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Abstract 

Brain metastases frequently occur in lung cancer and dramatically limit prognosis of affected patients. The influence of tumor- 
associated macrophages and microglia (TAM/M) and their receptor CX3CR1 on different steps of brain metastasis formation from 

lung cancer is poorly characterized. We established a syngeneic orthotopic cerebral metastasis model in mice by combining a chronic 
cranial window with repetitive intravital 2-photon laser scanning microscopy. This allowed in vivo tracking of fluorescence-expressing 
tumor cells and TAM/M on a single-cell level over weeks. Intracarotid injection of red tdTomato-fluorescent Lewis lung carcinoma 
cell was performed in transgenic mice either proficient or deficient for CX3CR1. After intracarotid cell injection, intravascular tumor 
cells extravasated into the brain parenchyma and formed micro- and mature macrometastases. We observed potential phagocytosis 
of extravasated tumor cells by TAM/M. However, during later steps of metastasis formation, these anti-tumor effects diminished and 

were paralleled by TAM/M accumulation and activation. Although CX3CR1 deficiency resulted in a lower number of extravasated 

tumor cells, progression of these extravasated cells into micro metastases was more efficient. Overall, this resulted in a comparable 
number of mature macrometastases in CX3CR1-deficient and -proficient mice. Our findings indicate that unspecific inhibition of 
CX3CR1 might not be a suitable therapeutic option to prevent dissemination of lung cancer cells to the brain. Given the close 
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interaction between TAM/M and tumor cells during metastasis 
may warrant further evaluation. The herein established orthoto
vivo . 

Neoplasia (2021) 23, 1089–1100 
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Introduction 

Brain metastases arise through the dissemination of cells from an
extracranial primary neoplasm to the brain microvasculature. 20% to 40%
of patients with solid cancers develop brain metastases, and individuals
with lung cancer are at particularly high risk [1] . Although recent
immunotherapeutic advances improved outcome for systemic lung cancer
[2] , brain metastases from lung cancer still respond poorly to medical
therapy and limit survival 3 , 4 . Factors contributing to the formation of
brain metastases are largely unknown, but might be of relevance for the
identification of therapeutic strategies. 

Metastases are compositions of neoplastic and non-neoplastic cells which
all contribute to metastasis formation [5] . Tumor-associated macrophages
and microglia (TAM/M) of peripheral or brain-intrinsic origin represent
the majority of non-neoplastic cells in the tumor microenvironment. Once
activated, TAM/M create an immunosuppressive niche which facilitates
tumor cell extravasation and expansion [6] . Accordingly, TAM/M-density
correlates with poor prognosis in malignancies inside and outside the
central nervous system [7] ; and TAM/M-inhibition was reported to decrease
metastases in pancreatic cancer xenografts and hamper progression of patient-
derived glioma xenografts [ 8 , 9 ]. Contrary, TAM/M may also exhibit anti-
tumor properties in other brain tumors such as medulloblastoma via direct
killing activity against tumor cells [10] . Thus, the role of TAM/M in brain
cancer formation likely depends on the exact tumor-type, which remains
to be specified for lung cancer metastases. Animal models for the cerebral
dissemination of lung cancer cells have been successfully established. [11,12] .
However, repetitive in vivo -visualization of lung cancer metastasis formation
in the brain to study the interaction between tumor cells and TAM/M has
not yet been reported. 

TAM/M are regulated by a variety of signaling pathways including
the C-X3-C motif chemokine receptor 1 (CX3CR1)/C-X3-C motif
chemokine ligand 1 (CX3CL1)-axis [13] . Under physiologic conditions,
mostly macrophages and microglia express CX3CR1. The ligand CX3CL1
is an abundantly expressed chemokine and can be found on tissues
of epithelial origin including pulmonal tissue (and, thus, also lung
cancer) [14] . Elevated CX3CL1-levels are associated with activation of
immunosuppressive (potentially pro-tumorous) TAM/M [15] , but also
with increased infiltration of pro-inflammatory (potentially anti-tumorous)
immune cells [16] . Whether the CX3CR1/CX3CL1-axis represents a
therapeutic target in brain metastases from lung cancer remains therefore
unclear. 

We herein developed an orthotopic mouse model to study the formation
of brain metastases after systemic dissemination of lung cancer cells.
This model allowed the repetitive visualization of fluorescent cancer cells,
TAM/M, and blood vessels using two-photon laser scanning microscopy
through a chronic cranial window. Thereby, we were able to analyze in
vivo the interaction of tumor cells with TAM/M during different steps of
metastasis formation. To illustrate the role of the CX3CR1/CX3CL1-axis
formation, other therapeutic approaches targeting TAM/M function 

pic mouse model may be a useful tool to evaluate such concepts in 

 microscopy, CX3CR1 

n brain metastases formation from lung cancer, we made use of CX3CR1 
nock-out mice. 

aterials and methods 

nimals 

Homozygous CX3CR1 GFP/GFP -mice (B6.129P-Cx3cr1t m1Litt /J; JAX stock 
005582) were purchased from The Jackson Laboratory. These mice have a 
reen fluorescent protein (GFP)-sequence replacing the first 390 base pairs of 
he coding exon 2 within the CX3CR1-gene, thus enabling the visualization 
f CX3CR1-expressing TAM/M. Homozygous CX3CR1 GFP/GFP -mice were 
red with C57BL/6J-mice to generate heterozygous CX3CR1 GFP/wt -mice. 
hereas homozygous CX3CR1 GFP/GFP -mice are functional knock-outs for 

