [1]. Even if PH is confirmed through right
heart catheterization, treatment strategies are not clearly
defined [30]. Case series suggest a possible role for vasodilators
in the setting of precapillary hemodynamics, but a randomized
controlled trial of phosphodiesterase 5‐inhibitor (utilizing TTE
but not right heart catheterization for diagnosis of PH) was
stopped early due to increased vaso‐occlusive crises [30]. Fur-
ther investigations are needed to differentiate clinical pheno-
types of Group 5 PH, including sickle cell disease‐associated
PH, and to identify targeted therapies [30].

1.2 | Future Directions for Clinical Phenotyping
in PH

While the classification system discussed above is the standard of
care for categorizing and treating PH, opportunities remain to
improve upon clinical phenotyping. The current strategy relies on
hemodynamics, yet phenotyping by hemodynamics at a single time
point, even when supported by imaging and other clinical data, can
struggle to assign almost 40% of patients to a single group [12]. As
highlighted above, patients within a Group may share phenotypic
characteristics with a separate Group. Additionally, underlying
diseases may be associated with multiple Groups of PH. For ex-
ample, in addition to Group 1 PH, systemic sclerosis is also asso-
ciated with Groups 2 and 3 PH, where it is associated with
particularly poor survival [34, 35]. Group 3 PH includes patients
with COPD but COPD may be accompanied by left heart disease
and thus some COPD patients may be categorized as Group 2
PH [36]. These observations highlight heterogeneity within the ex-
isting PH classification and emphasize the case for more precise
phenotyping methods. Modern tools leveraging computational/
machine learning approaches to health records, imaging, omics
profiling, and other tools offer the potential to identify novel clinical
phenotypes [4, 37–39]. For example, proteomic and transcriptomic
analyses have identified molecular phenotypes of PAH associated
with disease risk and independent from existing Group 1
PH subtypes [38, 39]. A recent network analysis of a large cohort of
patients with a mPAP of 19–24mmHg identified subgroups of pa-
tients with shared features and identified pulmonary arterial com-
pliance across subgroups as a key determinant of survival [40].
Ongoing efforts including PVDOMICS seek to integrate deep phe-
notyping to discover novel endophenotypes and redefine
PH classification [41]. The challenge will be to optimize such
analysis and integrate it into clinical care [4].

1.3 | Pediatric PH

Pediatric phenotypes of PH represent a special challenge. While
pediatric disorders are included in the WSPH classification
schemes [1, 42], the heterogeneous nature of pediatric disorders

poses challenges to categorization within a traditional adult
framework. In 2011 the Pulmonary Vascular Research Institute
Pediatrics taskforce developed a comprehensive pediatrics‐
specific classification system (the Panama Classification) [43].
While the pediatric Panama Classification allows for more
precise phenotyping, it still does not fully account for the
overlap of multifactorial etiologies that may be somewhat un-
ique to pediatric PH [43]. For example, TBX4‐related disease,
bronchopulmonary dysplasia (BPD), congenital diaphragmatic
hernia, and trisomy 21 offer examples of heterogeneity of PH in
infants and children, with contributions from genetics and
developmental abnormalities as well as postnatal injury and
inflammation. As a result, these conditions may carry physio-
logic features of WSPH groups 1, 2, and 3 PH across a spectrum
of severity (Table 2).

Across heterogenous disorders, abnormal or impaired lung
development is a critical contributor to pediatric PH and
impacts disease phenotype, severity, and outcomes [54]. Lung
development extends from embryogenesis through adolescence
[46]. BPD and pediatric acute respiratory distress syndrome
(ARDS) represent two pediatric diseases which develop in the
setting of pulmonary vascular injury during different stages of
lung development. BPD is defined based upon requirements for
respiratory support at 36 weeks post‐menstrual age in infants
born prematurely [55] while pediatric ARDS excludes patients
diagnosed with perinatal lung disease [56]. In both diseases,
hyperoxia and mechanical ventilation contribute to inflamma-
tion, edema, and abnormal growth and repair [55, 57], leading
to long‐term complications including PH. Survival is better in
pediatric compared to adult ARDS, which may relate in part to
greater preservation of the pediatric pulmonary endothelial cell
barrier function during inflammatory injury [58]. Additionally,
some forms of PH in infants and children, such as that associ-
ated with BPD, can resolve with age [51] highlighting the un-
ique role that ongoing lung development plays in pediatric
PH relative to adult PH. Ultimately, the comparison of clinical
phenotypes across a spectrum of pulmonary vascular responses
to lung injury, including BPD and pediatric vs adult ARDS,
offers the opportunity to investigate overlapping and unique
mechanisms that may inform the development of novel
therapies.

2 | Genetics of Pulmonary Vascular Disorders:
From Family Linkage Analyses to Population‐Scale
Association Studies

The focus of genetic studies underlying pulmonary vascular
pathobiology has been in adult Group 1 PAH. Despite best ef-
forts, less than 1/3 of cases have an identified genetic mutation
[59]. The most common gene affected remains that encoding
the bone morphogenetic protein receptor type 2 (BMPR2;
Table 3).

2.1 | BMP Signaling Pathway

The study of families with affected and unaffected individuals
pioneered the discovery of disease‐causing heterozygous
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TABLE 3 | Genes Associated with PAH.

Gene Pathway/Product
Molecular
mechanism Clinical associations

BMPR2 (Bone morphogenetic
protein receptor 2) [60, 61]

TGF‐β and BMP Haploinsufficiency Mutations observed in 70%–80%
of patients with heritable PAH
and 10%–25% of patients with

idiopathic PAH [62–64];
Penetrance: 14% (males) –42%

(females) [62]

ACVRL1 (ALK1; Activin
receptor like 1) [65, 66]

TGF‐β and BMP Haploinsufficiency Associated with hereditary
hemorrhagic telangiectasia [1]

ENG (Endoglin) [65, 66] TGF‐β and BMP Haploinsufficiency Associated with hereditary
hemorrhagic telangiectasia [1]

SMAD9 (Smad family
member 9) [65, 66]

TGF‐β and BMP Loss of function

CAV1 (Caveolin 1) [67] Caveolae Dominant negative Associated with lipodystrophy [1]

KCNK3 (Potassium two pore
domain channel subfamily K
member 3) [68]

Potassium channel TASK‐1 Loss of function

EIF2AK4 (Eukaryotic
translation initiation factor 2α
kinase 4) [68]

Stress protein synthesis Loss of function Biallelic mutations observed in
~30% of patients with pulmonary

veno‐occlusive disease, and
mono‐ or biallelic mutations

observed in ~2% of patients with
PAH [69]

Penetrance: nearly complete in
pulmonary veno‐occlusive

disease (autosomal
recessive) [59]

ABCC8 (ATP binding cassette
subfamily C member 8) [70]

Regulatory subunit of
potassium channel

Loss of function

KLK1 (Tissue kallikrein) [64] Bradykinin

GGCX (Gamma glutamyl
carboxylase) [64]

Posttranslational
modification of vitamin
K‐dependent proteins

AQP1 (Aquaporin 1) [71] Aquaporin

ATP13A3 (ATPase 13A3) [71] Transmembrane cation
transporter

GDF2 (Growth differentiation
factor 2) [71]

TGF‐β and BMP Haploinsufficiency Associated with hereditary
hemorrhagic telangiectasia and

CHD [1, 72]

SOX17 (SRY‐box transcription
factor 17) [71]

Wnt/β‐catenin Haploinsufficiency Associated with CHD [73]

TBX4 (T‐box transcription
factor 4) [74, 75]

Fibroblast growth factor Haploinsufficiency Associated with TBX4 syndrome
and small patella syndrome

[73, 76]. Mutations observed in
~1% of adult patients with PAH
and ~8% of pediatric patients with

PAH [64, 73]

HLA‐DPA1/HLA‐DPB1 (Major
histocompatibility complex,
class II, DP alpha 1) [77]

Class II major
histocompatibility complex,

upstream of SOX17

FBLN2 (Fibulin 2) [78] Fibulin

(Continues)
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mutations in BMPR2, a key receptor of the transforming growth
factor‐beta (TGF‐β) and bone morphogenetic protein (BMP) sig-
naling pathway [60, 61]. It is now estimated that 70%–80% of
heritable PAH and about 25% of idiopathic PAH carry pathogenic
mutations in BMPR2 [62, 63]. Longitudinal analysis of families
affected by a BMPR2 mutation demonstrates that females with a
BMPR2 mutation are three times more likely than males to
develop the disease with an estimated incomplete penetrance of
42% and 14% in females and males, respectively [62]. Genetic
anticipation, or earlier age of diagnosis in subsequent generations,
was previously thought to occur in heritable PAH, but more
recent analyses suggest a mean age of diagnosis of ~35 years
without significant change in subsequent generations [76] BMPR2
mutation carriers demonstrate a ~2% incidence of PAH/year, and
longitudinal studies to‐date suggest maintenance of low‐risk sta-
tus in those identified and initiated on treatment following
diagnosis through asymptomatic screening [80]. To date, more
than 600 pathogenic and likely pathogenic variants in BMPR2
have been described [81]. The pathogenic role of BMPR2 in PAH
has led to further family‐based genetic investigations of other
proteins in the TGF‐ß and BMP signaling protein‐protein inter-
action network, identifying variants in related genes such as
ACVRL1 (aka ALK1), ENG, and SMAD9 [65, 66].

2.2 | Rare Genetic Variants Linked With PAH

Recent exome sequencing studies have identified key rare
protein‐coding variants with large effect sizes associated with
monogenic heritable PAH; namely genes encoding caveolin‐1
(CAV1) [67] the potassium channel TASK‐1 (TWIK‐related acid‐
sensitive potassium channel‐1; KCNK3) [82] and GCN2 (general
control nonderepressible‐2, EIF2AK4) (Table 3) [68]. The pre-
dominant mode of inheritance appears to be autosomal domi-
nant, predisposing to haploinsufficiency [63]. Biallelic variants in
EIF2AK4 underlie pulmonary veno‐occlusive disease and pul-
monary capillary hemangiomatosis [69]. Whole exome
sequencing of larger patient cohorts have identified three addi-
tional PAH candidate genes; ABCC8, encoding ATP‐binding
cassette subfamily C member 8 [70]. KLK1, encoding kallikrein 1,
and GGCX, encoding gamma‐glutamyl carboxylase [64].

