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Abstract

Horizontal gene transfer (HGT) has appeared to be of importance for prokaryotic species evolution. As a consequence
numerous parametric methods, using only the information embedded in the genomes, have been designed to detect HGTs.
Numerous reports of incongruencies in results of the different methods applied to the same genomes were published. The
use of artificial genomes in which all HGT parameters are controlled allows testing different methods in the same
conditions. The results of this benchmark concerning 16 representative parametric methods showed a great variety of
efficiencies. Some methods work very poorly whatever the type of HGTs and some depend on the conditions or on the
metrics used. The best methods in terms of total errors were those using tetranucleotides as criterion for the window
methods or those using codon usage for gene based methods and the Kullback-Leibler divergence metric. Window
methods are very sensitive but less specific and detect badly lone isolated gene. On the other hand gene based methods
are often very specific but lack of sensitivity. We propose using two methods in combination to get the best of each
category, a gene based one for specificity and a window based one for sensitivity.
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Introduction

Horizontal gene transfer (HGT) between unrelated species is

thought to be one of the leading creative forces driving bacterial

evolution [1,2,3,4,5,6,7]. If a horizontally acquired gene is to be

kept and expanded within a bacterial population, it must confer a

selective advantage upon the host species and increase its fitness

for instance for colonizing new environments or new hosts

[6,8,9,10]. HGTs are known to be of a great importance in

virulence or antibiotic resistance acquisition by prokaryotes

[8,11,12,13]. Therefore to understand the evolution of a

prokaryote, it is crucial when one is analyzing a newly sequenced

genome to distinguish the species-specific regions from the

horizontally acquired ones.

For exhaustive determination of horizontal transfers in a given

genome, methods based on phylogenetic incongruencies are not

well suited. Indeed, for this kind of methods, a correct number of

orthologs for each gene is needed to produce a phylogenetic tree

that could be compared to the species tree. Even with their ever

increasing sizes, genomic databases are still lacking orthologs for in

general over 50% of a newly sequenced genome [14,15,16,17].

On the other hand, so called parametric methods, that is those

based on the compositional characteristics, such as GC content,

codon usage and di- and tetra-nucleotide frequencies of a genome

are well suited to determine exhaustively all the horizontal

transfers of a genome. These usually easily applicable methods

require only the genome of the organism under study. They are

based on the fact that the genomic compositional characteristics

are specific to each species [18,19,20,21,22,23]. Therefore, by

studying the compositional fluctuations along a genome, one can

extract atypical genes/fragments that are potentially from

exogenous origin because they present compositional characteris-

tics different from the majority of the studied genome.

However, more than two dozens parametric methods have been

developed since 1991 (for instance [24,25,26,27,28,29,30,31,32,

33,34,35,36,37,38,39]), and furthermore it has been shown that

these different methods don’t always extract the same fragments

and even are sometimes contradictory [26,40]. For most of these

methods, they were developed and directly applied to prokaryotic

genomes without questioning their efficiency. Rarely would some

authors introduce exogenous genes into a given genome and assess

the ability of their newly developed method to detect, among the

real horizontal transfers already present in the genome, these

artificially introduced genes [37,41]. This methodology still

presents some inconvenience because it allows one to evaluate a

method only in terms of sensitivity – the ability to detect all

horizontal transfers – and not in terms of specificity – the ability to

avoid detecting native genes – because by definition, the

horizontal transfers already present in the genome under study

impede this evaluation.

Azad and Lawrence have developed artificial genomes modeled

from real genomes from which every atypical region was removed

[42]. By combining these genomes one can create a whole panel of

model genomes containing a known content of horizontal transfers
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in order to assess the efficiency of parametric methods in ideal

conditions, and most of all according to different conditions.

Indeed, it has been suggested that if these methods detect different

fragments it is because there are different types of horizontal

transfers more or less ameliorated [43] as a function of the time

elapsed in the genome [40,44].

In this paper, we present the comparative analysis of 16

parametric methods in order to assess their ability to detect

horizontal transfers in model genomes according to (i) their species

of origin, (ii) their overall quantity in the host genome and (iii) their

mean size in terms of number of genes.

Materials and Methods

Sequences
Azad and Lawrence kindly provided us with 11 artificial genomes

modeled from: A. fulgidus DSM 4304, B. subtilis 168, D. radiodurans

R1 chromosome I, E. coli K12, H. influenzae Rd KW20, M. jannaschii

DSM2661, N. gonorrhoeae FA1090, R. solanacearum GMI1000, S.

meliloti 1021, Synechocystis sp. PCC6803 and T. maritime MSB8 [42].