X3CR1, heterozygous CX3CR1 GFP/wt -mice are characterized by proper 
unction of CX3CR1 [ 17 , 18 ]. For cranial window implantation, female
ice with an age of 8 to 12 weeks were used. Animals were housed 1 per

age and had ad libitum access to tap water and standard pellet food. All
nimal experiments were approved by the local governmental animal care 
ommittee, and were conducted in accordance with German legislation and 
IH Guidelines (NIH Publication #85-23 Rev. 1985). 

ell lines 

LL/2, a murine Lewis lung carcinoma cell line, was purchased from the 
uropean Collection of Authenticated Cell Cultures (ECACC). Cells were 
ultured in DMEM supplemented with 2mM glutamine and 10% FCS, and 
egularly tested for mycoplasma infection. To keep genetic drift at minimum, 
ells were maintained in culture for up to 3 months after thawing. 

etroviral transfection 

A vector was generated by cloning a PCR-product containing the 
dTomato-sequence (vector ptdTomato; #632531, TaKaRa Clontech) 
nto the lentiviral expression vector pLVX-IRES-neo (LentiX-Bicistronic 
xpression System; #632181, TaKaRa Clontech) [19] . This lentiviral 
xpression vector contains a resistance-sequence for G418-sulfate. The 
esulting nucleotide construct pLVX-tdTomato-IRES-Neo was verified by 
estriction enzyme digestion and direct sequencing. 

LL/2-cells were transfected with pLVX-tdTomato-IRES-Neo using 
ipofection (Lipofectamine 3000; Thermo Fisher Scientific). Immediately 
fter transfection, tdt LL/2-cells were cultured in selection medium containing 
418-sulfate and Geneticin (#A2912; Biochrom). TdTomato-positive clones 
ere further enriched using FACS sorting [19] . 

ranial window preparation and intracarotid tumor cell injection 

Chronic cranial window preparation has been previously described 
n detail ( Figure. 1 ) [19-21] . Briefly, dexamethasone (2 mg/kg) and
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Fig. 1. Experimental protocol and post-hoc image processing. 
A: Position and dimensions of the cranial window (circle; diameter 5.5 mm) over the mouse brain. The panel was created with the 3dBAR plugin of the 
Scalable Brain Atlas (Bakker et al. in Neuroinformatics, 2015). Scale bar: 0.5 mm. B: Timeline on of the experimental design. C-F: Post-hoc image processing 
merging channels from in vivo -microscopy (C, D) into resulting false-colour images (E, F). CX3CR1-positive tumor-associated macrophages and microglia 
(TAM/M; arrowheads) can almost exclusively be found in the green channel (C), whereas red fluorescent tdt LL/2 tumor cells (arrows) are only seen in the red 
channel (D). Given the signal overlap from intravascular FITC-dextran in the green and the red channel, yellow vessels are displayed after merging whereas 
the colour of TAM/M and tumor cells remains the same (E). For better visualization, vessels colour was changed to white, TAM/M colour to cyan, and tumor 
cells remained red (F). Depth from brain surface: 1-300 μm. Scale bars: 50 μm. 
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cefotaxime (250mg/kg) were preoperatively administered. A circular part
of the cranium (diameter: 5.5mm) was removed and the dura mater
was carefully separated from the leptomeninges to achieve optimal image
resolution ( Figure. 1 A). The brain surface remained covered with saline,
and a round cover class (diameter: 6.0mm) was firmly attached to the
bone. A custom-made ring (diameter: 8.00mm) was glued to the skull to
facilitate head positioning during imaging. To ensure postoperative analgesia,
buprenorphine (0.1mg/kg; q8h) was injected for 2 postoperative days. The
animals were allowed a postoperative recovery time of 28 days to prevent
postoperative microglia activation or alterations of the microcirculation
( Figure. 1 B). 

To simulate cerebral tumor cell dissemination, we injected tdt LL/2-cells
into the carotid artery [22] . For that purpose, the right common carotid
artery, internal carotid artery, and external carotid artery were exposed. The
proximal common carotid artery and the proximal external carotid artery
were ligated to ensure anterograde flow of the tumor cells into the brain.
7.5 × 10 5 tdt LL/2-cells in 150μl PBS were then injected into the common
carotid artery over 5 minutes; and the common carotid artery distal from the
injection site was also ligated to prevent bleeding or tumor cell regurgitation.
Wound was closed and analgesia was provided. 

