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Phagocytic leukocytes are essential for in-
tact innate immunity to bacterial and fungal 
pathogens. Upon activation by either soluble 
stimuli or during phagocytosis, a reduced 
nicotinamide adenine dinucleotide phosphate 
(NADPH)  oxidase generates large quantities 
of superoxide at the plasma or phagosomal 
membrane, which is converted into reactive 
oxidants used for microbial killing (1–3). The 
phagocyte NADPH oxidase is comprised of 
two integral membrane proteins, gp91phox and 
p22phox, that together form the oxidase fl avo-
cytochrome b558, as well as p47phox, p67phox, and 
Rac-GTP, which translocate from the cytosol 
to the membrane to activate electron transport 
through the fl avocytochrome (2, 3). Attesting 

to its importance in host defense, genetic de-
fects in the aforementioned phox (phagocyte 
oxidase) subunits result in chronic granuloma-
tous disease, an inherited disorder characterized 
by recurrent pyogenic infections (1). Conversely, 
excessive or inappropriate superoxide release 
has been implicated in the pathogenesis of in-
fl ammatory tissue injury. Hence, the activity of 
this enzyme is highly regulated.

NADPH oxidase activation is triggered by 
still incompletely defi ned events downstream 
of cell surface receptors engaged by opsonized 
microbes or soluble infl ammatory mediators. 
These include phosphorylation of p47phox on 
multiple serine residues, which unmasks  tandem 
SH3 domains that bind to a proline-rich motif 
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Superoxide produced by the phagocyte reduced nicotinamide adenine dinucleotide phos-

phate (NADPH) oxidase is essential for host defense. Enzyme activation requires transloca-

tion of p67phox, p47phox, and Rac-GTP to fl avocytochrome b558 in phagocyte membranes. 

To examine the regulation of phagocytosis-induced superoxide production, fl avocytochrome 

b558, p47phox, p67phox, and the Fc𝛄IIA receptor were expressed from stable transgenes in 

COS7 cells. The resulting COSphoxFc𝛄R cells produce high levels of superoxide when stimu-

lated with phorbol ester and effi ciently ingest immunoglobulin (Ig)G-coated erythrocytes, 

but phagocytosis did not activate the NADPH oxidase. COS7 cells lack p40phox, whose role 

in the NADPH oxidase is poorly understood. p40phox contains SH3 and phagocyte oxidase 

and Bem1p (PB1) domains that can mediate binding to p47phox and p67phox, respectively, 

along with a PX domain that binds to phosphatidylinositol-3-phosphate (PI(3)P), which is 

generated in phagosomal membranes. Expression of p40phox was suffi cient to activate 

superoxide production in COSphoxFc𝛄R phagosomes. Fc𝛄IIA-stimulated NADPH oxidase 

activity was abrogated by point mutations in p40phox that disrupt PI(3)P binding, or by 

simultaneous mutations in the SH3 and PB1 domains. Consistent with an essential role for 

PI(3)P in regulating the oxidase complex, phagosome NADPH oxidase activation in primary 

macrophages ingesting IgG-coated beads was inhibited by phosphatidylinositol 3 kinase 

inhibitors to a much greater extent than phagocytosis itself. Hence, this study identifi es 

a role for p40phox and PI(3)P in coupling Fc𝛄R-mediated phagocytosis to activation of the 

NADPH oxidase.
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in p22phox to enable membrane recruitment of p47phox (4). 
The p47phox subunit also contacts gp91phox in a second inter-
action with the fl avocytochrome that is essential for trans-
location (5, 6). In turn, p47phox functions as an adaptor protein 
to mediate translocation of p67phox as well as to optimally po-
sition p67phox and Rac-GTP in the active enzyme complex 
(2, 3, 7). The p47phox and p67phox subunits are linked via a re-
ciprocal interaction involving a proline-rich region (PRR) 
and SH3 domain, respectively, in the C termini of these sub-
units (Fig. 1) (8–11). p67phox contains an essential “activation 
domain,” which interacts with fl avocytochrome b558 to 
 promote electron transfer between NADPH and FAD (12). 
NADPH oxidase activation also requires concurrent activa-
tion and membrane translocation of Rac, which binds to the 
N terminus of p67phox and fl avocytochrome b558 to induce 
additional conformational changes necessary for effi  cient 
electron transport to O2 (13–16).