These genomes were used to create model genomes in which the

position and origin of each horizontal transfer is known. For all the

model genomes, E. coli was the host genome – receiving the

horizontal transfers – and the 10 other genomes were the source of

these transfers. In the ‘‘recipient genome analysis’’, the host genome

in swapped between 7 of the artificial genomes.

These genomes were ranked according to their distance in terms

of tetranucleotidic frequencies (a.k.a the genomic signature) to the

E. coli genome (Table 1) and three groups were defined: ‘‘close’’

(represented in shades of blue in Supplementary Figure S1),

‘‘intermediary’’ (in shades of green) and ‘‘far’’ (in orange, red and

pink) genomes. Due to the artificial characteristics of the model

genomes (42), this ranking is operational and cannot be compared

to the corresponding species phylogenetic relationships.

To assess the performance of the methods in detecting HTs

originating from very close species that was not possible with the

artificial genomes, we used 6 gamma-proteobacteria as source

genomes for HTs: Erwinia pyrifoliae Ep1/96, Klebsiella pneumoniae

342, Salmonella enterica subsp. enterica serovar Typhi CT18, Serratia

proteamaculans 568, Vibrio cholerae O395 chromosome I and Yersinia

pestis KIM10.

Methods tested
Two types of parametric methods exist: those based on a scoring

metric to evaluate the atypicity of a fragment

[26,27,28,29,30,34,36,37,38,39,45] and those based on classifica-

tions to separate native genes from atypical genes

[24,25,31,33,35]. The first will consider as horizontal gene

transfers those presenting a score higher (or lower) than a certain

threshold. The second usually define the atypical groups according

to (i) the function of the genes in each group [25,33] or to (ii) the

mean score of the group, which depends on a scoring metric and

external information or some known characteristics of the genome

under consideration [24,31,35]. As the artificial genomes contain

no annotation, only methods based on a metric scoring system

were evaluated.

Sixteen different methods were tested, that are the most

representative of the different criteria evaluated – GC content,

codon usage, amino-acid usage, dinucleotide and tetranucleotide

frequencies – and of the different metric measures (Table 2). The

eight different metrics used by the methods are recalled in

Supplementary Table S1.

Usually, the value of a given criteria for the complete genome

either correspond to the mean value of the criteria calculated over

all the genes or to the value calculated over the whole genome.

The signature method is quite different for this point because the

mean tetranucleotide frequencies for the whole genome are not

calculated over all the windows but over the majority of windows

Table 1. Classification of the 6 gamma proteobacteria and the artificial genomes used in this study according to their distance to
artificial E. coli.

Species GC% Group Distance (AU)* Code Color

Escherichia coli 50.8 Gamma-Proteobacteria - Ecol Grey

Salmonella enterica 51.9 Gamma-Proteobacteria 84 Sent Light green

Erwinia pyrifoliae 53 Gamma-Proteobacteria 103 Epyr Light blue

Serratia proteomaculans 55 Gamma-Proteobacteria 132 Spro Green

Yersinia pestis 47.7 Gamma-Proteobacteria 152 Ypes Red

Vibrio cholerae 47.5 Gamma-Proteobacteria 192 Vcho Light red

Klebsiella pneumoniae 56.9 Gamma-Proteobacteria 194 Kpne Blue

Neisseria gonorrhoeae 52.7 Beta-Proteobacteria 247 Ngon Light blue

Bacillus subtilis 43.5 Firmicute 274 Bsub Dark blue

Synechocystis sp. 47.4 Cyanobacteria 294 Ssyn Cyan

Archaeoglobus fulgidus 48.1 Archaea 332 Aful Dark green

Haemophilus influenzae 38.1 Gamma-Proteobacteria 385 Hinf Light green

Sinorhizobium meliloti 62.2 Alpha-Proteobacteria 397 Smel Green

Thermotoga maritima 46.2 Thermotogale 402 Tmar Pink

Deinococcus radiodurans 67.0 Deinococci 463 Drad Brown

Ralstonia solanacearum 67.0 Beta-Proteobacteria 486 Rsol Fuchsia

Methanocaldococcus jannaschii 31.3 Archaea 618 Mjan Orange

*Distances are calculated using Euclidian metric between the frequencies of the 256 tetranucleotides of each genome. The color-code correspond to the one used in
Supplementary Figure S1.
doi:10.1371/journal.pone.0009989.t001
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from which were removed, after classification, windows that were

too atypical [26].