Two-photon laser scanning microscopy and image acquisition 

Metastasis formation was followed by in vivo -microscopy ( Figure 1 B).
For this purpose, a TrimScope multiphoton microscopy platform (LaVision
iotech TrimScope I) equipped with a MaiTai-laser (wavelength 690- 
040nm; Spectra Physics, Newport) and a 20-times water immersion 
bjective (numerical aperture 0.95; XLUMPlanFl, Olympus) was used. 
 standardized regions of interest (ROIs) per animal were longitudinally 
ssessed with a x20 objective. Anesthesia during microscopy was established
ith 1% to 2% isoflurane in oxygen adjusted to the breathing rate;

nd the mice’s head was fixated in a custom-made holding device.
ubsequently, 0.2mL fluorescein isothiocyanate (FITC)-dextran (10mg/mL, 
 MDa molecular mass; Sigma-Aldrich) were injected into the tail vein
or intravascular plasma staining. Cortical vessels were identified by the
uorescent signal of FITC-dextran and served as landmarks to retrieve the
ame ROIs during repetitive imaging. Image stacks with x/y/z-dimensions of
50 × 450 × 300 μm were acquired at a wavelength of 920nm. Imaging
tarted at the brain surface (as defined by detection of the arachnoid fibers
sing second harmonic imaging) and recordings were made every 2μm. Image
esolution was set at 1024 × 1024 pixels. 

mage analysis 

For image analysis, Imaris v8.2 (Bitplane AG) and ImageJ/Fiji (NIH)
ere used. Raters were blinded to group allocation until analyses were

ompleted. Tumor cells were identified using their intrinsic red fluorescence
nd were followed through the different steps of metastasis formation [21] .
he intratumoral density (in 10 4 /mm 

3 ) of green fluorescent TAM/M was
etermined within an area of 100 × 10 × 40 μm around the center of a
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metastasis. The average cell body volume (in μm 

3 /cell) of all TAM/M within
the respective area as an indirect marker of cellular activation was calculated
after semi-automatic cell delineation. For display purposes, 2-dimensional
images were generated using maximum intensity projections for merged
channels. 

Study design 

Tumor cells were intracarotidly injected into both CX3CR1 GFP/wt -
and CX3CR1 GFP/GFP -mice (n = 8 each) to analyze the role of the
CX3CR1/CX3CL1-axis on the formation of brain metastases of lung cancer.
In addition, CX3CR1 GFP/wt - and CX3CR1 GFP/GFP -mice in which cranial
window preparation but no intracarotid (tumor cell) injection was performed
served as controls (n = 3 each). In vivo -microscopy was performed 1 day
after tumor cell injection and then every other day until termination criteria
(including neurologic symptoms attributed to tumor growth or tumor
diameter > 3mm) were met. At the end of the in vivo -experiments, animals
were sacrificed by intracardiac injection of PBS followed by PFA 4%, and the
brains were excised. 

Immunohistochemical analysis 

After excision, brains were stored in PFA 4% for at least 2 hours.
Subsequently, the water was removed from the samples by incubation
in ascending sucrose series until equilibration was reached. Samples were
transferred to -20 °C for 24 hours and eventually into liquid nitrogen. Finally,
brains were cut into 15μm-thick sections. 

Sections were stained with a polyclonal goat-anti-mouse antibody against
Iba1 (#NB100-1028; 1:100, Novus Biologicals) to detect TAM/M, and with
a polyclonal rabbit-anti-DS-red antibody (#632496; 1:200, Clontech) to
highlight the tdTomato-signal of tumor cells. The endogenously expressed
GFP-signal of CX3CR1-positive TAM/M could be detected without further
staining. As secondary antibodies, a donkey-anti-goat AlexaFluor®-647
antibody (#A-21447; 1:100, Thermo Fisher Scientific), and a donkey-anti-
rabbit AlexaFluor ®−594 antibody (#A21207; 1:100, Invitrogen) were used.
The sections were placed in a humidified incubation box and incubated
overnight at 4 °C with the primary antibody. The labelling with the respective
secondary antibody was performed at room temperature for 1h. Cell nuclei
were stained with DAPI (#236276; 1:1000, Roche). Sections were assessed
using a Zeiss AxioImager.M2 upright-microscope (Carl Zeiss Microscopy).
To immunohistochemically quantify the TAM/M-signal, we determined
the fluorescence signal intensity (per area) of the TAM/M-markers GFP
(representing the CX3CR1-signal) and Iba1 within the tumor (manually
delineated), peritumoral (six ROIs per 200 × 200 μm), and contralateral
(area and localization corresponding to the analyzed tumor area) using Zen
Lite software package (version 2.3; Carl Zeiss Microscopy). 

Statistics 

Normal distribution and equal variance of data was tested using
the D’ Agostino-Pearson omnibus normality-test. Differences between
CX3CR1 GFP/wt -mice, CX3CR1 GFP/GFP -mice, and respective controls or
between different time points within groups were analyzed by the student’s t -
test (parametric data) or by the Mann-Whitney U-test (non-parametric data).
All values are expressed as mean ± standard error of the mean (SEM), if
not indicated otherwise. Relationships between two categorical variables were
analyzed using Fisher’s exact test. Statistical analyses were performed using
Prism statistical software (Prism 7.02; GraphPad Software). The significance
level was set at P ≤0.05. Post-hoc correction using the False Discovery Rate
was performed. 
esults 

evelopment of a robust mouse model for in vivo-imaging of tumor 
etastasis 

Microsurgical implementation of a chronic cranial window was well 
olerated and enabled repetitive visualization of the mouse brain at the exact 
ame coordinates in vivo using two-photon laser-scanning-microscopy. After 
ranial window preparation, TAM/M-density constantly decreased during 
he recovery time of 28 days prior to intracarotid tumor cell injection 
relative density reduction compared day 4: 9% on day 14, 20% on day
1, 36% on day 28; n = 3). This finding may suggest recovery from surgical
rauma. After intracarotid injection of tdt LL/2, both CX3CR1 GFP/wt -mice and 
X3CR1 GFP/GFP -mice developed numerous solid intracerebral tumors across 

he ipsilateral cerebral hemisphere. All mice (n = 8 per group) had tumor
ake after intracarotid tumor cell injection, and window quality as well as 
uorescence intensity remained high until end of the in vivo -experiments. 