In resting neutrophils, a third protein, p40phox, is constitu-
tively associated with p67phox via a high-affi  nity interaction 
between phagocyte oxidase and Bem1p (PB1) motifs present 
in the C-terminal region of each protein (3, 17–21). The 
p40phox subunit translocates to the membrane upon cellular 
 activation, a process that is dependent on p47phox (22) and ap-
pears to involve a ternary complex in which p67phox is tethered 
both to p40phox and to p47phox via the PB1 domain and SH3–
PRR interactions, respectively (Fig. 1) (9–11, 23). An SH3 
domain in p40phox is also capable of interacting with the PRR 
in p47phox (24–26), although in vitro binding studies indicate 
that the affi  nity is at least 10-fold lower than that for the p67phox 
SH3 domain (10, 11). The N terminus of p40phox contains a 
PX (phox homology) domain, which binds to phosphati-
dylinositol-3-phosphate (PI(3)P) (27, 28). The role played 
by p40phox in regulating the NADPH oxidase remains poorly 

understood. This subunit is not required for high level O2
− 

formation either in cell-free assays or whole cell model systems 
(29, 30), and both inhibitory and stimulatory eff ects of p40phox 
have been reported using soluble agonists (9, 28, 31–34).

To investigate the molecular mechanisms leading to 
NADPH oxidase activation, we recently developed a whole 
cell model in which human cDNAs for gp91phox, p22phox, p47phox, 
and p67phox are expressed as stable transgenes in monkey 
 kidney COS7 fi broblasts (30). These “COSphox” cells are 
much more amenable to transfection compared with primary 
phagocytes, which facilitates expression of other recombinant 
proteins potentially involved in regulating oxidase activity. 
COSphox cells exhibit robust superoxide production when 
stimulated by either PMA or arachidonic acid, two soluble 
agonists commonly used to activate the neutrophil NADPH 
oxidase. Assembly of the active oxidase recapitulates features 
of the phagocyte enzyme, with superoxide production de-
pendent on Rac activation, the presence of all four essential 
phox subunits, the p67phox activation domain, and multiple 
serine residues in p47phox previously implicated as critical 
phosphorylation sites enabling translocation (30).

The regulation of NADPH oxidase activation during 
phagocytosis is poorly defi ned. Previous studies have estab-
lished that introduction of the FcγIIA receptor enables COS7 
cells to effi  ciently ingest IgG-opsonized particles in a manner 
similar to professional phagocytes (35–38). We therefore used 
the COSphox system as a platform to analyze requirements for 
FcγIIA receptor–induced NADPH oxidase activation in whole 
cells. Although COSphox cells expressing the FcγIIA receptor 
from a stable transgene produce superoxide when stimulated 
with phorbol ester and readily ingest IgG-coated erythro-
cytes, phagocytosis did not activate the NADPH oxidase. 
Further studies indicated that transient or stable transfection 
of p40phox in COSphoxFcγR cells was suffi  cient to activate in-
traphagosomal superoxide production and suggest critical 
roles for PI(3)P, a phosphoinositide that is generated on ma-
turing phagosomes (39, 40), along with the p40phox SH3 and 
PB1 domains, which can interact with p47phox and p67phox 
subunits of the oxidase.

RESULTS

p40phox is suffi cient for coupling Fc𝛄R-induced phagocytosis 

to NADPH oxidase activation in COSphox cells

To examine whether phagocytosis triggers NADPH oxidase 
activation in COSphox fi broblasts, which already express the 
phagocyte fl avocytochrome b558, p47phox, and p67phox, a retro-
viral vector was used to introduce a stable transgene for the 
human FcγIIA receptor. Expression of the FcγIIA receptor is 
suffi  cient to endow COS7 cells with the ability to effi  ciently 
bind and internalize IgG-opsonized particles (35–37). Cell sur-
face expression of the FcγIIA receptor in the transduced 
COSphox cells, which will be referred to as COSphoxFcγR cells, 
was comparable to levels seen in monocytes (Fig. 2 A) or hu-
man neutrophils (not depicted).