Threshold evaluation
In order to evaluate the efficiency of each method, we tried to

use them as described in the literature. However, the determina-

tion of the correct threshold is usually a critical issue as it usually

depends on the genome under consideration. Thus, in order to be

able to compare the methods in the same conditions, we

established a common protocol to determine an operational

threshold giving the best results in terms of errors for each method.

For this issue, we used ‘‘standard’’ model genomes containing 9%

of horizontal transfers (a median value taking into account the

published % of HGTs for numerous genomes [46]) originating in

equivalent proportions from B. subtilis, N. gonorrhoeae, S. meliloti, A.

fulgidus, M.jannaschii and R. solanacearum, i.e. 2 ‘‘close’’, 2 ‘‘interme-

diary’’ and 2 ‘‘far’’ genomes. The sizes of the horizontal transfers

were comprised between 1 and 15 genes. As certain parameters are

random (the distribution of the transfers in the genome, the sizes,

etc.) we generated 5 ‘‘standard’’ model genomes in these conditions.

For each of these 5 genomes, we calculate a score per gene or

per window according to each method. To allow comparisons

between methods using sliding windows and using gene based

calculations, we reported each score per window into scores per

genes. The score of each gene corresponds to the barycenter of the

scores of the windows containing the gene weighted by the size of

the portion of the gene in each window. We then realized boxplots

with the scores of each method to establish the atypicality

thresholds without needing to assume an underlying statistical

distribution of these scores. Any data observation that lies beyond

the extremities of the whiskers of a boxplot is considered as an

outlier. These extremities Sinf and Ssup are calculated as following:

Sinf ~ Q1 { r Q3 { Q1ð Þ

Ssup~ Q3 z r Q3 { Q1ð Þ

where Q1 and Q3 are the first and third quartile of a distribution,

and (Q3 2 Q1) the interquartile distance. The whiskers extension is

proportional to a given factor r. Because we know which genes

should be detected as HGT and those that shouldn’t we could

realize ROC-like curves for each method by varying the value of

this whiskers extension factor r (and therefore the threshold values)

from 0.5 to 4 by 0.5 steps. Subsequently we established the optimal

value of r for each method as the one that minimizes the mean

error in terms of sensitivity and specificity. The mean error is

calculated as following:

Err~ 100 { Sensitivityð Þz 100 { Specificityð Þð Þ = 2

We considered as stable the methods for which the standard

deviation of the optimal r over the 5 genomes was below 0.5, i.e.

the value of the step for r.

Results

Comparison and efficiency of the methods over the
‘‘standard’’ model genomes

The performance of each method over 5 ‘‘standard’’ model

genomes is shown in Supplementary Figure S1, recapitulated in

Table 3 and their comparison is presented in the ROC-like curves

in Figure 1. Even in these ideal conditions for the utilization of the

methods – because each host genome is more homogenous than

natural ones and none of the artificially introduced genes has been

ameliorated – not all the methods present the same efficiency

(Figure 1). Indeed, the methods are uniformly distributed over the

ROC-like curve graphic. Some are particularly inadequate in our

conditions (dint.di31T2 for example, in the top right of the

graphic) whereas others are very effective (oli.chi2 for example,

near the origin).

Moreover, this comparative analysis allows us to point out the

weaknesses of each method (if any):

Table 2. The sixteen horizontal transfer detection methods analyzed in this paper.

Name References Criteria Genome scanning metric

GC.windows [27,29,38] GC% 20 kb windows, 5 kb step Manhattan

GCtotal [27] GC% Genes None

GC1-GC3 [27,30] GC% in positions 1 and 3 of genes Genes None

dint5 [29,38,39] Normalized dinucleotides 5 kb windows, 5 kb step Delta*

dint.di31T2 [28] Normalized dinuleotides in position 3:
1 of codons

Genes Mahalanobis

CU.chi2 [30] Codons Genes Chi2

CU.karlin [29,38] Codons Genes Delta*

CU.karlin.aa [29] Amino acids Genes Delta*

CU.KL [31] Codons Genes Kullback-Leibler

CU.mahalanobis [27] Codons Genes Mahalanobis

oli.Pearson [37] Normalized tetranucleotides 5 kb windows, 1 kb step Correlation

oli.covariance ‘‘ Normalized tetranucleotides 5 kb windows, 1 kb step Covariance

oli.chi2 ‘‘ Normalized tetranucleotides 5 kb windows, 1 kb step Chi2

oli.mahalanobis ‘‘ Normalized tetranucleotides 5 kb windows, 1 kb step Mahalanobis