Tumor cells were identified based upon their red fluorescence signal, 
nd TAM/M were detected based upon their green fluorescence signal. 
ntravascular plasma staining was facilitated using green fluorescent 
ITC-dextran. Given the signal overlap of GFP-positive TAM/M and 

ntravascular FITC-dextran during in vivo -microscopy at a wavelength of 
20 nm ( Supplementary Table 1 ), post-hoc image processing was established 
 Figure 1 C-F). The strong signal of FITC-dextran was detected in both the
reen as well as in the red channels during microscopy, whereas TAM/M 

nd tdt LL/2 were almost exclusively seen in their respective channels with 
ow cross-talk between the channels. We therefore merged the green with 
he red channel (where tumor cells and vessels structures could be identified) 
nd applied further color processing (overlay, followed by adjusting contrast), 
esulting in a pseudo-color image in which CX3CR1-positive TAM/M were 
e-colored with cyan colors, tdt LL/2 was represented by red color, and vessels 
tained by FITC-dextran were visible by gray color. 

ifferent steps of brain metastasis formation 

In both CX3CR1 GFP/wt -mice and CX3CR1 GFP/GFP -mice, we found 
dt LL/2 cells within the cerebral vasculature after tumor cell injection. 
ntravascular arrest of these red fluorescent tumor cells was displayed as 
arly as day 1 after tumor cell injection (in CX3CR1 GFP/wt -mice: 107 
ntravascularly arrested cells; CX3CR1 GFP/GFP -mice: 137 intravascularly 
rrested cells), followed by extravasation in 29-43% of the intravascularly 
etected cells ( Figure 2 ). Median diameter of the vessels the cells were
xtravasating from was 8.0 ±4.0 μm, median tumor cell diameter was 
.0 ±0.3 μm, and cell-vessel-diameter ratio was therefore 1:1 as previously 
escribed [21] . Extravasation of tdt LL/2 was frequently accompanied by 
igration of TAM/M towards the tumor cells. 

Formation of metastases was highly inefficient, and 51-80% of 
xtravasated cells did not proliferate within the following days and perished 
CX3CR1 GFP/wt -mice: 37/46 cells; CX3CR1 GFP/GFP -mice: 20/39 cells). In 
elected cells which eventually perished, we were able to observe incorporation 
f the tumor cells into the TAM/M ( Figure 2 A-D). In this context we
ere able to co-localize red florescent signal to TAM/M, which might 
e indicative of tdt LL/2 phagocytosis. When the red fluorescence within 
AM/M diminished, many TAM/M remained at the place of former tumor 
xtravasation. Importantly, this observation was made both in CX3CR1 GFP/wt 

nd CX3CR1 GFP/GFP -mice ( Figure 2 E-H). 
In turn, 20-49% of tdt LL/2 (CX3CR1 GFP/wt -mice: 9/46 extravasated 

ells; CX3CR1 GFP/GFP -mice: 19/39 cells) which successfully extravasated into 
he surrounding brain parenchyma also proliferated exponentially within 
he following days ( Figure 3 ). This process resulted in the formation
f micrometastases (defined as 4-50 cells/ROI) within 3 to 7 days in 
X3CR1 GFP/wt -mice ( Figure 3 A-D) and CX3CR1 GFP/GFP -mice ( Figure 3 E-
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Fig. 2. Anti-tumor effects of TAM/M against extravasated tumor cells. 
A-H: Representative maximum intensity projections of extravasating tumor cells in CX3CR1-proficient (A-D) and -deficient (E-H) mice on days 1, 3, 5, 7, 
and 9 after intracarotid tumor cell injection. The same regions of interest were followed over time in each mouse (for reference, e.g. note the prominent vein 
structure on the left side of Figures 2 A-D), and successfully extravasated tumor cells can be detected (arrows). TAM/M migrate to the site and incorporate the 
tumor cells (inlay in A-D), which may indicate phagocytosis. Depth from brain surface: A-D: 14-30 μm; E-H: 100-150 μm. Scale bars: 50 μm. 
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H) [21] . Although cases of spontaneous micrometastasis regression were
obser ved ( Supplementar y Figure 1 ), 56% to 84% of micrometastases evolved
into actively growing macrometastases (defined as > 50 cells/ROI or maximal
tumor diameter > 50 μm) within 5 to 9 days after tumor cell injection. No
observations suggestive of phagocytosis were made after macrometastases have
formed. 

After extravasation of tumor cells, early metastatic growth was usually
located in a perivascular localization at vascular branch points, which might
be due to rheological blood flow properties. Formation of new microvessels,
but also changes in vessel morphology such as elongation or increased
tortuosity were seen ( Supplementary Figure 2 ). There were no striking
differences regarding vascular morphology between CX3CR1 GFP/wt - and
CX3CR1 GFP/GFP -mice. 