To assess whether phagocytosis induced superoxide produc-
tion, COSphoxFcγR cells were incubated with IgG- opsonized 

Figure 1. Interactions between p47phox, p67phox, and p40phox 

 subunits of the phagocyte NADPH oxidase. Structural motifs and 

identifi ed interactions between p47phox, p67phox, and p40phox are shown 

schematically. The p47phox subunit contains a PX domain, two SH3 do-

mains, and a C-terminal PRR. A domain containing four tetratricopeptide 

repeat (TPR) motifs comprises the N terminus of p67phox, followed by an 

SH3, PB1, and second SH3 domain. The p67phox subunit also contains a 

PRR adjacent to the N-terminal SH3 domain. p40phox also contains a PX 

and PB1 domain, along with an intervening SH3 domain. In the p47phox–

p67phox–p40phox complex, p47phox associates with p67phox via a high-affi nity 

tail-to-tail interaction involving the C-terminal PRR and SH3 domains in 

p47phox and p67phox, respectively, whereas p40phox is tethered to p67phox via 

a back-to-front interaction between their PB1 domains. 
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RBCs (IgG-RBCs) in the presence of nitroblue tetrazolium 
(NBT) as a probe to detect superoxide, which reduces NBT 
into purple formazan deposits. After lysis of uningested IgG-
RBCs, microscopic examination revealed numerous ingested 
RBCs but no detectable formazan (Fig. 2 B). In comparison, 
murine macrophages after ingestion of IgG-RBCs show 
formazan deposits within phagosomes, indicative of NADPH 
oxidase activity (Fig. 2 C). As evidence of their ability to 
generate superoxide, COSphoxFcγR cells stimulated with 
PMA in the presence of NBT showed abundant and diff use 
formazan staining (Fig. 2 D), with NADPH oxidase activity 
similar to parental COSphox cells (30) when quantitated by 
 cytochrome c reduction (not depicted).

The absence of NADPH oxidase activity in COSphoxFcγR 
phagosomes, despite the capacity to produce superoxide in 
response to PMA, suggested that these cells lack one or more 
proteins important for coupling FcγIIA signaling to NADPH 
oxidase activity. COS7 cells lack p40phox, which is expressed al-
most exclusively in hematopoietic cells (41, 42). Importantly, 
p40phox contains a PX domain that preferentially binds to 
PI(3)P (27, 28), a phosphoinositide generated on the cyto-
solic side of maturing phagosomal membranes by the action 
of class III PI3 kinase, which persists after phagosome closure 
(39, 40). Although p40phox translocates to membranes of 
PMA-stimulated neutrophils (22), which appears to involve 
the formation of a complex with p67phox and p47phox (3), the 

association of p40phox with phagosome membranes has not 
been reported. In granulocyte-diff erentiated PLB-985 cells 
ingesting IgG-opsonized latex beads, a fusion of full-length 
p40phox and enhanced yellow fl uorescence protein (EYFP) 
localized to phagosome membranes (Fig. 3, A and B), but 
not if cells were treated with wortmannin (Fig. 3, C and D). 
Next, to verify that IgG-RBC phagosomes in COSphoxFcγR 
cells accumulate PI(3)P, we used a PX domain of p40phox 
fused to EYFP, which specifi cally localizes to sites of PI(3)P 
in a PI3 kinase–dependent manner (27, 28). As shown in 
Fig. 3 (E and F), IgG-RBC phagosomes in COSphoxFcγR 
cells readily accumulate EYFP-p40PX. Moreover, the fusion 
of full-length p40phox and EYFP showed a similar distribution 
in COSphoxFcγR cells after phagocytosis of IgG-RBCs (Fig. 3, 
G and H) or IgG-opsonized latex beads (Fig. 3, I and J). 
Consistent with the importance of PI3 kinase activity in gen-
erating PI(3)P, no phagosomal localization of EYFP-p40phox 
was seen in COSphoxFcγR cells treated with wortmannin 
 before phagocytosis of IgG-opsonized  latex beads (Fig. 3, 
K and L).