oli.KL ‘‘ Normalized tetranucleotides 5 kb windows, 1 kb step Kullback-Leibler

signature [26] Tetranucleotides 5 kb windows, 0.5 kb step Euclidian

doi:10.1371/journal.pone.0009989.t002
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% Some compositional criteria don’t distinguish atypical regions

from the native genes. This is the case for dinucleotides in

position 3:1 of genes (dint.di31T2) and for amino-acid usage

(CU.karlin.aa)

% Some metric measures are not adequate for separating

atypical fragments from native ones. This is true for chi2

metric used with codon usage (CU.chi2), covariance used with

tetranucleotide frequencies (oli.covariance) and the Mahala-

nobis distance. Regardless of the criteria used (codon usage

‘‘CU’’, dinucleotide frequency ‘‘dint’’ or tetranucleotide

frequency ‘‘oli’’), it appears that the methods using Mahala-

nobis distances as the metric measure (dint.di31T2, CU.ma-

halanobis, oli.mahalanobis) always present lesser sensitivity

than the other methods using the same criteria with another

metric.

% Some methods such as GCtotal, GC1-GC3, CU.karlin are

very sensitive to the origin of horizontal transfers. In these

cases, it appears that fragments originating from close

genomes (see M&M) present scores similar to those of the

native genes (This is illustrated in Supplementary Figure S1).

This point was further investigated by measuring the

performances of each method according to the origin of

artificial horizontal transfers (see below).

After such a comparative analysis, we reduced our set of

methods to those that were the most effective for each of the four

criteria, that is: GCtotal, GC1-GC3, dint5, CU.KL, oli.chi2,

oli.KL and signature.

Figure 1. ROC-like curves of the 16 methods. Each dot of a curve corresponds to the values of type I error (100-sensitivity) and type II error (100-
specificity) for each value of r (see M&M). The best methods are those with the less errors, i.e. those that are the closest of the origin.
doi:10.1371/journal.pone.0009989.g001

Table 3. Mean performances of all the 16 methods with
‘‘standard’’ model genomes.

Methods Sensitivity Specificity Threshold 6 deviation*

GC.windows 56.6 51.6 1.861.4

GCtotal 49.1 96.1 1.96.2

GC1-GC3 23.9 98.2 1.46.2

Dint5 79.4 84.4 1.86.3

Dint.di31T2 16.8 9.5 0.56.0

CU.chi2 1.3 100 4.06.0

CU.karlin 62.2 73.4 1.16.2

CU.karlin.aa 65.9 26 0.560

CU.KL 77.2 87.8 1.46.2

CU.mahalanobis 3.9 79.8 3.66.5

oli.Pearson 92.5 85.5 3.26.8

oli.covariance 38.8 91.5 2.26.4

oli.chi2 93.8 87.1 3.96.2

oli.mahalanobis 64.9 81.6 1.16.2

oli.KL 91.5 89.2 3.660.4

signature 98 67.3 1.56.0

*Threshold corresponds to the value of r (see M&M) for optimal performance; the
standard deviation of optimal r over the 5 tested genomes is precised.
doi:10.1371/journal.pone.0009989.t003
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The influence of horizontal transfer (HT) characteristics
Influence of HT origin. Ten types of model genomes were

realized in which the source of HTs is unique. In each of these

genomes, there are 12.5% of HTs from 5 to 10 genes long

originating from only one of the 10 donor species. The detection

mean error of the 7 tested methods is presented in Figure 2A. On

the x-axis of this figure, the HT source genomes are ordered

according to their distance to the model genome of E. coli in terms

of signature (as presented in Table 1), the closest on the left and the

furthest on the right. The tetranucleotide based methods (oli.chi2,

oli.KL and signature) present a very good efficiency (mean error

,20%) regardless of the HT genome origin. The dinucleotide-

based method (dint5) is almost as powerful, being sensitive to only

one source out of 10 (H. influenzae). At last, the mean errors of the

gene based methods (GCtotal, GC1-GC3 and CU.KL) are usually

quite high – mean errors are respectively 41%, 53% and 28% –

and vary considerably – mean standard deviations are respectively

37%, 26% and 21% – according to HT origin. By comparing the

GC contents of the E. coli model genome and the HT source

model genomes for which these methods are the less efficient, N.

gonorrhoeae, Synechoccystis sp., A. fulgidus and T. maritima, it appears

that these model genomes are those presenting almost the same

GC% as E. coli. GC content and codon usage criteria are not

discriminant enough to distinguish foreign DNA from native DNA

in a given genome compared to di- or moreover tetranucleotides.