Progressive TAM/M-accumulation and -activation during metastasis 
formation 

Our analyses showed that tumor growth in this animal model was
paralleled by an intra- and peritumoral accumulation of TAM/M in both
CX3CR1 GFP/wt -mice and CX3CR1 GFP/GFP -mice ( Figure 3 I-L). As soon as
single tumor cells extravasated into the surrounding brain tissue, we detected
a small but significant increase in TAM/M-density which further progressed
during formation of micro- and macrometastasis. Macrometastases were
associated with the highest TAM/M-numbers. TAM/M-accumulation was
associated with a constant increase in cell body volume as an indirect sign of
TAM/M-activation [23] . The highest TAM/M cell body volumes were found
in macrometastases. Importantly, detailed analyses of spontaneously regressed
micrometastases revealed that TAM/M-density and volume decreased again
during tumor regression. However, in the case of tumor regression neither
TAM/M-density nor -volume reached levels of healthy controls. TAM/M of
perivascular origin seemed to be recruited during early metastatic growth
( Supplementary Figure 2 ), whereas during later stages of tumor growth
TAM/M-migration from the parenchyma appeared increased. 
umor growth and TAM/M in CX3CR1 

GFP/wt -mice and 
X3CR1 

GFP/GFP -mice 

We tracked the initially intravascularly migrated tumor cells in 
X3CR1 GFP/wt - and CX3CR1 GFP/GFP -mice over weeks to characterize the

ole of CX3CR1 on the different steps of metastasis formation (extravasation
nto the brain tissue; proliferation to micrometastasis; further growth into

acrometastasis) ( Figure 4 ). We successfully visualized > 100 intravascular
umor cells one day after intracarotid injection in both CX3CR1 GFP/wt -and
X3CR1 GFP/GFP -mice ( Figure 4 A). Extravasation of the detected tumor cells

nto the surrounding brain parenchyma was successful in > 40% of the cells
n CX3CR1 GFP/wt -mice but only in about 30% in CX3CR1 GFP/GFP -mice.
n contrast, more tumor cells formed micrometastases in CX3CR1 GFP/GFP 

49%, 9/39 of extravasated cells) compared to CX3CR1 GFP/wt -mice 
20%, 9/46 of extravasated cells) after extravasation took place. After
ormation of micrometastases, the majority (CX3CR1 GFP/GFP : 16/19 of 
icrometastases, 84%; CX3CR1 GFP/wt : 5/9 of micrometastases, 56%) 

rogressed to exponentially growing macrometastases, and there was 
o statistical difference in the rate of micrometastases progression to
acrometastases. Thus, the lower extravasation rate in CX3CR1 GFP/GFP - 
ice was functionally compensated by an increased micrometastasis 

ormation; ultimately resulting in a similar number of macrometastasis 
n CX3CR1 GFP/GFP - and CX3CR1 GFP/wt -mice. Accordingly, survival was 
etween 9-19 days after tumor cell injection in both CX3CR1 GFP/wt -
ice and CX3CR1 GFP/GFP -mice (CX3CR1 GFP/wt -mice: 16 ±1 days versus
X3CR1 GFP/GFP -mice: 14 ±1 days). 

We also assessed differences in TAM/M between the groups. Both groups
xhibited a similar density and cell body volume of TAM/M after cranial
indow preparation ( Figure 4 B, C). After intracarotid tumor cell injection,
ifferences in TAM/M were observed: higher numbers of intratumoral 
AM/M were seen in CX3CR1 GFP/wt -mice as soon as single tumor
ells extravasated, and this difference was maintained in macrometastases 
 Figure 4 D). The lower TAM/M-density in CX3CR1 GFP/GFP -mice was
ccompanied by a compensatory increase in cell body volume compared



1094 In vivo two-photon characterization of tumor-associated macrophages and microglia (TAM/M) and CX3CR1 during different steps of brain 
metastasis formation from lung cancer W. Zhang et al. Neoplasia Vol. 23, No. 11, 2021 

Fig. 3. Successful formation of macrometastases paralleled by TAM/M accumulation and activation. 
A-H: Representative maximum intensity projection of tumor cells which successfully progressed to macrometastases in CX3CR1-proficient (A-D) and -deficient 
(E-H) mice on days 1, 3, 5, and 7 after intracarotid tumor cell injection. Metastatic growth was associated with an intra- and peritumoral accumulation of 
TAM/M (arrowheads). Note that higher numbers of TAM/M can be detected in macrometastases from CX3CR1-proficient mice (inlay in D) compared to 
CX3CR1-deficient mice (inlay in H). Inlays in D and H represent false-colour images of the unmerged green channel only. Depth from brain surface: 0-200 
μm. Scale bars: A, B, E, F: 50 μm. C, D, G, H: 33 μm. I-L: TAM/M density (I, K; 10 4 /mm 