The United Kingdom 100,000 Genomes Project (Genomics
England Ltd.) undertook whole genome sequencing of over
13,000 individuals, including more than 1000 Group 1 PH cases
[83, 84]. The data have enabled the discovery of a number of
novel variants as well as common genetic variation associated
with PAH. In terms of rare variants, pathogenic or likely
pathogenic variation has been observed in: AQP1, encoding the

membrane channel aquaporin‐1; ATP13A3, encoding the P‐type
ATPase 13A3; GDF2, a key ligand of the TGF‐β signaling
pathway bone morphogenetic protein 9 (BMP9); and SOX17,
encoding the transcription factor SRY‐box 17 [71]. TBX4, pre-
viously associated with PAH and small patella syndrome, was
the third most mutated gene in the cohort, triggering additional
mechanistic studies [74, 75]. In terms of common variation, two
loci associated with PAH; the HLA‐DPA1/HLA‐DPB1 locus
within the class II major histocompatibility complex and a locus
upstream of SOX17 [77]. The latter harbored epigenetic open
chromatin and histone modification profiles characteristic for
enhancers [77]. Further functional studies in human pulmo-
nary artery endothelial cells (PAECs) confirmed that CRISPR‐
mediated manipulation targeting the enhancer region specifi-
cally repressed SOX17 expression through differential binding
of candidate transcription factors [85]. These findings demon-
strate how both rare protein‐coding variants as well as common
regulatory noncoding variants can affect expression and func-
tion of the same gene.

Statistical power is a limiting factor in detecting genotype‐
phenotype associations. A large international effort involving more
than 4000 patients with PAH has identified two additional genes;
FBLN2, encoding fibulin 2, and PDGFD, encoding platelet‐derived
growth factor D [78]. A Bayesian analysis has been employed to
validate a previously suggested association of rare, high‐impact
loss‐of‐function variants in the kinase insert domain receptor
(KDR) gene with significantly reduced transfer coefficient for
carbon monoxide and significantly later disease onset [71, 79].
KDR encodes the vascular endothelial growth factor receptor 2
(VEGFR2), an essential player for the regulation of angiogenesis,
vascular development, permeability, and homeostasis [79].

With a growing number of genetic variants associated with
PAH, a working group was formed out of the International
Consortium for Genetic Studies in PAH (PAH‐ICON, pahicon.
com) to evaluate the strength of evidence supporting gene‐
disease associations using a standardized evidence‐based clas-
sification system as part of the Clinical Genome (ClinGen)
resource. The results of gene‐disease association evaluations are
communicated with the broader scientific community online
(https://clingen.info/affiliation/40071/) and through publica-
tions [80, 81].

2.3 | Genetic Variants in Pediatric PAH

While BMPR2 mutations contribute to pediatric and adult
hereditary and idiopathic PAH with similar frequency, rare

TABLE 3 | (Continued)

Gene Pathway/Product
Molecular
mechanism Clinical associations

PDGFD (Platelet derived
growth factor D) [78]

PDGF

KDR (Kinase insert domain
receptor) [79]

VEGF Haploinsufficiency Associated with reduced diffusion
of carbon monoxide and later

disease onset [71, 79]

Note: *Molecular mechanism is provided where known.
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genetic variants account for a greater proportion of pediatric
idiopathic PAH (Figure 1) [73, 76]. De novo variants in both
known risk genes and those not previously implicated in PAH
contribute to ~15% of pediatric‐onset PAH [73]. The genetic
burden is higher in children, owing at least in part to the
association with developmental lung disease and CHD. Patho-
genic TBX4 variants are common and account for ~8% of
pediatric idiopathic PAH but also are recognized in children
with a spectrum of orthopedic abnormalities and lung disease in
addition to PH [45, 73, 76, 86]. Genetic variants may also con-
tribute to PH associated with CHD, with recent identification of
SOX17 variants in patients with CHD and pediatric‐onset PAH
[73]. Patients with SOX17 variants and CHD may have more
severe PAH that presents at a younger age than those without
CHD [87]. Overall, pediatric PAH has genetic etiologies which
are frequently distinct from adult PAH, and further genetic
characterization of pediatric and adult populations is needed to
understand the frequency of genetic variants and their full
spectrum of contribution to PAH and associated comorbidities.

3 | Understanding Epigenetics and Their Role in
Precision Medicine

There is increasing evidence supporting the crucial role epige-
netic mechanisms play in mediating gene‐environment inter-
actions. Epigenetics encompasses heritable modifications to
gene activity that do not alter the primary DNA sequence or
genotypes. These modifications include DNA methylation,
histone acetylation and methylation, the function of noncoding
RNAs including microRNAs (miRNAs) and long noncoding

RNAs (lncRNAs), and RNA editing. Examples of epigenetic
mechanisms are considered with regards to pulmonary vascular
disease understanding, biomarker identification, and the
potential discovery of novel therapies (Table 4).

3.1 | Epigenetic Mechanisms in Pulmonary
Vascular Disease

Multiple noncoding RNAs have been implicated in the patho-
genesis of pulmonary vascular disease including through effects
on PASMCs [116], PAECs (including endothelial‐to mesen-
chymal cell transition [EndoMT]) [117, 118], and fibroblasts
[119]. MiR‐130/301 has been proposed to be a master regulator
for cell proliferation through signal transducer and activator of
transcription 3 (STAT3) and peroxisome proliferator‐activated
receptor gamma (PPARγ) signaling and can activate PASMC
vasoconstriction and cell proliferation [96, 97]. Additionally,
miR‐130/301 is implicated in a positive feedback loop in heri-
table PAH by which vascular extracellular matrix stiffening
results in further extracellular matrix remodeling [98, 120].
MiR‐9 and the lncRNA ribosomal protein S4‐like (RPS4L) have
been implicated in hypoxia inducible factor‐1α (HIF‐1α) stim-
ulated PASMC proliferation [89, 106], and the miR‐21 family
has been implicated in other pathways of hypoxic PASMC
proliferation [91, 92]. EndoMT has been shown to be affected by
the lncRNA MIR503HG [105] as well as the actions of lncRNA
metastasis associated lung adenocarcinoma transcript 1
(MALAT1) and miR‐145 [99]. The effects of MALAT1/miR‐145
are mediated in part through TGF‐β receptor type 2 expression
[99]. Meanwhile, the miR‐17/92 family has been shown to post‐

FIGURE 1 | Prevalence of identified genetic factors in pediatric vs. adult PAH. In 443 pediatric and 2628 adult cases of PAH from the Columbia

University Irving Medical Center and National Biological Sample and Data Repository for PAH (aka the PAH Biobank) cohorts, de novo and

inherited variants were identified in a greater subset of pediatric relative to adult patients. Figure reproduced from “Genetics and Genomics of Pediatric

Pulmonary Arterial Hypertension” by CL Welch and WK Chung, Genes (Basel), 2020 Oct 16;11(10):1213 [88].
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TABLE 4 | Epigenetic modulators with suggested roles in PH.

miRNA/
lncRNA Function Cell specificity

Identified diagnostic and
therapeutic implications

miRNA

miR‐9 [89] Regulates proliferation and
vasoconstriction under conditions of
hypoxia through HIF‐1α signaling

PASMC

miR‐17/92 [90] Regulates proliferation and apoptosis
by decreasing BMPR2 protein
expression through IL‐6/STAT3

signaling

PAEC

miR‐21 [91, 92] Regulates proliferation and
migration under conditions of

hypoxia through PPARγ and BMPR2
signaling

PASMC

miR‐26a
[93, 94]

Regulates proliferation, migration,
and autophagy under conditions of
hypoxia through HIF‐1α signaling

PASMC Plasma levels reduced in PAH and
correlate with 6MWD [93]; In rats

with hypoxia‐induced PH,
intratracheal administration of
adeno‐miR‐26a‐5p improved RV

hypertrophy and pulmonary vascular
remodeling [94]

miR‐124 [95] Regulates fibroblast glycolysis and
proliferation through pyruvate

kinase isoform splicing

Pulmonary adventitial
fibroblasts

Pharmacologic manipulation of
pyruvate kinase isoform activity

rescued mitochondrial
reprogramming and decreased cell

proliferation [95]

miR‐130/
301 [96–98]

Regulates cell proliferation and
vasoconstriction through STAT3,
apelin, and PPARγ signaling

PASMC, PAEC, and PA
adventitial fibroblasts

miR‐145 [99] Represses EndoMT through TGF‐β
and SMAD3 signaling

PAEC

miR‐150
[100, 101]

Regulates proliferation and
migration under conditions of

hypoxia through HIF‐1α signaling

PASMC Plasma levels reduced in PAH and
correlate with mortality [100]

miR‐204 [102] Regulates proliferation and apoptosis
through STAT3 signaling

PASMC Delivery of nebulized synthetic miR‐
204 to lungs of rats with

monocrotaline‐induced PH resulted
in improved hemodynamics [102]

miR‐210 [103] Induces mitochondrial metabolic
dysregulation via iron‐sulfur cluster

assembly repression

PAEC Extracellular delivery by
macrophages results in pulmonary
endothelial engraftment, suggesting
the potential for non‐tissue‐specific
inhibition to provide tissue‐specific

benefit [103]

lncRNA

H19 [104] Regulates cardiac remodeling
through multiple pathways

Cardiomyocytes and
cardiac fibroblasts

Plasma levels increased in PAH and
correlate with mortality [104]; In
monocrotaline and PA banding rat
models, suppression reduced RV
remodeling and improved RV

function [104]

MALAT1 [99] Promotes EndoMT through TGF‐β
signaling

PAEC

(Continues)
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transcriptionally downregulate BMPR2 expression in PAECs
and thus contribute to PH development [90]. Finally, silenced
miR‐124 in human and bovine PH pulmonary adventitial fi-
broblasts contributes to fibroblast metabolic reprogramming via
regulation of splicing of pyruvate kinase isoforms, resulting in
increased glycolysis and proliferation [95, 121]. Interestingly, in
addition to miRNA regulating gene expression within PASMCs,
PAECs, and fibroblasts, circulating miRNA may play a role in
disease pathogenesis through endocrine effect. For example, the
endogenous transport of miR‐210 following wildtype bone
marrow transplant into miR‐210 knockout mice resulted in
pulmonary vascular engraftment of miR‐210‐positive interstitial
macrophages and the development of PH [103]. Thus, long‐
range uptake of miRNAs may play a role in the development of
PAH [103].