To investigate further the heterogeneity of performance of the

methods according to HT origin, model genomes were created by

integrating to the artificial E. coli genome 9% of HTs originating in

Figure 2. Mean errors of 7 methods according to (A) origin, (B) overall quantity, (C) size and (D) recipient genome. The mean error is
the mean of type I (sensitivity) and type II (specificity) errors. It is presented here for the 7 efficient HT detection methods of each criterion (codon
usage: CU.KL; dinucleotide frequencies: dint5; GC content: GCtotal and GC1-GC3; and tetranucleotide frequencies: oli.chi2, oli.KL and signature)
according to four parameters. A: the origin. The unique donor genome of the HTs are ordered according to their distance to the host genome (E. coli)
in terms of tetranucleotide frequencies – the closest on the left and the farthest on the right. B: the overall quantity of HTs in percentage of the
genome. C: the size of the HTs. Small, Medium, Large and Very Large respectively mean 1 to 5 genes, 5 to 10 genes, 10 to 20 genes and 20 to 30
genes. D: the host genome, i.e. the genome receiving the HTs.
doi:10.1371/journal.pone.0009989.g002

Benchmarking of HT Detection

PLoS ONE | www.plosone.org 5 April 2010 | Volume 5 | Issue 4 | e9989



equivalent proportion (1.5%) from the 6 real gamma-proteobac-

teria genomes mentioned in the Materials and Methods section.

Because these genomes are phylogenetically very close to E. coli,

this allows us to assess the performance of the methods in very

difficult conditions. Sensitivity, specificity and mean error are

presented in Table 4. It appears that only two tetranucleotide

based methods (oli.chi2 and signature) present satisfying results –

less than 30% of errors – for HT detection in these conditions.

Influence of HT quantity. Four types of model genomes

were generated containing respectively 1%, 5%, 10% and 20% of

HTs. In these genomes, the HTs emanated from three donor

species, a close one B. subtilis, an intermediate one S. meliloti and a

far one M. janaschii. These donor species were chosen because

there are the HT donors of each distance category (close,

intermediate and far) for which the methods are the most

performing according to the previous analysis. The sizes of the

HTs were comprised between 5 and 10 genes. The mean error of

the 7 methods according to overall HT quantity is presented in

Figure 2B. For all the methods but one (signature), the mean error

curves are in a open U shape, meaning that the scoring

discrimination is sensitive to too low (1%) or too great quantities

(20%) of HTs, but is adequate to mean quantities of HTs (5 to

10%). The signature method is the less efficient method when

there are too few HTs but it gets more and more efficient as HT

quantity increases, even for 20%. This particularity is the direct

consequence of calculating the mean host genome signature over

only a subset of the genome, by excluding atypical fragments after

classification (see M&M). It is to be noted that the GC1-GC3

method is quite inefficient whatever the quantity of HTs

(Figure 2B).

Influence of HT size. Four types of model genomes were

realized in which the average size of the HTs was small (1 to 5

genes), medium (4 to 10 genes), large (10 to 20 genes) or very large

(20 to 30 genes). For the reasons presented above, the donor

species were B. subtilis, S. meliloti and M. janaschii. The overall

quantity of HTs in these genomes was fixed to 10%, as it appeared

to be the optimal quantity for the majority of the methods. The

mean error of the 7 methods according to HT size is presented in

Figure 2C. Two types of curves can be distinguished: flat ones –

mean error is constant regardless of the size of the HTs –

corresponding to the gene based methods (GCtotal, GC1-GC3

and CU.KL) and decreasing ones – mean error decreases as HT

size increases – corresponding to the window based methods. As

these methods scan the genome by using 5 kb windows, they are –

for once – less able to detect small HTs compared to the gene

based methods.

Influence of host genome. Seven types of model genomes

were realized for which the host genome, i.e. the one receiving the

HTs, is different each time. The seven host genomes are artificial

E. coli, N. gonorrhoeae, B. subtilis, A. fulgidus, S. meliloti, R. solanacearum

and M. janaschii. For each of these host genomes there are 9% of

HTs originating in equivalent proportion (1.5%) from the 6 other

genomes. The mean error of the 7 methods according to the host

genome is presented in Figure 2D. As for the influence of HT

source, tetranucleotide-based methods (oli.chi2, oli.KL and

signature) and the dinucleotide-based method (dint5) are less

sensitive to host variation compared to GC based methods

(GCtotal and GC1-GC3) or codon usage based methods.