3 ) and TAM/M body volume (J, L; μm 

3 /cell) within an area 
of 100 × 100 × 40 μm around the center of a metastasis in CX3CR1-proficient (I, J; n = 8) and CX3CR1-deficient (K, L; n = 8) mice, as assessed by 
two-photon laser scanning microscopy. TAM/M were characterized for each metastasis displayed in Figure 4 A whenever possible. Means ± SEM. NS: not 
significant. ∗P ≤ 0.05 vs. control. # P ≤ 0.05 vs. preceding column. 
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Fig. 4. Influence of CX3CR1 on metastasis formation and TAM/M. 
A: Tracking of individual tumor cells across the different steps of metastasis formation including intravascular arrest, extravasation into the brain parenchyma, 
formation of micrometastases, and progression to macrometastases. Data are given for CX3CR1-proficient mice (grey; n = 8) and CX3CR1-deficient mice 
(black; n = 8). ∗P ≤ 0.05 (compared between the two groups). B-E: Comparison of TAM/M density (B, D; 10 4 /mm 

3 ) and TAM/M body volume (C, 
E; μm 

3 /cell) 28 days after cranial window preparation (B, C) and after intracarotid tumor cell injection (D, E), as assessed by two-photon laser scanning 
microscopy. Data are indicated for CX3CR1-proficient mice (grey; n = 8) and CX3CR1-deficient mice (black; n = 8), and partly represent data previously 
shown in Figure 3 I-L. Means ± SEM. NS: not significant. ∗P ≤ 0.05 (compared between the two groups). 
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to CX3CR1 GFP/wt -mice. This phenomenon was most prominent in
macrometastases but absent early at single tumor cell arrival ( Figure 4 E). 

Growth patterns of macrometastases 

By detection of the inherent fluorescent signal of the tumor cells,
metastases were found in all mice at the end of the in vivo -experiments
( Figure 5 ). Detailed immunohistochemical analyses revealed four growth
atterns of metastases, which were not evident during in vivo -microscopy:
I) leptomeningeal dissemination of tumor cells, (II) metastases to the
horoid plexus, (III) vascular co-option of parenchymal vessels, and 
IV) nodular metastases within the brain parenchyma ( Figure 5 A-D).
eptomeningeal dissemination was the most commonly found growth 
attern (CX3CR1 GFP/wt : 8/8 mice, 100%; CX3CR1 GFP/GFP : 7/7 mice,
00%), followed by choroid plexus metastases and vascular co-option 
CX3CR1 GFP/wt : 5/8 mice, 63% each; CX3CR1 GFP/GFP : 6/7 mice, 86% each).
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Fig. 5. Immunohistochemical characterization of metastasis formation and TAM/M. 
A-D: Histological sections of brains from CX3CR1 GFP/wt mice (A, C) and CX3CR1 GFP/GFP mice (B, D) excised between day 15-18 after intracarotid injection 
of tdt LL/2 tumor cells. Sections were stained with an antibody against TdTomato for the detection of tumor cells (red), an antibody against Iba1 to confirm 

detection of TAM/M (white), and with DAPI to identify cell nuclei (blue). The endogenously expressed GFP-signal of CX3CR1-positive TAM/M (green) 
could be detected without further staining. Four different growth patterns were observed: (I) leptomeningeal dissemination of tumor cells (arrowheads in A), 
(II) metastases to the choroid plexus (asterisks in A, C, D), (III) vascular co-option of parenchymal vessels (inlays in A, B), (IV) nodular metastases within 
the brain parenchyma (inlays in C, D). Note that particularly nodular intraparenchymal metastases are accompanied by accumulation of CX3CR1-/Iba1 
double-positive TAM/M within the tumor (middle inlay in C, D) as well as peritumoral (upper inlay in C, D) when compared to healthy contralateral brain 
tissue (lower inlay in C, D). Please further note, that the inlay in Figure 5A does not refer to the exact same slice, but to a sampling point in the same brain and 
area about 100 μm distant from the displayed slice. However, the given slice has been selected for graphical purposes. Scale bars: A, B: 1 mm (inlays: 140 μm). 
B, C: 500 μm (inlays: 155 μm). E: Frequency of metastasis growth patterns in CX3CR1 GFP/wt mice (left; n = 8) and CX3CR1 GFP/GFP mice (right; n = 7). The 
number of brains with the respective growth pattern were counted in each group, and donut charts indicate the relative frequency of the growth patterns to 
each other. Also, absolute numbers are given. F: Sections of tdt LL/2 tumor cells stained with an antibody against TdTomato to enhance the tumor cell signal 
(red), an antibody against CX3CL1 to identify the ligand of CX3CR1 (arrowheads; green), and DAPI to detect cell nuclei. The large image represents a merge 
of the inlays. Scale bar: 12 μm (inlays: 18 μm). 
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Nodular parenchymal metastases were least commonly seen (CX3CR1 GFP/wt :
2/8 mice, 25%; CX3CR1 GFP/GFP : 2/7 mice, 29%). There was no association
of a particular growth pattern with CX3CR1 GFP/GFP -mice or CX3CR1 GFP/wt -
mice ( Figure 5 E). Whereas some leptomeningeal dissemination of tumor
cells was also found on the left hemisphere, intraparenchymal metastases
were exclusively found within the right hemisphere (ipsilateral to the
intracarotid injection site). Moreover, immunohistochemical detection of
CX3CL1 confirmed the presence of the CX3CR1-ligand within the tumor
issue, whereas no substantial CX3CL1-expression was detected in the normal 
rain parenchyma ( Figure 5 F). Notably, further immunohistochemical 
henotyping of TAM/M was not successful in our hands. 