Changes in histone acetylation through histone acetyl-
transferases and histone deacetylases (HDACs) have been
identified in PAH‐associated genes with resultant changes in
vascular remodeling [122]. For example, lung tissue from pa-
tients with idiopathic PAH demonstrates decreased nuclear
HDAC and increased nuclear histone acetyltransferase activity
in pulmonary microvascular endothelial cells [123]. HDACs
play a role in hypoxia‐induced repression of BMP signaling in
human PASMCs [107] and HDACs regulate HIF‐2α‐dependent

PAEC metabolic reprogramming which contributes to histo-
logical and hemodynamic manifestations of PH [108]. Inhibi-
tion or silencing of Class I HDACs in a monocrotaline model of
PAH reduced PDGF‐induced PASMC proliferation and migra-
tion [109] and inhibition of HDACs in a bovine model of
PH reduced fibroblast inflammatory signaling and monocyte
recruitment [110]. Histone‐related epigenetic modifications are
also mediated by members of the bromodomain and
extraterminal‐containing (BET) protein family which “read”
acetylated histone tails and facilitate the assembly of tran-
scription complexes [122]. Upregulation of bromodomain‐
containing protein 4 (BRD4) has been observed in distal pul-
monary arteries and PASMCs in PAH patients and contributes
to a hyperproliferative, apoptosis‐resistant, inflammatory phe-
notype [111, 112]. Thus, histone modifications contribute to
disease pathogenesis through multiple mechanisms targeting
multiple pulmonary vascular cells.

DNA methylation is well‐documented to contribute to epige-
netic regulation of a variety of diseases, and examples have
likewise been characterized in pulmonary vascular disease
[124]. Methylation‐induced attenuation of mitochondrial
superoxide dismutase 2 (SOD2) expression has been implicated
in a fawn‐hooded rat model of PAH to contribute to prolifera-
tive, apoptosis‐resistant PASMCs [113]. Hypermethylation of

TABLE 4 | (Continued)

miRNA/
lncRNA Function Cell specificity

Identified diagnostic and
therapeutic implications

MIR503HG
[105]

Represses EndoMT in part through
Polypyrimidine Tract Binding

Protein 1‐regulated RNA processing

PAEC Overexpression of MIR503HG in
Sugen/Hypoxia mice reduced

EndoMT [105]

RPS4L [106] Regulates proliferation and
migration under conditions of

hypoxia through HIF‐1α signaling

PASMC

Histone modifications

HDACs [107] Represses BMP signaling in hypoxia PASMC

Class I
HDAC [108]

Represses iron‐sulfur biogenesis
protein in a HIF‐2α dependent
mechanism, causing metabolic

reprogramming and proliferation

PAEC

Class I
HDAC [109]

Mediates PDGF‐induced
proliferation and migration

PASMC Class I HDAC inhibitors counteract
PDGF‐induced proliferation [109]

Class I
HDAC [110]

Mediates pro‐inflammatory
phenotype

Pulmonary adventitial
fibroblasts

Class I HDAC inhibitors decreased
cytokine/chemokine expression [110]

BET protein family

BRD4
[111, 112]

Promotes cell survival and
proliferation

Distal pulmonary
arteries, PASMCs

Inhibition reduced PASMC
proliferation and increased apoptosis
and improved pulmonary vascular
hemodynamics in experimental

models [111,112]

DNA methylation

SIN3a
[113, 114]

Increases BMPR2 promoter region
methylation

PASMCs

TET2 [115] Demethylates DNA Peripheral blood
monocytes
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the promoter region of BMPR2 has been observed in patients
with heritable PAH [125] and the transcriptional regulator of
Switch‐Independent 3a (SIN3a) was demonstrated in animal
model and human PASMCs to regulate BMPR2 methylation
[114]. Mutations in ten‐eleven translocation methylcytosine‐
dioxygenase‐2 (TET2), a DNA demethylation enzyme, have
been observed in some PAH patients, and decreased TET2 ex-
pression was common in a cohort of patients with PAH [115].
In an animal model, TET2 knockout resulted in inflammation
and pulmonary vascular remodeling consistent with PAH [115].

3.2 | Potential Role of Epigenetic Modulators as
Biomarkers and Therapy

In addition to contributing to disease pathogenesis, epigenetic
modulators may serve as a biomarker for risk stratification or
molecular classification in PAH. Noncoding RNAs and DNA
methylation have potential as biomarkers due to their stability,
ease of collection, and detection at low levels via amplification
[93, 124, 126]. For example, plasma levels of miR‐26a have been
demonstrated to be significantly reduced in PAH [93]. More-
over, levels of miR‐26a correlated with 6MWD [93]. Plasma
levels of lncRNA H19 are increased in patients with PAH rel-
ative to healthy controls [104]. H19 appears to have
cardiomyocyte‐specific effects, and thus provides a unique
potential biomarker for RV maladpation [104]. Increased levels
identified patients with RV dysfunction, and higher levels pre-
dicted worse survival [104]. Finally, plasma levels of miR‐150
are reduced in patients with PAH and correlate with mortality
[100]. The latter finding was observed through an microarray
screen of plasma samples of patients with PAH (n= 8) versus
healthy controls (n= 8) and validated in two larger cohorts of
patients with PAH [100]. MiR‐150 levels predicted mortality
independent of clinical markers of risk [100] suggesting the
potential role for miR‐150 as a biomarker which can improve
upon existing risk stratification. DNA methylation differences
in the granulysin gene have been demonstrated between pa-
tients with pulmonary veno‐occlusive disease versus PAH [127].
Increasing the accessibility of epigenetic marker detection in
the future will hopefully lead to larger studies confirming their
use as a biomarkers and increasing their role in precision
medicine approaches.

Beyond their potential role as disease biomarkers, epigenetic
mechanisms have been investigated with respect to therapy.
Noncoding RNAs have therapeutic potential due to their small
size, conserved sequence, and preclinical evidence in PH and
other diseases [128, 129]. Treatment of PASMCs with anti‐miR‐
21 can inhibit hypoxia‐induced proliferation [91, 92]. Restora-
tion of miR‐200 maintains smooth muscle cell quiescence and
represses proliferation, migration, and neointima formation
[130]. In rodent models of PH, silencing lncRNA H19 can
improve RV hypertrophy and capillary rarefication [104]. His-
tone modification may also have therapeutic potential. Broad‐
spectrum HDAC inhibitory molecules such as valproic acid and
suberoylanilide hydroxamic acid (vorinostat) prevent and par-
tially reverse PAH in rats through anti‐proliferative and anti‐
inflammatory effects [131]. In animal models, HDAC inhibition
can also improve ventricular remodeling [132] although these

findings have not been consistent across HDAC inhibitor agents
and experimental models [122]. Finally, inhibition of BRD4 has
been demonstrated to improve pulmonary vascular remodeling,
hemodynamics and RV remodeling in experimental PAH [111,
112]. Despite the promise of utilizing noncoding RNAs, HDAC
inhibitors, BET inhibitors, and other therapies leveraging epi-
genetic effects, the efficacy, delivery method, and minimization
of off‐target effects require optimization for effective translation
to clinical trials [133]. Future work on the role of epigenetics in
disease development and testing delivery and efficacy in animal
models will assist in overcoming these challenges, hopefully
leading to disease‐modifying drugs that improve outcomes and
decrease mortality. Greater accessibility and further research
will be key to realizing the potential of epigenetic approaches to
advance precision medicine in pulmonary vascular disease.

4 | Biomarker Discovery for Pulmonary Vascular
Disease in the Era of Precision Medicine

Biomarkers that are able to segregate and inform patient
management are critical to the pursuit of precision medicine.
They are particularly relevant in pulmonary vascular disease,
where tissue sampling is rare and often only available at the
time of death or transplant. The evolution of “big data” tools
including rapid‐throughput analytic platforms and machine
learning have provided new opportunities to identify disease‐
specific biomarkers (Figure 2).

4.1 | Biomarker Discovery

Plasma proteomic profiles have been used to identify potential
biomarkers for PAH, with a particular focus on predicting
outcomes. In a proof‐of‐concept study, ~1100 plasma proteins
were quantified by the SomaScan® platform in patients with
idiopathic or heritable PAH [134, 135]. A panel of nine proteins
which reflected various features of PAH pathophysiology,
including iron deficiency, vascular cell dysfunction, cardiac
stress/fibrosis and renal dysfunction, was derived which pre-
dicted outcomes independent of the established REVEAL
(Registry to Evaluate Early and Long‐term PAH Disease Man-
agement) risk score [135, 136]. Proteomics platforms are con-
tinuing to expand the number of targetable proteins. Two recent
studies, again using SomaScan®, harnessed the measurement of
over 4000 proteins. In the first, through a discovery and vali-
dation design within the UK National Cohort Study of Idio-
pathic and Heritable PAH, a Cox regression‐based model of six
proteins was derived which predicted all‐cause mortality [37].
This score was formed of proteins that were independently
prognostic of 6MWD and NT‐proBNP and derived by least
absolute shrinkage and selection operator (LASSO) modeling,
which penalizes covariates (proteins) contributing the least to
the model to reduce the number of variables and avoid over‐
fitting [37]. The model was validated in the French EFORT
(Evaluation of Prognostic Factors and Therapeutic Targets in
PAH) study of patients with newly diagnosed PAH, and changes
in protein score in response to therapy initiation were reflective
of altered outcomes [37]. A distinct analysis of healthy controls
versus the cohort patients was combined with the prognostic
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protein analysis to identify proteins most likely to contribute to
PAH pathology [137]. Through a protein genome‐wide associ-
ation study and public data analysis, protein quantitative trait
loci were identified for eight of these proteins allowing Men-
delian randomization testing, which assessed whether genetic
variants associated with protein levels are also linked with the
phenotype of interest [138]. This defines the likelihood of pro-
teins being causally associated with PAH. Through this method,
netrin‐4 was shown to have a causal association between higher
plasma levels and PAH whereas thrombospondin‐2 was pro-
tective, with higher levels representing an ameliorating com-
pensatory response in individuals with PAH [137].