We next expressed untagged p40phox in COSphoxFcγR 
cells using vectors for either transient or stable expression 
(Fig. 4 A). Levels of p40phox in lysates prepared from tran-
siently transfected cells were proportional to the amount of 
plasmid, which for the smallest amount was approximately 
twofold higher than in human neutrophils, taking into ac-
count the transfection effi  ciency and normalizing to protein 

Figure 2. Expression of Fc𝛄IIA receptor, phagocytosis, and NADPH 

oxidase activity. (A) Analysis of FcγIIA expression by fl ow cytometry 

using an FITC-conjugated antibody against CD32 is shown for COS7 and 

COSphoxFcγR cells (left) and human peripheral blood monocytes (right) as 

indicated. The gray histogram indicates staining of either COSphoxFcγR or 

monocytes with an FITC-conjugated isotype control mAb. (B and C) Phago-

cytosis of IgG–sheep RBCs in media containing NBT. (B) COSphoxFcγR cells 

incubated with IgG-RBCs for 30 min at 37°C. Many of the ingested 

IgG-RBCs, which appear tan, are indicated by arrows. (C) Murine bone 

marrow–derived macrophages incubated with IgG-RBCs for 10 min at 

37°C. Formazan-stained phagosomes, indicative of intraphagosomal su-

peroxide production, are indicated by arrows. (D) COSphoxFcγR cells incu-

bated with 100 ng/ml phorbol myristate acetate for 30 min, showing 

diffuse formazan deposits. Bar, 30 μm.

Figure 3. Localization of EYFP-p40PX and full-length EYFP-

p40phox in PLB-985 granulocytes and COSphoxFc𝛄R cells during 

phagocytosis. (A, C, E, G, I, and K) EYFP fl uorescence (green). (B, D, F, H, J, 

and L) EYFP and Alexa Fluor 555 (IgG-RBCs or IgG-beads, red). Regions in 

which red and green labels overlap appear orange or yellow. (A–D) PLB-

985 granulocytes. (E–L) COSphoxFcγR cells. (E and F) EYFP-p40PX, IgG-

RBCs. (G and H) Full-length EYFP-p40phox, IgG-RBCs. (A–D and I–L) 

Full-length EYFP-p40phox IgG beads without (A, B, I, and J) and with (C, D, 

K, and L) wortmannin. Images are representative of two to three indepen-

dent experiments. Arrowheads point to representative phagosomes. Bars: 

A, 5 μm; C and L, 20 μm. Insets are magnifi ed twofold relative to the 

adjacent panels.
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content (Fig. 4 A). p40phox expression in a COSphoxFcγR de-
rivative with a stable transgene for p40phox was similar to that in 
human neutrophils (Fig. 4 A). For comparison, expression of 
p47phox and p67phox in COSphoxFcγR cells was two- to three-
fold higher than in human neutrophils (Fig. 4 A).

Expression of p40phox was suffi  cient to reconstitute 
NADPH oxidase activation in COSphoxFcγR cells under-
going phagocytosis of IgG-RBCs, as indicated by the presence 
of formazan-stained phagosomes (Fig. 4 B). The deposition 
of formazan upon the reduction of NBT is a sensitive assay 
for superoxide and well suited to monitor the localized 
 intracellular production of oxidants in a subpopulation of 
cells. As another probe to detect oxidant production 
by COSphoxFcγR-p40phox cells during phagocytosis of IgG-
 opsonized particles, we used Fc OxyBURST Green, which 
detects hydrogen peroxide via the oxidation of dichlorodi-
hydrofl urorescein covalently attached to antigen–antibody 
complexes (43). Although Fc OxyBURST Green alone was 
a poor stimulus for oxidant production by COSphoxFcγR-
p40phox cells (not depicted), zymosan particles opsonized with 
Fc OxyBURST Green induced oxidant production in 
COSphoxFcγR-p40phox cells, but not in COS7-FcγR cells or 
COSphoxFcγR (Fig. 4 C).