Co-detection of CX3CR1 and Iba1 confirmed the presence of 
ntra- and peritumoral TAM/M, and TAM/M-infiltration was particularly 
ronounced in nodular intraparenchymal metastases. We further quantified 
he fluorescence signal intensity (per area) of the TAM/M-markers GFP 

representing the CX3CR1 signal) and Iba1 within the tumor, peritumoral, 
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and in the healthy contralateral hemisphere. In CX3CR1 GFP/wt -mice,
intratumoral and peritumoral signal intensity was increased compared to
healthy tissue (GFP signal: 132% intratumoral, 109% peritumoral; Iba1
signal: 157% intratumoral, 115% peritumoral). In contrast, intratumoral
signal in CX3CR1 GFP/GFP -mice was less pronounced and peritumoral signal
was not substantially increased (GFP signal: 119% intratumoral, 96%
peritumoral; Iba1 signal: 123% intratumoral, 97% peritumoral). 

Discussion 

Lung cancer represents the most frequently encountered solid tumor
disseminating to the brain [ 1 , 4 ]. The role of TAM/M and CX3CR1 in the
pathogenesis of brain metastases from lung cancer is poorly understood. We
herein combined a murine model of cerebral tumor cell dissemination with
repetitive in vivo -imaging which offers the exciting opportunity to assess
metastatic tumor growth and the surrounding TAM/M over weeks. Anti-
tumor effects of TAM/M were observed early after extravasation of single
tumor cells. In contrast, TAM/M were morphologically activated in growing
metastases and accumulated within intra- and peritumoral macrometastatic
tissue. In case of spontaneous regression, neither TAM/M density nor
volume reached physiologic levels indicating glial scarring. Our data therefore
point towards a dynamic and close interaction of TAM/M and metastasis
formation. 

Functional CX3CR1 knock-out resulted in fewer tumor cells
extravasating into the brain tissue. Furthermore, the intratumoral density of
TAM/M during metastasis formation was significantly lower in CX3CR1
knock-out mice. This was paralleled, however, by a more successful
rate of micrometastasis formation resulting in a comparable number of
macrometastases in mice with and without functional CX3CR1 knock-out. 

TAM/M constitute the majority of non-neoplastic cells in primary and
secondary brain tumors [24] . Recent in-depth characterizations of cerebral
metastases from lung cancer have shown that about 10% of TAM/M
represent macrophages of peripheral origin in early metastases, and this
number increases to 20% in large metastases [25] . Activation classes of
TAM/M include the pro-inflammatory, anti-tumor M1-like and the anti-
inflammatory, pro-tumor M2-like phenotype 26 , 27 ]. These phenotypes
represent the extreme ends of the TAM/M polarization spectrum [28] .
We observed potential phagocytosis of tumor cells by TAM/M shortly
after intracarotid injection as previously also described by others using in
vivo - and ex vivo -approaches 29 , 30 ], but also found extensive TAM/M-
accumulation in actively growing metastases. A more detailed analyses
found morphologic correlates of TAM/M-activation in macrometastases
characterized by increased cell body volumes but failed to detect such
morphological activation in TAM/M surrounding single tumor cells after
extravasation. An increase in TAM/M body volume has been previously
associated with M2-like polarization of TAM/M in a murine model of
cerebral melanoma metastasis [31] . Vice versa, a murine glioblastoma model
recently demonstrated that detection of tumor cell phagocytosis by TAM/M
was restricted to M1-like polarized TAM/M [29 , 32 ]. In line with these
findings, our observations of anti-tumor effects during early steps and
accumulation of morphologically activated TAM/M during later steps of
metastasis formation may reflect a progressive polarization from the anti-
tumor M1-like towards the pro-tumor M2-like phenotype. However, some
uncertainties remain given that immunohistochemical TAM/M phenotyping
was not successful in our hands. As such, our model therefore did also not
allow to distinguish between CX3CR1-positive TAM/M derived from the
brain per se from such of peripheral origin. 

Given the controversial data regarding the CX3CR1/CX3CL1-axis in the
formation of brain metastases 33 , 34 ], we made use of a transgenic mouse
line which allowed us to compare the effects of CX3CR1 knock-out on the
metastatic cascade [21] . Our analysis showed that migration of intravascular
tumor cells across the blood-brain barrier into the cerebral parenchyma and
etastatic TAM/M-infiltration was impaired in CX3CR1 knock-out mice. 
n the healthy brain, CX3CR1 is mainly found on microglia and meningeal
acrophages [35] . Its ligand CX3CL1 is not only expressed by lung cancer

ells as immunohistochemically confirmed in our present study, but has
lso been described on astrocytes and endothelial cells inside as well as
utside the brain [ 36 , 37 ]. This expression pattern may suggest involvement
f the CX3CR1/CX3CL1-axis in the regulation of blood-brain barrier 
ntegrity and TAM/M-infiltration (the exact downstream pathways remain 
lusive, but may potentially involve the p38-MAPK signaling-pathway) [18] .
ccordingly, lack of CX3CR1 has been described to protect the brain against
iral invasion in an immunocompetent mouse model [38] . In turn, increased
erum levels of cancer-derived CX3CL1 were associated with cerebral tumor
issemination in breast cancer patients [39] . CX3CL1 expression of tumor
issue may therefore induce tumor cell extravasation as well as metastatic
AM/M-infiltration, and absence of CX3CR1 may hamper migration of lung