Metabolomics has also been exploited for biomarker discovery.
Dysregulated metabolism is observed in PAH both at the level
of the pulmonary vasculature and systemically [139]. Metabolite
profiles have been demonstrated to correlate with RV function
among patients with PAH, and in fact outperform NT‐proBNP
in predicting RV contractility, diastolic function, and exercise
performance [139]. In addition to reflecting RV function,

metabolomic profiles have been demonstrated to correlate
with REVEAL score and mortality [140]. Within the field of
metabolomics, lipidomics provides granularity regarding dys-
functional lipid metabolism, including, for example, the asso-
ciation of distinct lipid profiles with resting and exertional RV
function [141].

Omics‐based biomarker discovery can be coupled with artificial
intelligence computational methods to identify novel patterns
within the inherently complex pathobiology of pulmonary
vascular disease [4]. Supervised machine learning algorithms
use human‐provided labels in a dataset with known outcomes
to “train” the algorithm [4]. The trained model can then be
applied to an unlabeled dataset to predict outcomes [4]. For
example, the previously described application of LASSO
modeling to identify a protein panel that predicts mortality
among patients with PAH represents a form of supervised
machine learning [37]. On the other hand, unsupervised
machine learning algorithms can be used to infer patterns in an
unlabeled dataset [4]. For example, unsupervised machine

FIGURE 2 | Classical and emerging biomarkers of PH. Several circulating factors such as cytokines, chemokines, and proteins have been

classically identified as putative biomarkers of PH. Recently, the range of these biomarkers has broadened to include new categories for early disease

diagnosis and disease stage identification. Among them, extracellular vesicles (EVs), the tissue‐specific microbiome, and circulating factors associated

with microbes and metabolites, have emerged in this expanding group of biomarkers. Abbreviations: cAMP= cyclic adenosine monophosphate;

HIV = human immunodeficiency virus; PRDX4 = peroxiredoxin‐4; PXDN= peroxidasin homolog; renin, NRP1 = neuropilin‐1; S. mansoni= Schis-

tosoma mansoni; SCFAs = short‐chain fatty acids; SVEP1 = Sushi, von Willebrand factor type A, EGF and pentraxin domain containing 1; TSP2 =

thrombospondin‐2.
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learning algorithms have been utilized to identify distinct pro-
teomic immune profiles in PAH [38, 39]. Despite similar de-
mographics, PAH etiologies, comorbidities, and medications
across patient clusters, the identified profiles correlated with
non‐invasive and hemodynamic clinical risk factors as well as
survival [38]. A separate investigation applied machine learning
to transcriptomics analysis in discovery and validation
cohorts of patients with heritable or idiopathic PAH [39].
Transcriptome‐associated subgroups of patients were identified
with distinct clinical risk factors and survival outcomes [39].
Key differences between subgroups were identified in the ex-
pression of NOG, a BMP antagonist, and ALAS2, a heme bio-
synthesis enzyme [39]. Additionally, the best‐ and worst‐
survival subgroups demonstrated differences in immuno-
globulin transcription [39] again suggesting a potential role for
immune pathways in differentiating PAH endophenotypes and
their biomarkers.

While omics platforms provide powerful tools for biomarker
discovery, important limitations exist. Variability in results can
result from the use of different tools. For example, only around
half of proteins measured on the Olink® protein platform overlap
with those detected through the SomaScan® platform. Mass
spectrometry‐based methods tend to detect only highly expressed
molecules. Single‐omics approaches provide complex data yet
lack the context of interactions between different biological
processes. In that respect, multi‐omics approaches provide the
potential for insights on integrated disease processes. Ultimately,
the clinical application of omics‐based discoveries will likely
require targeted assays—for example, point‐of‐care lateral‐flow
tests like those used in pregnancy or COVID‐19 rapid antigen
testing—to facilitate accessibility and generalizability.

4.2 | Insights Into Vascular Cell Heterogeneity
From Single‐Cell RNA Sequencing and Spatial
Transcriptomics

The growing use of single cell RNA sequencing offers the
potential for novel insights into vascular cell heterogeneity as
well as vascular cell pathobiology and biomarkers in pulmonary
vascular disease. For example, single cell RNA sequencing in a
rat Sugen/hypoxia model of PH identified three populations of
vascular cells in the spectrum of PH development [142]. First,
“activated” arterial endothelial cells emerged during the
first week after Sugen administration and were characterized by
persistence of differentially expressed genes and a transcrip-
tional profile consistent with growth dysregulation [142].
Growth dysregulation included high levels of expression of
Tm4sf1, a gene implicated in a number of cancers [142, 143].
Next, classical pericytes were seen to give rise to a smooth
muscle‐like pericyte cluster that expressed Actat2 and other
contractile proteins [142]. Finally, a “dedifferentiated” en-
dothelial cell cluster was identified, which exhibited loss of
expression of endothelial tight junction genes (i.e., Cldn5,
Cdh5), coupled with upregulation of antigen presenting pro-
teins (i.e., Cd74) and profound reduction in activity of master
transcription factors regulating endothelial cell identity (ERG1,
Fli1) [142]. These findings are summarized in Figure 3. Col-
lectively, this pattern suggests interesting hypotheses regarding

EndoMT and adventitial remodeling in pulmonary vascular
disease.

Increasingly complex endothelial cell heterogeneity has also
been identified at the capillary level. Alveolar capillary en-
dothelium has previously been classified into aerocytes, which
contribute to gas exchange and leukocyte trafficking, and gen-
eral capillary (gCap) cells, which regulate vasomotor tone and
serve as progenitor cells in capillary homeostasis and repair
[144]. A recent study using high‐resolution single cell tran-
scriptomics in endothelial cells isolated from rats and mice
identified five distinct gCap populations, each demonstrating
unique functional attributes [145]. The associated functions
included maintaining the endothelial barrier and structural
composition, capillary repair and regeneration, angiogenesis,
lipid metabolism, and oxidative phosphorylation [145]. The
findings may suggest a role for the capillary vascular beds,
rather than pulmonary arteries, in driving PH pathology.

Single‐cell RNA sequencing has been used to demonstrate al-
tered angiogenic and mitochondrial processes in PAH PAECs
relative to healthy controls [146]. Distinct subsets of PAECs can
be distinguished which play causative roles in pathogenic pro-
cesses known to underly PAH [146]. Among patients with
CTEPH, single‐cell RNA sequencing demonstrated the presence
of macrophages, T‐cells and SMCs in thrombus [26]. A domi-
nant macrophage subcluster could be defined by upregulation
of inflammatory signaling, and distinct subclusters of T‐cells
and smooth muscle cells were found with signatures of
inflammation and fibrosis [26]. In total, the patterns observed
suggest a model of vascular remodeling through macrophage‐
and T‐cell‐promoted smooth muscle cell modulation [26].

Spatial transcriptomics offers the potential to complement
single‐cell analysis with context regarding tissue organization,
which is highly relevant to understand the diversity of patterns
of pulmonary vascular remodeling in pulmonary vascular dis-
ease. In idiopathic PAH, spatial transcriptomics has been used
to demonstrate that different types of pathologic lesions
(plexiform, obliterative, intimal and medial hypertrophy, and
adventitial) express distinct molecular transcript profiles [147].
Plexiform lesions are enriched for genes involved in TGF‐β
signaling, extracellular matrix formation, and EndoMT [147].
Meanwhile, both plexiform lesions and adventitia demonstrate
upregulation of immune signaling, coagulation, and comple-
ment pathway genes [147].

Together, the results illustrate the potential of single‐cell RNA
sequencing and spatial transcriptomics to contribute to our
understanding of distinct cell populations and their role in
pulmonary vascular disease. Ongoing studies in different ex-
perimental models of PH, and in samples from patients with
PAH will refine our understanding of pulmonary vascular
dysfunction. To the latter point, a novel technique has been
described in which PAECs are cultured from pulmonary artery
catheter balloons following inflation in the pulmonary arteries
during right heart catheterization [148]. Such “cell biopsies”
provide the substrate for single‐cell omics technology to inves-
tigate PAEC heterogeneity in patients [148]. The expectation is
that combined analysis of gene expression via single‐cell RNA
sequencing and spatial transcriptomics, combined with
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chromatin accessibility via transposase‐accessible chromatin
accessibility with sequencing (ATAC‐seq) and/or metabolic
response via metabolomics will detect dynamic changes in gene
regulation and their effect on cellular function. The limitations
of these approaches include refining the extent and complexity
of data generated for practical application, and machine learn-
ing will be an important adjunct tool to identify relevant find-
ings. Nevertheless, in the field of oncology, these tools have
been used to discover pathobiology and biomarkers [149] and
similar potential exists within pulmonary vascular biology.

4.3 | Extrapulmonary Biomarkers: The Role of
the Microbiome in PH

There is increasing recognition of the importance of the mi-
crobiome [150–155]. Pathogenic changes in the composition of
the microbiome can directly alter tissue function in situ or
impact other organs via microbial transposition or microbial‐
derived metabolites [156]. Microbial metabolites are produced

by microorganisms with pro‐ and anti‐inflammatory properties.
Among the most common circulating microbial metabolites in
the human body, short‐chain fatty acids produced by the gut
microbiota have emerged as key components of systemic
homeostasis. In the lungs, reduced circulating levels of the
short‐chain fatty acid butyrate have been identified as a con-
tributor to various pulmonary conditions, including asthma,
COPD, pulmonary fibrosis, and PH [154, 157, 158].

Microbes and their metabolites can promote cellular effects via
the activation of pattern recognition receptors [159]. Toll‐like
receptor 4 (TLR4) and its co‐receptor CD14 have been im-
plicated in animal models of PH and human PH in the gut‐lung
axis [160, 161]. For example, mice lacking TLR4 expression do
not develop PH in response to prolonged hypoxia [162].
Canonically, TLR4/CD14 activates the nuclear factor kappa‐
light chain‐enhancer of activated B cells (NF‐κB) signaling
pathway, leading to the synthesis of pro‐inflammatory media-
tors known to contribute to microbial death but also capable of
inducing apoptosis of the host cells, including the cells lining
the vasculature. Activation of TLR4/CD14‐mediated signaling

FIGURE 3 | Contributions of “dedifferentiated” endothelial cells to EndoMT for adventitial remodeling. 1. Activated arterial endothelial cells

(aAECs) emerge first after Sugen administration, and are characterized by the persistence of differentially expressed genes and a transcriptional

profile consistent with growth dysregulation. 2. Classical pericytes give rise to a smooth muscle (SM)‐like pericyte cluster expressing contractile

proteins. 3. A dedifferentiated endothelial cell cluster (dDEC) emerges, demonstrating loss of expression of endothelial tight junction genes and

upregulation of antigen presenting proteins with reduction in activity of master transcription factors regulating endothelial cell activity. This

endothelial‐to‐mesenchymal transition (EndoMT) may contribute to adventitial remodeling.
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in lung vascular endothelial cells results in injury and con-
tributes to the expansion of an abnormal cell phenotype
observed in Group 1 PH [163–165].