Combination of methods
The previous analyses show that the tetranucleotide based

methods are the most adequate methods to use to detect HTs in

most cases. But, because they cannot detect small HT – i.e. less

than 5 genes long – we decided to combine the use of a

tetranucleotide based method with the best gene based method the

CU.KL method using the codon usage criteria with a Kullback-

Leibler metric.

Over a ‘‘standard’’ model genome. We applied the

methods on the 5 ‘‘standard’’ model genomes described above

and detected as HTs those that were atypical for at least one

method, i.e. we used the union of the detections. Mean sensitivity,

specificity and errors are presented in Table 4 for each pair of

methods. Compared to the use of one method alone, the

combination improves sensitivity: 93.8% to 97.0% for oli.chi2,

91.5% to 96.2% for oli-KL and 98% to 99.4% for signature, but on

the other hand specificity worsens. Because uniting the results of 2

methods overall raises the number of detected regions, it increases

the number of true positives (increases sensitivity) and the number of

false positives (decreases specificity) (Figure 1). The method

combination presenting the less errors is CU.KL with oli.KL,

however it is not very different from the other combinations.

Over a real genome. In the previous analyses, we applied the

methods on artificial genomes that were developed by Azad and

Lawrence [42]. The sequences of these genomes may present too

little intrinsic variability compared to a real genome and therefore

bias the performances of the HT detection methods. Thus, we

decided to evaluate the performance of the methods combination by

using a real genome, that of E. coli K-12 sp. MG1655. But as

mentioned previously, a real genome already has its own HTs that

could interfere with the specificity measurements, as they would

likely be detected by the methods. We have therefore decided to

remove from the E. coli genome all the genes detected by at least one

of all the published methods used on this species. Out of the 4252

genes, 1592 were detected by one of the 6 methods referenced by

Dufraigne et al. [26]; all of these genes were taken out of the genome.

On the other hand, all non-coding regions perhaps presenting

compositional divergences were maintained, i.e. the intrinsic

variability of the genome is taken into account, unlike in the

artificial genomes used previously. We then added to this ‘‘reduced’’

genome 9% of HTs from 1 to 15 genes originating from the same 6

artificial genomes used to generate the ‘‘standard’’ model genomes

(see M&M). However, as noted previously the artificial genes

inserted in the E. coli genome were not ameliorated as in the model

genomes. This protocol was iterated 5 times to generate 5 ‘‘real’’ E.

coli genomes over which we could evaluate the performance of the

combinations of methods. The values of sensitivity, specificity and

mean error are presented in Table 4 for each of the 6 pairs of

methods. It appears that the sensitivity of the methods is slightly

reduced compared to the use of standard genomes, whereas the

specificity remains constant. The decrease in sensitivity is clearly

Table 4. Sensitivity, specificity and mean performance of the
methods with HTs originating from real gamma-
proteobacteria.

Method Sensitivity Specificity Mean error

GCtotal 5.32 100 47.34

GC1-GC3 2.64 100 48.68

CU.KL 6.19 96.95 48.43

dint5 39.66 77.73 41.3

oli.chi2 72.82 84.21 21.48

oli.KL 61.01 70.12 34.44

signature 84.82 59.23 27.97

doi:10.1371/journal.pone.0009989.t004
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due to the increasing intrinsic variability of the reconstructed E. coli

genome. The fact that the specificity does not change indicates

simply that, even if the threshold is increased, all the peaks above it

are representative of HTs.

Discussion

The artificial genomes kindly provided by Azad and Lawrence

present ‘‘ideal’’ conditions to test horizontal transfer (HT)

detection methods based on nucleotidic composition; first, due to

their construction, they present low intrinsic variability and second

the HTs introduced in these genomes are not ameliorated, i.e. they

haven’t started to gain the host genome compositional character-

istics. They allowed us to realize an exhaustive evaluation of the

different types of score based parametric methods used for

horizontal transfer detection. All compositional criteria – GC%,

codon and amino-acid usage, di- and tetranucleotide frequencies

(Table 2) – were represented, using a wide range of metric

distances – Manhattan distance, Euclidean distance, covariance

measure, correlation measure, chi2 metric, Mahalanobis distance

and Kullback-Leibler divergence (Supplementary Table S1). By

applying these 16 methods in the same conditions, i.e. on the same

genomes, with the same best threshold estimation process, we were

able to compare the performance of the methods we tested in

terms of both sensitivity and specificity. These conditions are not

real ones, and the most efficient methods could perhaps not be the

best in real situations, in particular if different methods detect

different classes of HTs [40,47,48]. However this is not true for

inefficient methods, if they perform badly in ideal conditions it is

not likely they would perform better in real conditions.