NBT+ phagosomes were evident within 5 min of initi-
ating phagocytosis, consistent with studies in phagocytosing 
macrophages and neutrophils (44, 45). Over the range of 
p40phox expression tested (Fig. 4 A), the frequency of cells 
with NBT+ phagosomes was similar. Only NBT− phago-
somes were observed in COS7-FcγR cells, with or with-
out p40phox, when the other phox subunits were absent (not 
depicted). In addition, phagocytosis of IgG-RBCs per se was 
unaff ected by expression of p40phox. Up to 50–70% of 
COSphoxFcγR-p40phox cells ingesting IgG-RBCs during syn-
chronized phagocytosis contained one to two NBT+ phago-
somes. Results in transiently transfected cells were similar, 
after taking into account a transfection effi  ciency of 
40%. 
Similar results were also seen upon expression of full-length 
EYFP-p40phox, which was present at levels comparable to 
untagged p40phox (not depicted). When taken together with 
the relative levels of p47phox and p67phox (Fig. 4 A), these data 
indicate that only approximately stoichiometric or near-
 stoichiometric levels of p40phox are required to activate 
 superoxide production in phagosomes, and that placement 
of an N-terminal EYFP tag does not interfere with this 
 function. Of note, oxidant production was restricted to the 
phagosomes in COSphoxFcγR cells expressing p40phox, as was 
also seen with the ingestion of IgG-RBCs by primary mu-
rine macrophages (Fig. 2 C) and human neutrophils (not 
 depicted). Finally, NBT+ phagosomes were seen in only 
50% 
of COSphoxFcγR cells expressing p40phox either by transient 
or stable transfection. Heterogeneity is also observed among 
cells or even individual phagosomes in primary phagocytes, 
where it is poorly understood but likely to refl ect variable 
activation of signal transduction upon engagement of phago-
cytic receptors (46–48).

Mutations in the PX, SH3, or PB1 domains of p40phox impair 

Fc𝛄R-stimulated O2
− production in phagosomes

We next examined the eff ects of point mutations in p40phox 

on the coupling of FcγIIA-mediated phagocytosis to NADPH 
oxidase activation. Two diff erent mutations in the PX  domain 

Figure 4. Expression of p40phox in COSphoxFc𝛄R cells and Fc𝛄R-

elicited NADPH oxidase activity. Data shown is representative of at 

least three independent experiments. (A) Immunoblots of human neutro-

phil and COS7 cell lysates (10 μg protein per lane) probed with antibodies 

for p40phox, p47phox, and p67phox. COSphoxFcγR cells were transfected with 

either a stable p40phox transgene or with varying amounts of p40pRK5 for 

transient expression as indicated. (B) IgG-RBC–elicited NADPH oxidase 

activity in COSphoxFcγR cells expressing p40phox. Multiple formazan-

stained phagosomes (arrows) in COSphoxFcγR transfected with 0.05 μg 

p40pRK5 (representative photomicrograph; bar, 30 μm). Similar numbers 

of formazan-stained phagosomes were present in COSphoxFcγR cells 

transfected with larger amounts of plasmid or expressing p40phox from a 

stable transgene. (C) Flow cytometry analysis of COSFcγR cell lines incu-

bated with Fc OxyBURST Green–opsonized zymosan for 30 min. Fluores-

cence intensity is shown on the x axis.
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were evaluated, where arginine residues at amino acid 58 and 
105 were substituted with glutamine or alanine, respectively 
(R58Q or R105A), each of which eliminates PI(3)P binding 
but does not aff ect the overall structure of p40phox (49). We 
also introduced point mutations in the p40phox SH3 and PB1 
domains. The p40phox SH3 domain interacts with the C-ter-
minal PRR of p47phox (8, 10, 11, 24, 26), and a W207R sub-
stitution was placed at a conserved tryptophan residue in the 
SH3 consensus sequence. In addition, a D289A mutation was 
introduced in a cluster of acidic residues in the p40phox PB1 
domain, which contact the PB1 domain in p67phox (19), thereby 
disrupting the interaction between these two proteins (32). 
Finally, a p40phox mutant with simultaneous W207R and 
D289A substitutions was produced.

Wild-type and p40phox mutants were introduced into 
COSphoxFcγR cells by transient transfection to evaluate phago-
some NADPH oxidase activity during ingestion of IgG-
RBCs. The wild-type and mutant proteins were expressed at 
generally comparable levels (Fig. 5 A). Levels of the D289A 
and W207R/D289A derivatives were consistently at 30–50% 
of the others but were still in the range that supports phago-
some oxidase activity when using wild-type p40phox (Fig. 4 A). 
NBT+ phagosomes were only rarely observed using p40phox 
derivatives harboring point mutations at either site in the PX 
domain (R58Q or R105A) (Fig. 5 B). Point mutations in 
 either the SH3 (W207R) or PB1 (D289A) domain also re-
duced the fraction of cells with NBT+ phagosomes, but 
only by 
60% (Fig. 5 B). However, a p40phox derivative with 
simultaneous mutations in both the SH3 and PB1 domains 
resulted in a loss of function similar to the PX domain mu-
tants in that NBT+ phagosomes were only rarely observed 
(Fig. 5 B). Thus, binding of PI(3)P appears to be essential 
for p40phox-mediated activation of superoxide production in 
COSphoxFcγR cells during phagocytosis of IgG-RBCs. In 
contrast, interactions mediated by the p40phox PB1 domain, 
which binds to p67phox, and the SH3 domain, which can bind 
to p47phox, were interdependent, with abrogation of NADPH 
oxidase activity only upon their simultaneous disruption. 
Collectively, these fi ndings suggest that p40phox interacts with 
PI(3)P, p47phox, and p67phox to activate superoxide production 
during phagocytosis.