Microbiome‐related molecules may serve as disease biomarkers
but also extend to novel therapeutic approaches. Modifying the
gut microbiota using antibiotics in the Sugen/Hypoxia rat
PH model significantly suppressed vascular remodeling and
reduced PH severity [166]. Intermittent fasting in the
monocrotaline‐induced PH rat model reduced RV hypertrophy
and fibrosis and prolonged survival [167]. Such approaches
could be combined synergistically with evolving therapies,
including mesenchymal stem cell‐derived therapy. For example,
recent reports showed that mesenchymal stem cell therapy
attenuated hypoxia‐induced PH in mice by rescuing the gut
microbiota composition [168].

Further research is needed to understand and exploit the exact
molecular mechanisms of these observations. Future transla-
tional studies should carefully account for host‐associated fac-
tors, such as nutritional habits, co‐morbidities, age, sex and
associated hormonal factors, and the presence of heritable
genetic mutations. Fine manipulation of the host microbiome
network offers an interesting avenue for leveraging its novel
therapeutic potential and tailoring treatments to individual
patients in PH.

4.4 | Extracellular Vesicles: Roles for Biomarker
Discovery and Therapy

The term extracellular vesicles encompasses both exosomes and
microparticles, which are largely differentiated by their size
(exosomes are 50–100 nm; microparticles 100–1000 nm) and
protein markers indicative of where within the cell the vesicles
are derived [169]. Extracellular vesicles play a role in pulmo-
nary vascular cell–cell communication, displaying surface
markers or carrying cargo from their parent cells to target cells
[170]. They are released by a wide range of cells within the
lungs, including PAECs and fibroblasts [124]. Cargo can include
noncoding RNAs and proteins which regulate epigenetic mod-
ifications in response to stressors sensed in the lungs such as
hypoxia [171]. For example, extracellular vesicles derived from
hypoxic PAECs carry increased levels of miR‐210‐3p and induce
PASMC proliferation [172]. Vascular remodeling induced by
extracellular vesicle signaling has also been demonstrated in
other preclinical models. Extracellular vesicles derived from
monocrotaline‐injured mice administered to healthy mice
induce RV and pulmonary artery hypertrophy [173]. Extra-
cellular vesicles from patients with systemic sclerosis incubated
with human PAECs in vitro increase inflammatory cytokines
and adhesion molecules [174]. Finally, pulmonary adventitial
fibroblasts of calves with severe PH secrete increased levels of
extracellular vesicles relative to healthy controls, and the ex-
tracellular vesicles mediate metabolic reprogramming and
complement‐induced inflammatory activation in healthy mac-
rophages [175]. Because of their role in pulmonary vascular
disease pathogenesis, extracellular vesicles have been investi-
gated as biomarkers. Levels of circulating endothelial and leu-
kocyte extracellular vesicles are increased in patients with

PH [174, 176, 177], and specific extracellular vesicle subtypes
correlate with severity of disease as measured by hemo-
dynamics and functional class [176, 177]. Likewise, increased
levels of circulating endothelial‐derived extracellular vesicles in
patients with PH predict a worse prognosis [178]. In oncology,
identification of molecules on the surface of extracellular vesi-
cles and noncoding RNA within vesicles has been leveraged for
disease diagnosis and monitoring [179]. Further investigation of
extracellular vesicles in pulmonary vascular disease, including
evaluation of both surface markers and contents, may refine
their use as biomarkers.

Extracellular vesicles can also be leveraged as potential cell
therapy for PAH. Exosomes or extracellular vesicles from
mesenchymal stem cells may contribute to vascular repair
without infusion of whole cells [173, 180]. Perhaps somewhat
surprisingly, neonatology is one of the fastest moving fields in
the adoption of cellular based therapies. Preclinical studies
using a rodent model of BPD, namely postnatal hyperoxia ex-
posure, has shown that mesenchymal stem cells prevent alve-
olar growth arrest, leading to improved airway structure,
exercise capacity, and survival [181]. Similarly, mesenchymal
stem cell‐conditioned media improved pulmonary vascular re-
modeling and inflammation, thus demonstrating a paracrine
effect [182]. Numerous preclinical studies have identified ex-
tracellular vesicles as a key component. Derived from the
umbilical cord blood and administered intravenously or in-
tratracheally, they are capable of modulating inflammatory
responses, vascular remodeling, and alveolarization [183–186].
For example, extracellular vesicles derived from healthy
donor mesenchymal stem cells administered to mice with
monocrotaline‐induced PH have been demonstrated to reverse
RV hypertrophy [173]. Mesenchymal stem cell‐derived extra-
cellular vesicles administered to mice exposed to hypoxia sup-
pressed hyperproliferative pathways and inhibited pulmonary
vascular remodeling [180].

Extracellular vesicles can carry cyclic adenosine monophos-
phate (cAMP) [170] which can protect the pulmonary vascu-
lature in a number of ways [187]. The administration of cAMP‐
enriched extracellular vesicles to the hypoxic PH rat model
reduced RV hypertrophy and improved echocardiographic RV
hemodynamic metrics [188]. Cellular markers of proliferation
and pulmonary arterial thickness were also reduced [188].
Combined, these data suggest that cAMP‐enriched extracellular
vesicles may decrease RV hypertrophy, improve pulmonary
arterial function, and repair hypoxic vascular injury [188].

The concept has advanced to clinical evaluation, with the first
Phase I trial of allogeneic human umbilical cord blood‐derived
mesenchymal stem cell transplantation in preterm infants at
risk for BPD completed in 2014. In this trial, mesenchymal stem
cells were administered intratracheally to nine preterm infants
at high risk for BPD or death. The intervention was generally
well tolerated [189]. A subsequent Phase II double‐blind, ran-
domized placebo‐controlled study also demonstrated safety,
with a potential treatment benefit in the most extremely pre-
term patients (23–24 weeks gestation) [190, 191]. Currently,
more than two dozen clinical trials are either underway or
about to begin worldwide, exploring cell‐based therapies for the
prevention or treatment of BPD. Optimal administration
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strategies—including dosage, route, and frequency—remain
uncertain. Additionally, it is unclear whether whole‐cell
therapies or cell‐free alternatives (such as exosomes or extra-
cellular vesicles) are more effective, which has significant
implications for pharmaceutical production and scalability.
Perhaps most critically, the outcome measures for assessing the
success of clinical trials have yet to be clearly defined. This issue
was underscored in a recent negative trial of mesenchymal stem
cells in non‐human primates, where the primary endpoint—
improved lung alveolarization—was not achieved. However,
infant baboons that received mesenchymal stem cells showed
improved cardiovascular stability and required less hemo-
dynamic support [192]. The pleiotropic effects of mesenchymal
stem cells and their extracellular vesicles warrant further
investigation, making this an exciting time for the development

of cell‐based therapies for lung diseases, including pulmonary
vascular disease.

5 | From Precision Biology to Clinical Trials:
Examples for How Basic Research Accelerates
Clinical Trials in Pulmonary Vascular Diseases

The advent of inexpensive, readily accessible, and scalable omics
technologies enables the interrogation of pulmonary vascular dis-
ease on an unprecedented scale. Harnessing this wealth of new
information for novel therapeutics is a formidable challenge. Ex-
amples from recent and ongoing efforts in drug development were
used to consider the present status and future opportunities of “big
data” in drug development (Table 5).

TABLE 5 | Examples of novel drug development in PAH.

Drug Mechanism of action Clinical trial findings

Sotatercept
(ACTRIIA‐Fc)

Activin signaling
inhibitor [193]

Phase 2: Among patients with PAH in functional class 2–3,
sotatercept at 0.3 mg/kg (n= 32) and 0.7 mg/kg (n= 42) vs. placebo
(n= 32) improved PVR (primary outcome) and 6MWD and NT‐

proBNP levels (secondary outcomes) [194]
Phase 3: Among patients with PAH in functional class 2–3,

sotatercept titrated to 0.7 mg/kg (n= 163) vs. placebo (n= 160)
improved 6MWD (primary outcome) and multiple secondary

outcomes [6]

Apabetalone (RVX208) BRD4 inhibition [111] Phase 1: Among patients with PAH in functional class 2–3 (n= 7),
RVX208 was tolerated without serious adverse events.

Improvements were observed in secondary outcomes of PVR,
cardiac ouptut, and RV ejection fraction [195]

Phase 2 study planned (NCT04915300)

Imatinib Tyrosine kinase
inhibitor [196]

Phase 2: Among patients with PAH in functional class 2–4
randomized to imatinib (n= 28) vs. placebo (n= 31), there was no
change in 6MWD but a signficant improvement in PVR and cardiac
output among patients treated with imatinib. Serious adverse events
were recorded in 39% of patients treated with imatinib vs 23% of

patients treated with placebo [197]
Phase 3: Among patients with PAH in functional class 2–4 on ≥ 2

pulmonary vasodilators randomized to imatinib (n= 103) vs.
placebo (n= 98), there was a significant improvement in 6MWD and
PVR. Serious adverse events, including subdural hematoma, and
discontinuations were more frequent among patients treated with

imatinib (44% vs. 30%, and 33% vs. 18%, respectively) [198]
Phase I/II: A Bayesian design using the Continuous Reassessment
Method to identify the best tolerated dose of imatinib (Part 1),

followed by evaluation of efficacy of the best tolerated dose (Part 2),
is planned [199]

Seralutinib Tyrosine kinase
inhibitor [200]

Phase 2: Among patients with PAH in functional class 2–3
randomized to seralutinib (n= 44) vs. placebo (n= 42), a reduction
in PVR was observed with seralutinib. The most common treatment‐

emergent adverse events in both groups was cough [201]
Phase 3: Study underway (NCT05934526)

Rituximab Anti‐CD20/B‐cell
depletion [202]