umor cells into the brain. 
On the other hand, we observed a higher rate of extravasated tumor

ells progressing into micrometastases in CX3CR1-deficient mice. This was 
aralleled by a lower number of intra- and peritumoral TAM/M. Given that
AM/M were morphologically not activated as per in vivo -microscopy during

hese early steps of metastasis formation, it might be speculated that these
AM/M correspond to an anti-tumor M1-like rather than a pro-tumor M2-

ike phenotype. During later steps of metastasis formation, lower TAM/M
umbers (detected by in vivo -microscopy and immunohistochemistry) in 
X3CR1-deficient mice appeared to be compensated by a higher fraction
f M2-like polarized TAM/M as indicated by larger cell body volumes
n CX3CR1 knock-out mice. Thus, the progression of micrometastases to

ature macrometastases was similar in mice with and without CX3CR1
nock-out. We hypothesize that the lower migration efficiency of tumor
ells in CX3CR1 knock-out mice was counterbalanced by the increased
icrometastases rate which eventually gave rise to an overall comparable

umber of macrometastases and survival between both groups. Although 
ur study does therefore not support the theory that ubiquitous CX3CR1-
lockade is beneficial in preventing brain metastases from lung cancer,
elective CX3CR1-inhibition at the blood-brain barrier interface might be 
romising to suppress tumor cell migration into the CNS. Also, functional
eprogramming of TAM/M rather than exclusive CX3CR1-depletion could 
epresent a therapeutic avenue [ 9 , 40 ]. 

The in vivo -formation of brain metastasis was assessed in the cranial
indow model using two-photon laser scanning-microscopy. In contrast 

o conventional histological methods, this technique allows for repetitive 
nalysis of tumor cells and TAM/M at single cell resolution [ 41 , 42 ]. Thus, we
ere able to reliably visualize brain metastasis growth. We herein often also
bserved unsuccessful steps of brain metastasis formation (e.g., tumor cell
eath or micrometastasis regression). Metastatic growth requires induction 
f angiogenesis, brain invasion via perivascular pathways, and adaption of
umor cells to brain-specific pathways [43] . Inability to induce such steps
e.g., due to an insufficient molecular profile of tumor cells) [44] may result
n insufficient metastatic growth or regression. 

We combined our in vivo -imaging approach with the intracarotid tumor
ell injection which bears several major advantages including that (I)
o further manipulation at the side of the cranial window is necessary
hich may result in artificial immune cell activation; (II) the injection

echnique mimics tumor cells dissemination across the blood-brain barrier 
tarting from a peripheral, single-cell level; (III) metastases reliably form
n the ipsilateral brain with no extra-axial metastases confounding survival
nd limiting the time for in vivo -imaging (although we cannot exclude
ormation of asymptomatic metastases outside of the brain). We found
xcellent imaging quality and robust orthotopic tumor growth in our animal
odel over the course of several weeks. Immunohistochemical analyses of

xcised brains revealed distinct metastatic growth patterns which have been
reviously described for human brain metastases, and may further confirm
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the translational value of our model [45] . We did not find evidence that
CX3CR1-deficiency was accompanied by a particular growth pattern, and
also human studies did not find an association of growth patterns with a
specific primary tumor type [45] . 

We only used female mice, given that sex-specific differences in microglia
susceptibility to neuroinflammation have been described [46] , and we aimed
to exclude any sex-based differences between the groups. Cautionary, we
cannot fully exclude some minor TAM/M-activation due to the cranial
window preparation even though a recovery time of 28 days was maintained
prior to tumor cell injection. Microglial activation and astrogliosis after
cranial window preparation were shown to be transient and typically resolve
after 14-21 days [ 47 , 48 ]. 

Although prior studies found no differences between CX3CR1 GFP/wt -
and CX3CR1 wt/wt -mice regarding growth of primary brain tumors [18] ,
we cannot comment on whether this would indeed also hold true for
metastatic growth in our model given that differences regarding the microglial
transcriptome have been described [49] . Also, future studies may want to
consider using FITC-dextran with lower molecular weights to reliably detect
blood-brain-barrier disruptions (which, however, would potentially limit
visualization of single tumor cells or TAM/M due to extravasation of FITC-
dextran). 

Collectively, our study demonstrates the anti-tumor effects of TAM/M
during early steps and the accumulation as well as activation of TAM/M
during later steps of cerebral metastasis formation from lung cancer. Given
the complex involvement of CX3CR1 in the metastatic cascade, unspecific
CX3CR1-inhibition may not be a relevant therapeutic option to prevent
dissemination of lung cancer cells to the brain unless the progression from
micro- to macrometastases could be blocked efficiently by another yet to
be defined intervention. Considering the high incidence and mortality of
cerebral metastases from lung cancer, novel therapeutic strategies are urgently
warranted. The herein established orthotopic mouse model may be a useful
tool to evaluate such therapeutic concepts. 
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