Our first conclusion is that not all methods are suited for HT

detection (Figure 1). It appears that the methods present a very

variable efficiency, from those quite unable to detect, in our

conditions, some HTs to that which are able to detect almost all

(Figure 1). This great diversity in efficiency is quite amazing and was

not predictable. Indeed some criteria are unable to distinguish foreign

DNA (dinucleotides in position 3:1 for example), and some metrics

cannot separate the HTs from the native genes (Mahalanobis

distance for example). Also the combination of a criterion and a

metric can be critical. For example, using codon usage as criterion,

some metrics are not suitable (chi2 metric and Mahalanobis distance)

when some work well (Karlin delta* metric and Kullback-Leibler

distance) (Figure 1 and Table 3). Base composition was already shown

to be a weak indicator of horizontal transfers due to a number of

biases in normal conditions and it is verified in this study as in the best

conditions the mean error is a bit less than 30% (Figure 1 and Table 3)

[49,50,51]. As a rule, tetranucleotide usage is a better indicator for

horizontal transfer detection. Once again the metric used to analyze

such criterion is essential, nevertheless sensitivity to the metric is less

than with the other criteria as only the covariance metric and the

Mahalanobis distance lead to poor results with tetranucleotides.

We pursued the analysis further by evaluating the performance

of each method according to the different characteristics of the

horizontal transfers. The four characteristics used in this analysis

were the origin, the overall quantity, the size of the HTs and the

recipient genome (Figure 2).

There is a great variability in efficiency for the methods tested as

a function of the origin of the HTs (Figure 2A). It appears that the

GC content, codon usage and dinucleotide based methods are far

more sensitive to HT origin than those using tetranucleotides. The

three former criteria can coincidentally be similar between a host

and a donor genome, even if those are phylogenetically distant,

and it has been noted that these criteria were not discriminative

enough for HT detection [49,50,51]. On the other hand, it was

shown that tetranucleotide frequencies are species-specific [20,52],

and therefore are more suited to distinguish foreign DNA in a

given genome. However, when HTs originate from very closely

related species, it is to be noted that even tetranucleotide-based

methods perform less well than with ‘‘farther’’ HTs (Table 4) while

still more efficient that the others in these difficult conditions.

HT quantity is also a parameter to take into account as in

general this parameter influences the threshold determination

(Figure 2B and Table 3). With the exception of GC1-GC3 which

responds poorly whatever the global quantity of HT and the

signature method which improves when the quantity increases, all

the other methods present the same type of behavior with a

maximum efficiency between 5 and 10% of HTs, range which is in

general reported in the literature [26,46].

The HT size parameter is the one that discriminates best

between the two main types of criteria. Indeed, gene based criteria

are independent of the HT size while the window-based

oligonucleotide methods are very sensitive to this parameter

(Figure 2C). Window based methods due to their processing mode

are disadvantaged for small sizes of HTs and begin to be efficient

only for medium sizes. This result is consistent with what is

expected of such methods and is of interest when using a

combination of method (see below). The best gene based method is

CU-KL that overcomes methods based on base composition of

codons. Again tetranucleotide window based methods are slightly

more efficient that dinuleotide ones.

A change in recipient genome reveals the robustness of the

methods in varying conditions (Figure 2D). Base composition based

methods are very sensitive to a change in recipient genome. This

might be imputable to the intrinsic variability of the recipient

genome even in our conditions where this variability is reduced. The

codon usage based method also exhibits a great variability in

efficiency that is unexpected due to the variety of gene

characteristics inserted in the genomes. As previously oligonucleo-

tide-based methods are the most robust when the recipient genome

changes, they present a weak dependence to the recipient genome.