Phase 2: Among patients with SSc‐PAH diagnosed for no more than
5 years randomized to rituximab (n= 29) vs. placebo (n= 28), a
nonsignificant improvement in 6MWD was seen with rituximab.
There was no significant increase in serious adverse events. Low
Rheumatoid Factor levels, IL‐12, and IL‐17 predicted favorable

response to rituximab by 6MWD [203]
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5.1 | Sotatercept

Sotatercept is a novel fusion protein (ACTRIIA‐Fc) that has
been developed as a selective GDF8/11 and Activin‐A circu-
lating ligand trap with extensive evaluation in clinical studies in
patients with PH. The conceptual paradigm for sotatercept
arises from the observation of increased expression of Growth
Differentiation Factors (GDF8 and GDF11) and Activin A in
PAH [204]. This imbalance is potentially targetable, and the
novel fusion protein ACTRIIA‐Fc was developed as a selective
GDF8/11 and Activin‐A circulating ligand trap [193]. In a piv-
otal preclinical study, ACTRIIA‐Fc improved multiple measures
of PH disease severity (mPAP, echocardiographic RV systolic
pressure, RV hypertrophy, and the degree of pulmonary vas-
cular remodeling) in monocrotaline and Sugen/Hypoxia rodent
models of experimental PH [193]. In the PULSAR and STEL-
LAR trials, patients who were randomized to sotatercept had a
significant improvement of PVR and 6MWD at 24 weeks com-
pared to patients randomized to placebo [6, 194]. Patients who
were randomized to sotatercept in STELLAR also demonstrated
improvement in multiple secondary endpoints, including PVR,
NT‐proBNP, World Health Organization Functional Class,
composite PAH risk score, and time to death or clinical wor-
sening [6].

While some long‐term data are available [205] further clinical
experience with the drug is needed. There remains a concern
that telangiectasias and bleeding events may pose a risk and
that some individuals may progress to a hereditary‐
hemorrhagic‐telangiectasia‐like phenotype. Preclinical data
suggests that ACTRIIA‐Fc and other ligand traps that block
BMP10 mimic hereditary hemorrhagic telangiectasia in ex-
perimental PH and susceptible rodent strains [206] and tel-
angiectasias were observed in 10% of patients receiving
sotatercept in STELLAR while bleeding events (predominantly
non‐serious epistaxis) were observed in 22%. The long‐term
implications as well as considerations of alternate dosing regi-
mens (e.g., roles for “induction” and “maintenance” strategies
vs. continuous regimens) are of interest. There is also uncer-
tainty regarding the correct timing for this medication in the
modern PAH armamentarium.

Nevertheless, sotatercept represents a recent example of suc-
cessful drug development. Importantly, the development of
sotatercept identified a targetable mechanism rooted in human
genetics [193] integrated a range of data sources including es-
tablished pharmacodynamics from prior human subject ex-
perience [207] confirmed efficacy across PH models [193] and
harnessed collaboration between the sponsor, investigators, and
the PH community. That said, integration of large‐scale omics
data and systems biology was not part of the development of
sotatercept, nor has the focus on mechanism been utilized to‐
date to determine a biologic subset of individuals more likely to
benefit.

5.2 | BRD4

As discussed in the “Understanding Epigenetics and their Role
in Precision Medicine” section, examination of human lung
tissue from PAH and control subjects has identified increased

levels of BRD4, a BET family protein, in the distal pulmonary
arteries [112]. Inhibition of BRD4 in PAH PASMCs decreased
proliferation and cellular survival, and BRD4 inhibition in the
Sugen/Hypoxia rodent model improved PH disease severity as
measured by RV hypertrophy, RV systolic pressure, and vas-
cular remodeling [112]. While non‐specific inhibition of BET
through the inhibitor I‐BET‐151 in healthy rodents was dis-
appointing and resulted in mitochondrial swelling, disorganized
cardiomyocyte structure, and impaired cardiac function [208],
studies of selective inhibition of BRD4 reinforced the early
impression of benefit [111]. In multiple rodent PH models
(Sugen/Hypoxia, monocrotaline and shunt, and pulmonary
artery banding), inhibition of BRD4 by RVX208 (apabetalone)
decreased PASMC and endothelial cell proliferation and im-
proved PH hemodynamics and vascular remodeling [111]. This
success paved the way for a small clinical trial of RVX208 as
add‐on therapy in PAH [195]. In this open‐label, 16‐week,
single‐arm study of seven patients with PAH, RVX208 was safe
and well tolerated, with improvement in PVR, cardiac output,
stroke volume, and cardiac magnetic resonance imaging mea-
sures of RV ejection fraction and both end‐systolic and end‐
diastolic volumes [195]. Given the favorable safety and efficacy
signals, a larger randomized clinical trial of RVX208 in PAH is
planned (APPROACH‐2; NCT04915300).

The rapid development of the BRD4 paradigm reinforces sev-
eral key principles in current drug development, including the
use of multi‐center collaborations to reinforce signals from both
clinical and pre‐clinical data and the use of repurposed but
mechanism‐targeted drugs (in this case from oncology and
atherosclerotic vascular disease). The evolution of the BRD4
paradigm has incorporated a systems biology approach to
identifying on‐target and off‐target impacts over the course of
defining and refining compounds of interest.

5.3 | Tyrosine Kinase Inhibitors

First targeted over two decades ago [196] inhibition of the
platelet derived growth factor (PDGF) pathway continues to
attract interest. Imatinib, licensed for chronic myeloid leuke-
mia, ameliorates PH in both monocrotaline‐induced rat and
chronic hypoxemia mouse models in a dose‐dependent fashion
[196]. Efficacy in patients with PAH has been investigated in
two randomized placebo‐controlled studies [197, 198], but
improvements in hemodynamics and 6MWD seen with 400mg
daily were accompanied by safety concerns. An ongoing study is
revisiting oral imatinib using a Bayesian study design to explore
the safety and efficacy of doses between 100 and 400mg daily,
as well as to explore response based on a common polymor-
phism (rs2304058) in the gene encoding PDGFRB [199]. Studies
of inhaled imatinib are also in progress, with the aim of deli-
vering a therapeutic dose of the drug to the lung that spares
systemic side effects.

The recent results from another PDGFR antagonist, seralutinib,
support this approach [200, 209]. Seralutinib ameliorates
PH disease severity in both Sugen/Hypoxia and monocrotaline‐
pneumonectomy rodent models in a dose‐dependent fashion
[200] The Phase II TORREY randomized placebo‐controlled
double‐blind study of seralutinib in PAH has reported a
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decrease in PVR [201] and data from a Phase 3 study are
awaited. As with sotatercept, there remains work to be done to
see if there is a subgroup of patients who might be better tar-
geted with this class of drugs.

5.4 | Rituximab

A post‐hoc analysis of a trial of rituximab in scleroderma‐
associated PAH is an example of the interest in ‘responder
analysis’ to guide patient selection for trials. The rationale for
the original study was the observation of lymphoid aggregates
with B‐cell infiltration in the vascular lesions of PAH, coupled
with the fact that B‐cell depletion via anti‐CD20 therapy im-
proved PH severity and vascular remodeling in both mono-
crotaline and Sugen/Hypoxia rodent models [202, 210]. A Phase
II randomized placebo‐controlled double‐blind trial of ritux-
imab suffered a number of logistical issues and failed to meet its
primary (change in 6MWD) or exploratory secondary endpoints
[203]. A post hoc machine learning clustering analysis identi-
fied a subset of patients with reduced circulating B‐cell specific
cytokines as having the best response to treatment [203]. It was
subsequently reported that soluble markers of B‐cell activation
may not only correlate with development of PAH in sclero-
derma patients, but also with metrics of disease severity (NT‐
proBNP, and RV systolic pressure), implying that the success of
anti‐CD20 therapy in scleroderma PAH may just be a matter of
identifying the correct patient population and targeting this
group more effectively [211, 212]. There are challenges in
identifying responders based on a single drug exposure; ideally,
patients should be rechallenged to confirm their response.
However, using a mechanism‐specific target to enrich and
define a treatment population represents one of the best ex-
amples of precision medicine applied to drug development
in PAH.

5.5 | Summary

These examples from recent and ongoing drug development
highlight a number of key points at the intersection of precision
medicine, precision biology, and drug development in PAH.
First, it is still early days. None of the current examples have
relied on large‐scale integration across multiple omics domains
for target identification. At best, traditional family genetic
studies highlighted the BMP/TGF‐β pathway as a driver of
PAH, leading to the repurposing of sotatercept for PAH pa-
tients. The full impact of omics on precision phenotyping is yet
to be realized, but as seen with drugs like imatinib and ritux-
imab, it is expected to play a critical role in identifying and
characterizing responders, selecting likely candidates for treat-
ment (maximizing benefit while minimizing harm), and guid-
ing follow‐up studies. Drug repurposing also deserves attention,
with the evolution of BRD4‐targeting therapies being particu-
larly noteworthy. This would not likely be possible without the
emerging systems biology framework to contextualize early
results, exponentially expanding drug libraries to allow nuanced
compound‐specific pivots even within the same pathway, and
high‐dimensional analyses to better understand populations
that may be more or less likely to benefit. Although we have

only begun to explore its potential, it is likely that the next set of
PAH therapeutics and therapy‐specific endotypes will be in-
formed by precision biology and precision medicine insights
gleaned from multi‐omic dataset integration, big‐data and net-
work analysis approaches, and continued understanding of
pulmonary vascular diseases as multi‐organ systemic disease
states.

6 | The RV: A Phenotype of Its Own

The last 5 years have seen major advances in our understanding
of mechanisms of RV adaptation and maladaptation in PH.
While initial studies in RV failure research primarily focused on
animal models, the field is now pursuing in‐depth analysis in
human tissues. These mechanistic studies are paralleled by
advanced and multimodal phenotyping methods in patients
with RV failure.

6.1 | Cellular Landscape and Omics Approaches
to the RV

According to a recent single cell/single nucleus RNA sequenc-
ing study, the most common cell type in the human LV is the
fibroblast (~26%), followed by endothelial cells and cardio-
myocytes (~17%), as well as macrophages (~12%) [213]. Not
surprisingly, several sub‐types of all these major cell types exist
with up to ten cell types having been described for cardio-
myocytes and endothelial cells [214, 215]. Factors such as age,
sex, and disease development modify these numbers [214, 215].
How these numbers hold up for the human RV remains to be
determined.