Thus, two conclusions can be drawn here: first the ‘‘different

methods for different HTs’’ statement is mainly due to the origin

of the HTs, and second even though it seems to be true for GC

content, codon usage or dinucleotide based methods, it doesn’t

apply to tetranucleotide based methods which look rather

insensible to all HT criteria. Indeed, whatever the conditions

tested here the oligonucleotide-based methods are the most

performing in all conditions. This type of method works best

even in difficult condition as it was the case for detecting HT

originating from closely related species (Table 4) or when using a

‘real’ E. coli recipient genome (Table 5). However as tetranucle-

otide frequencies can only be computed over large sequence

fragments to avoid statistical bias, small HTs (less than 5 genes

long) will not be detected by these methods (Figure 2C). This could

be inconvenient if the introduction of a long stretch of foreign

DNA in a genomic sequence is followed by an important

subsequent gene loss of this fragment by selective pressure, leaving

only a few genes left, hard to detect by the tetranucleotide based

methods. Therefore, we suggest to combine such a method with a

gene based method to improve the sensitivity of detection. As it

appears along this study, among the gene based methods, codon

usage is the most discriminative criterion combined with a

Kullback-Leibler measurement, and thus CU-KL is the gene-

based method the most efficient for HT detection. It is still

recommended to investigate further a gene presenting an atypical

codon usage as it could be due to other causes, such as over-

expression, bias amino-acid composition or repetition for instance

[53].
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Our analyses also point out the particularities of each metric

system. The three best tetranucleotide-based methods are those

using the chi2 metric, the Kullback-Leibler divergence and the

Euclidean distance. It appears that the first two are equivalent and

they tend to increase dissimilarity compared to Euclidean distance.

Therefore they are the metrics the most suitable for outlier

detection. By using a homogenous threshold evaluation, we were

able to realize a adequate comparison between the methods. This

threshold determination has the advantage to be quite easy to

understand and is reproducible. This is in opposition with Markov

models and other classification methods that were not studied here

for this reason: after a classification process one has to reasonably

choose (if not) the number of groups and then identify among

them the ‘‘atypical’’ one. Therefore, the use of metric methods

using a threshold is rather straightforward. The use of a specific

pre-treatment such as the ‘‘recalculation’’ of ‘‘a genuine recipient

genome’’ criteria done by the signature method (see M&M) and

most of all of a combination of methods allows one to tune the

methods to improve the sensitivity – detect all HTs – or the

specificity – do not detect native genes – of the HT detection

process.

As a conclusion, we have shown that parametric methods

provide a valuable tool for detecting HTs in a variety of

experimental conditions. One of their advantages is that by

analyzing only the DNA sequence, these methods work out partial

genomes or even long stretches of DNA sequence. We demon-

strated that oligonucleotide usage is a method of choice in all

conditions. It was shown that the longer the oligonucleotide the

better the species specificity and thus the ability to detect inclusions

of foreign DNA [20]. However, for statistical reasons, the length of

oligonucleotides reaches a limit and in the experimental conditions

used here no oligonucleotide longer than 5 nucleotides is usable

except if we choose to enlarge the window size at the expense of

losing the ability to detect short and medium size HT regions.

Overall, the intrinsic genome variability would be in all cases a

limit to HT detection by increasing, whatever the mode of

evaluation, the threshold and so decreasing the sensitivity of any

methods. We propose to combine at least two types of methods to

cover all possible situations and allowing, with appropriate metrics

and parameters, the best possible HTs evaluation: an oligonucle-

otide window based method and a gene based one working with

codon usage. Even if the errors inherent to these methods are

added the overall benefit is worthy. We do not discard the

possibility of combining more methods but it seems important to

keep in mind the cost/benefit of multiplying the methods, the only

aim here being net gain in sensitivity. Moreover it is possible to use

specific information related to the genome under study to improve

the final result. Indeed, more and more methods using specific

information such as functional annotation, chromosome position,

codon usage statistical learning, comparative genomics, etc. are

being developed to improve the quality of detection of HTs

[24,54,55,56,57,58,59]. A comprehensive evaluation of such

methods using comparative genomics as gold standard can be

found in [59]. Though, such sophisticated methods usually require

additional information that is not always available as well as

complex computations that are not easily operative for one who

wishes to realize a precursor investigation of it’s favorite genome

before further in depth analyses. This benchmark of parametric

methods – that can be used quite easily – allows one to rationally

choose the adequate method or combination of methods for this

kind of investigations, or as a first step before combining it with

specific information. For instance, in the sophisticated method

using statistical learning methods over codon usage in different

species [57], it might be wiser to use tetranucleotide frequencies

instead of codon usage.
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