Recently published studies employed integrated RNA sequencing
and proteomic analyses in RV tissues and plasma from animal
models as well as patients with adaptive and maladaptive RV
remodeling [216–218]. In the first study, latent TGF‐β binding
protein 2 was identified as a novel plasma biomarker for RV
dysfunction and predictor of survival in patients with PAH (with
higher plasma levels indicating maladaptive RV remodeling and
a higher likelihood of death) [216]. Other mediators upregulated
at both the RNA as well as protein level included Col18A1, TNC,
Col6A3 and CA1, indicating regulators of the extracellular matrix
as potential key players in the progression to RV failure [216].
Another study used a similar approach in animal models and
human RV tissue, reporting that adaptive and maladaptive RV
remodeling stages can be further categorized into early and late
stages based on their genomic and proteomic signature [217]. In
particular, five extracellular matrix proteins (NID1, CRTAC1,
C1QTNF1, MEGF9, SPARCL1) distinguished early‐ to late‐
decompensated RV remodeling states [217]. Finally, in a bovine
model of early RV adaptation to severe hypoxia‐induced PH, RV
gene expression clusters were identified associated with hyper-
trophic gene expression and mechanotransduction, extracellular
matrix remodeling, inflammatory cell activation, and angiogen-
esis [218]. Together, these studies suggest that a coordinated
transcriptional response spanning multiple cellular processes is
responsible for RV adaptation to PH, and extracellular matrix‐
regulating mediators may play a major role in mediating RV
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decompensation in PAH. Other key biological pathways identi-
fied include pro‐inflammatory signaling pathways and fatty acid
oxidation [217]. The second study also demonstrated sexual
dimorphisms in RV adaptation, with females maintaining RV
compensation longer and employing a different gene program
once progressing to RV failure [217]. Targeting these pathways in
a sex‐specific manner may allow for targeted and personalized
treatment approaches for RV failure.

In addition to translational approaches to understanding RV
function at the cellular level, omics‐based approaches have been
applied in several settings. Metabolomic analyses of RV failure
have been performed in animal models and humans. Distinct
metabolomic profiles correlating with outcomes have been
identified [139, 219–221], but heterogenous findings and lack of
standardization of methodology mean that further validation is
required. Genomic and proteomic analyses will help clarify the
natural history of at‐risk RVs (e.g., BMPR2 mutation carriers,
CTD, or prematurity) and RVs in non‐PAH PH. Spatial tran-
scriptomics analyses have suggested that RV adaptation to
PH varies according to location within the RV [222], high-
lighting the locational context that spatial transcriptomics can
provide to RV functional investigations. In tandem, there is an
ongoing need to further phenotype and mechanistically dissect
RV function using novel tools such as single cell RNA
sequencing and ATAC‐seq. Better definition of the contribu-
tions of sex, age, exercise, diet, and assessing time courses and
changes over time is also required. Such studies should be
paralleled by detailed, structural investigations of the RV to
identify where most profound RV remodeling occurs so that
regions of interest can be identified and defined.

6.2 | RV Hemodynamic Phenotyping

Robust RV hemodynamic phenotyping is an essential component
of understanding RV adaptation and maladaptation in PH. Right
heart catheterization remains key to phenotyping the RV in both
research and clinical settings [1, 223, 224], and additional metrics
obtained through right heart catheterization provide inference on
RV response to increased loading conditions. For example, pul-
monary artery pulsatility index, defined by the ratio of pulmonary
artery pulse pressure to right atrial pressure, suggests RV dys-
function and clinical outcomes in other cardiac disease states, and
similarly has shown value in predicting survival among patients
with PAH [225], operable CTEPH [226], and inoperable
CTEPH [227]. Reduced pulmonary artery pulsatility index corre-
lates with RV sarcomere contractile dysfunction [228], suggesting
a pathophysiological basis for clinically relevant hemodynamic
outcomes. Along similar lines, among patients with PAH,
increased ratio of right atrial pressure to PAWP predicts mortality
[229]. Finally, pulmonary arterial compliance can be estimated by
the ratio of stroke volume to pulmonary artery pulse pressure [16].
Decreased pulmonary arterial compliance not only correlates with
PH severity, it may actually contribute to the progression of PH by
inducing shear stress and distal pulmonary arterial remodeling
[16]. Across subgroups of PH, decreased pulmonary arterial
compliance predicts mortality [16, 40, 230].

Invasive pressure‐volume analysis via conductance catheters is
the gold standard method of assessing RV function [231, 232].

Pressure‐volume analysis provides metrics of contractility,
afterload, diastolic function, myocardial energetics, and
ventricular‐arterial coupling [231, 232]. Reduced ventricular‐
arterial coupling in patients with PAH predicts clinical wor-
sening [233], and differences in contractility, diastolic function,
and ventricular‐arterial coupling reveal important physiological
differences in RV adaptation across sex and PAH subgroup
[234, 235]. Pressure‐volume analysis can also be approximated
by noninvasive imaging modalities as well as right heart cath-
eterization pressure measurements coupled with noninvasive
volumetric assessment [236]. A recent cluster analysis of met-
rics derived from right heart catheterization RV pressure wa-
veforms identified distinct subphenotypes of RV function, with
certain subphenotypes demonstrating decreased RV contractil-
ity and ventricular‐arterial coupling [237]. Importantly, the
identified RV subphenotypes contained a spectrum of patients
across the traditional WSPH groups and with a range of mea-
sured mPAP and PVR [237], demonstrating the potential for
advanced hemodynamic phenotyping to advance precision
medicine approaches.

Finally, novel strategies of RV phenotyping via provocation,
such as through exercise, are a topic of active investigation [231,
232]. RV dysfunction not apparent at rest can be unmasked
with increasing cardiac output requirements during exercise
[232]. Decreased RV contractile reserve during exercise predicts
occult RV dysfunction and clinical worsening [238]. In a study
of patients with severe idiopathic or systemic sclerosis‐
associated PAH, decreased RV contractile reserve during ex-
ercise predicted acute RV dilation and reduced ventricular‐
arterial coupling, and was associated with reduced intracellular
calcium cycling [9]. Thus, exercise provocation added to
hemodynamic assessment may increase the potential to com-
prehensively phenotype RV (mal)adaptation in pulmonary
vascular disease.

6.3 | Cardiac Imaging and Radiomics: Role in
Precision Medicine and Relevance for the RV

Noninvasive strategies for phenotyping the RV are beginning to
provide novel insights. In seemingly stable PAH patients, car-
diac imaging parameters may deteriorate before conventional
biomarkers, such as functional class and 6MWD, indicating
early clinical progression [239]. Volumetric assessment of the
RV by cardiac magnetic resonance imaging, particularly when
corrected for known differences in age and sex, supplements the
prognostic value of clinical data [240, 241]. For these and other
reasons, volumetric thresholds have been incorporated into the
comprehensive risk assessment table in the 2022 European
Society of Cardiology/European Respiratory Society Guidelines
for the diagnosis and treatment of PH [1]. However, for clini-
cians using cardiac magnetic resonance imaging or echo-
cardiography, cardiac imaging extends far beyond simply
measuring RV volumes.

Experienced cardiac imagers have long been able to distinguish
patterns in the overall shape and contraction of the RV in pa-
tients with varying disease etiologies and stages of clinical
progression [242]. New image analysis tools have added to the
ability to quantify the prognostic implications of cardiac
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motion, including taking account of the heart as a whole, rather
than focusing on one particular part of the anatomy. Machine
learning of three‐dimensional RV motion improves outcome
prediction in PAH relative to simple volumetric assessment and
standard clinical parameters [243, 244]. These techniques are
only becoming reproducible now that artificial intelligence ap-
plications have improved segmentation of the cardiac chambers
and muscle [245]. RV motion analysis combined with hemo-
dynamic measurements allows for calculation of regional wall
stresses, which may aid in a better understanding of the
pathobiology of RV failure [246]. Other future radiomic appli-
cations of cardiac magnetic resonance imaging data include the
prediction of treatment responses using T1 mapping and the
association between genetic variation and patient‐to‐patient
differences in RV adaptation [247, 248].

It is a matter of time before a combination of artificial
intelligence‐aided analysis of cardiac motion and the pulmo-
nary circulation will be used in a comprehensive radiomic
analysis of the cardiopulmonary unit to yield biomarkers for
diagnosis, prognostication, and prediction of treatment
responses [249, 250]. On the horizon are diffusion tensor
imaging to study fiber orientation [251] and hydrogen, phos-
phorus and carbon spectroscopy to study intramyocardial lipids,
energetics and metabolic flux [252]. Coupling these techniques
with assessment of clinical and hemodynamic changes may
allow for early identification of functional decline and patient‐
specific therapeutic targets.

6.4 | RV: Future Directions

RV dysfunction is the most significant predictor of mortality in
PH [1] and the adaptation response of the RV rather than its
afterload defines the fate of the RV [253]. Despite its prognostic
value, none of the currently available PH therapies directly
target the failing RV, suggesting a substantial knowledge gap
regarding RV function and dysfunction. The ability to apply
single cell/single nucleus RNA sequencing, advanced imaging
modalities, and analytical methodology among other tools
provide a robust armamentarium with which to dissect and
interpret RV biology. Enhanced awareness of the importance of
RV function in PH should energize new opportunities to
improve health through better diagnosis, prognostication, and
ultimately, therapy for RV dysfunction.

7 | Integrating Precision Medicine to
Clinical Care

The new possibilities for deep phenotyping and individualized
treatment in pulmonary vascular disease provided the back-
ground for dedicated discussion of the opportunities and chal-
lenges in integrating precision medicine to clinical care.

7.1 | Precision Hemodynamics

The paradigm for integrating precision medicine into clinical
care is the acute response of PAH patients to a vasodilator

during right heart catheterization. A ≥ 10mmHg mPAP drop
from baseline to ≤ 40mmHg with increased or unchanged
cardiac output defines a distinct phenotype which predicts a
favorable response to long‐term calcium channel blocker ther-
apy with improved functional status and survival [1, 254].
Unfortunately, acute vasodilator testing is not universally em-
ployed in the work up of patients and the techniques for acute
vasodilator testing are not standardized [255]. For example,
vasodilator response to supplemental oxygen administered
concurrently with inhaled vasodilators may be falsely inter-
preted as a vasodilator response, despite representing a separate
phenotype without the characteristic response to calcium
channel blockers [255, 256]. This is a small illustration of the
work to be done to integrate knowledge into best practice.

As long as invasive hemodynamics have a role in diagnosing
and phenotyping patients with PH, technical rigor is required to
ensure accurate assessment [257]. Even mild elevations in
mPAP and PVR among multiple underlying disease states
predict reduced survival [258–262]. Furthermore, a critical
component in the classification of PH is the PAWP, which may
be falsely elevated in the setting of incomplete pulmonary artery
occlusion [263]. PAWP determines whether a patient with
PH has precapillary PH, where there are a number of treatment
options, or post‐capillary PH, where there are no approved
treatments for PH. In addition to waveform and fluoroscopic
verification, pulmonary artery occlusion may be verified
through obtaining an oxygen saturation in the wedge position
[263]. Technical considerations are important but even so,
several common conditions including obesity, COPD, and atrial
fibrillation may decrease the accuracy of end‐expiration PAWP
as a surrogate for LV end‐diastolic pressure (typically with
falsely elevated PAWP) [232, 257, 264, 265], thereby compli-
cating the classification of PH.

7.2 | Remote Monitoring

Traditional medicine relies on intermittent and often infrequent
consultations between doctor and patient. Remote monitoring
offers the potential, for more frequent data collection, including
gathering information on patients in their home and work en-
vironment, and may allow ‘fine tuning’ of treatment on a per-
sonal level.

Remote monitoring may consist of traditional clinic‐based as-
sessments delivered in a remote setting, such as questionnaires
like the Duke Activity Status Index (a 12‐point self‐
administered questionnaire) [266], mobile phone 6MWT ap-
plications [267], home brain natriuretic peptide kits, pulse
oximeters, and even telehealth stethoscopes that capture res-
piratory and heart sounds. Alongside this, increasingly complex
technology and algorithms are available, such as the remote
dielectric sensing (ReDS) wearable vest which measures
lung fluid levels (Sensible Medical Innovations Ltd) [268] and
wearable devices which continuously monitor heart rate, blood
pressure, cardiac rhythm, step counts, distance ambulated,
oxygen saturation, and/or sleep patterns to contribute to earlier
detection of decompensation [269]. Implantable devices which
measure pulmonary artery pressure, such as the Cardio-
MEMS™ HF System (Abbott) [270] and Cordella™ Pulmonary
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Artery Pressure Sensor (Endotronix, Inc) [271], left atrial
pressure such as the V‐LAP™ system (Vectorious Medical
Technologies) [272], and intrathoracic impedance as a marker
of fluid overload such as the OptiVol™ 2.0 Fluid Status Mon-
itoring system (Medtronic) [273], are also available. While many
of these devices have been developed in the context of left‐sided
heart failure, potential applicability to pulmonary vascular
disease has been demonstrated. For example, monitoring of
hemodynamics in Group 2 PH via the CardioMEMS™ HF
System was associated with reduced composite death and heart
failure hospitalization [274]. Early data evaluating the Cardio-
MEMS™ HF System in patients with PAH patients suggests that
it similarly may be helpful in monitoring hemodynamic chan-
ges [275]. While in its nascency, remote monitoring via wear-
ables and implantable devices offers promising opportunities to
leverage emerging technologies to personalize and refine care.

7.3 | Electronic Health Records

Vast amounts of clinical, social/environmental, behavioral, and
molecular data can be extracted from the electronic health
record, making it a potentially cost‐ and time‐efficient tool for
research. The electronic health records of patients can be
readily matched with controls. Longitudinal data can be made
available and the system is self‐perpetuating.

One example of the potential power of the electronic health
record can be observed in its application to derive phenotype risk
scores which could be coupled with genotype to discover novel
associations between rare genetic variants and phenotypes [276].
A phenome wide association study was performed using the
electronic health record to link genetic risk for diabetes with
elevated pulmonary artery pressure and decreased echocardio-
graphic RV‐pulmonary artery coupling [277], providing new in-
sight into shared risk for diabetes and PH which may be
leveraged for novel precision medicine approaches in the future.
The large‐scale NIH‐funded precision medicine program, All of
Us (https://allofus.nih.gov), aims to collect genetic and health
data, including from mobile/wearable technologies, from at least
one million individuals with diverse backgrounds. In a recent
study, All of Us electronic health record data was leveraged to
determine that step count was inversely related to development
of chronic diseases, with some diseases demonstrating a linear
effect and others, like diabetes and hypertension, demonstrating
no further risk reduction above 8000–9000 steps [278]. The
combination of wearables with electronic health record data of-
fers exciting possibilities to define the role of behavioral factors
such as physical activity and sleep in monitoring and/or mod-
ifying diseases including PH. However, ongoing challenges to the
widespread use of electronic health data exist, including the
unstructured format of the electronic health record, lack of
standardization of case definitions/phenotype specificity, missing
data or errors, and the presence of bias [279].

7.4 | Ethics and Health Disparity

While the horizon for precision medicine in pulmonary vas-
cular disease is bright, there are ethical issues to consider in

how we apply precision medicine approaches. Specifically,
many current precision medicine approaches may not be
designed to benefit everyone. For example, genome‐wide asso-
ciation studies disproportionally overrepresent individuals of
European ancestry [280]. There are higher rates of variants of
uncertain significance in people of non‐European ancestry
[281]. Multiracial individuals have largely not been accounted
for in genomic research to‐date [282]. Moreover, polygenic risk
scores vary based on genetic ancestry and context [283], such as
socioeconomic status, age, and sex [284], and their use may
further exacerbate health disparities [280]. Similarly, registries
used to derive phenotype data and guide design of precision
medicine strategies including clinical risk scores may lack
information related to social determinants of health or under-
represent minority populations [285]. Big data analysis tools
without appropriate oversight may further accentuate disparit-
ies [4], whether through lack of inclusion of diverse populations
in a reference dataset or by perpetuating systemic biases rep-
resented in the reference dataset. The inclusion of individuals of
diverse backgrounds is critical to ongoing clinical trial design,
and the application of precision medicine strategies must be
thoughtful and responsible in promoting fair and unbiased
strategies for diagnosis, risk stratification, and treatment in
pulmonary vascular disease.

8 | Conclusion

Realizing the promise of precision medicine for pulmonary
vascular disease has moved closer to practice but we are still
early in the journey, particularly when compared with oncol-
ogy. Omics approaches, advanced imaging techniques, and an
expanding repertoire of techniques to probe molecular mecha-
nisms provide new ways to investigate and understand biology.
Powerful computational sciences approaches complement the
rapidly expanding body of data, allowing for big data statistical
analysis and recognition of complex patterns.

While the tools at hand create the potential for applying pre-
cision medicine to pulmonary vascular disease, successful
implementation remains challenging. A vast amount of data
from multi‐omic and deep phenotyping approaches must be
assimilated and comprehensively analyzed, all while main-
taining adequate power and not losing important signals.
Analytical techniques including those powered by machine
learning can be employed with the goal of dimensionality
reduction. However, the application of these tools and in par-
ticular artificial intelligence requires careful attention and
needs to be progressive rather than disruptive. Ultimately,
harnessing the power of the available tools will require data
sharing, establishing standardized protocols, and robust col-
laboration between scientists across multiple fields, including
data science. Meanwhile, the quality of the data input must be
rigorously maintained, and in many cases expanded from prior
efforts. In preclinical studies, multiple experimental models
must be employed and coupled with careful histological,
hemodynamic and functional phenotyping. For human samples
and clinical research, inclusion of individuals representing a
spectrum of social determinants of health as well as varying
disease stages and underlying PH pathophysiology will result in
a more representative depiction of the disease.
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The challenges are significant, but so too are the opportunities.
Through careful and responsible implementation of advanced
technology upon a framework of scientific rigor, we will approach
the asymptote of precision medicine in pulmonary vascular disease.

2023 Grover Conference Series

This review article is part of the 2023 Grover Conference Series.
The Grover Conference is named in recognition of the signifi-
cant contributions of Dr. Robert Grover to the fields of high‐
altitude medicine and pulmonary vascular disease. Dr. Grover's
protégé, Dr. John “Jack” Reeves, developed the concept for the
conference series and was instrumental in its organization. The
inaugural Grover Conference was held in 1984 in Sedalia,
Colorado. The 2023 Grover Conference was held at The Devil's
Thumb Ranch in Tabernash, Colorado. The resort had many
modern amenities and activities such as hiking and horseback
riding. The organization of the 2023 Grover Conference pro-
gram was led by Drs. Anna Hemnes, Vinicio de Jesus Perez, and
Martin Wilkins. There were 57 speakers/session chairs and 78
attendees. Memorial lectures were given in honor of significant
Grover Conference Series contributors, including John “Jack”
T. Reeves (Paul M. Hassoun), Robyn J. Barst (Kara N. Goss),

Estelle B. Grover (Stephen Y. Chan), and Terry Wagner (Kurt R.
Stenmark).

A notable conference participant was Dr. E. Kenneth Weir. Dr.
Weir has attended all of the Grover Conferences since its
inception. He was director of each of the first ten Grover
meetings from 1984 to 2000. Moreover, as his sweater is made of
high‐quality wool, he has worn this same sweater at many
Grover conferences, from the inaugural Grover Conference to
the present one (Figure 4). Dr. Weir shared the following poem
in honor of his close friend and Grover Conference founder, Dr.
John “Jack” Reeves [286].

For J T R

The sun rose in Hazard.

For many years he towered in our sky,

warm, strong and nurturing,

sometimes fierce and scorching.

Uncompromising,

FIGURE 4 | Top left: Drs. Jack Reeves, future Nobel Laureate Robert Furchgott, and E. Kenneth Weir at the inaugural 1984 Grover Conference

[287] Top right: Drs. Weir, Kurt Prins, Sasha Prisco, and Thenappan Thenappan at the 2023 Grover Conference. Bottom: Conference participants at

the 2023 Grover Conference.
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like an Old Testament prophet,

his passion etched in the lives of others.

Now, suddenly, the light is gone

as when the sun drops behind the Colorado Rockies.

But his warmth stays in our hearts

and the light which burned in his eyes

must shine in ours.

John T Reeves MD. “Jack,” was born in Hazard, Kentucky, 11/17/
1928. He was an internationally respected scientist and a beloved
mentor to many at the Cardiovascular Pulmonary Laboratory of
the University of Colorado in Denver. He died in Colorado, 9/
15/2004.
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