To investigate the relationship between phagosome NADPH 
oxidase activity and translocation of p40phox, EYFP-tagged 
p40phox mutants were transiently expressed in COSphoxFcγR 
cells to examine their localization on IgG-RBC phagosomes. 
The results are summarized in Fig. 5 C, which also includes, 
for comparison, data for the EYFP-tagged PX domain of 
p40phox and wild-type EYFP-p40phox, as well as for EYFP-
p40phox after phagocytosis of IgG latex beads in the absence 
or presence of wortmannin. Mutations in the PX domain 
(R58Q or R105A) substantially decreased the fraction of 
phagosomes with EYFP-p40phox, consistent with the impor-
tance of PI(3)P binding for p40phox localization to phago-
somes. Mutations in the PB1 domain (D289A), either as a 
single mutation or in combination with a mutation in the 
SH3 domain, also resulted in a marked reduction in the frac-

tion of p40phox-enriched phagosomes, supporting a role for 
heterodimerization of PB1 motifs in p40phox and p67phox in lo-
calizing p40phox to phagosome membranes. However, translo-
cation of a p40phox derivative with an SH3 domain mutation 
(W207R) was similar to wild-type p40phox, although this mu-
tation led to a decrease in NADPH oxidase–positive phago-
somes, particularly in combination with the PB1 domain 
mutation (Fig. 5 B). This fi nding suggests that the p40phox 
SH3 domain plays a role in regulating activity of the  assembled 

Figure 5. Expression of p40phox mutants in COSphoxFc𝛄R cells and 

effect on IgG–sheep RBC–elicited NADPH oxidase activity. Data 

shown is representative of at least three independent experiments. 

(A) Immunoblot of cell lysates from COSphoxFcγR cells transfected with 

0.67 μg of either empty pRK5 or pRK5 containing cDNAs for either wild-

type or mutant p40phox. Blots were probed with antibodies for p40phox, 

p47phox, and p67phox. (B) COSphoxFcγR cells were transfected as in A and 

incubated with IgG-RBCs in the presence of NBT for 30 min at 37°C. The 

percentage of cells with NBT+ phagosomes is shown as the mean ± SD 

(n = 4 except for W207R/D289A, where n = 3). (C) COSphoxFcγR cells 

were transfected as in A for expression of YFP-tagged wild-type or mu-

tant derivatives of p40phox as indicated or a YFP-tagged PX domain of 

p40phox and incubated with IgG–sheep RBCs or with IgG latex beads (*) 

without or with 50 nM wortmannin, followed by confocal microscopy. 

Individual phagosomes were scored for either the presence (black bars) or 

absence of YFP-p40phox or YFP-p40PX translocation. The number of 

phagosomes scored for each construct is also shown. Data was collected 

from two to four independent experiments.
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NADPH oxidase complex rather than in recruitment or main-
tenance of p40phox on phagosome membranes.

Phosphoinositide 3 (PI3) kinase activity is required 

for superoxide production during Fc𝛄R-induced 

phagocytosis in macrophages

Because an intact PI(3)P binding site in p40phox is required 
for activation of superoxide production in COSphoxFcγR 
phagosomes, we next examined whether inhibition of PI3 
kinase activity during FcγR-induced phagocytosis would 
prevent NADPH oxidase activation in professional phago-
cytes. Class I and III PI3 kinases act sequentially to regulate 
phagosome engulfment and subsequent maturation (50). Class I 
PI3  kinases, which catalyze the formation of PI(3,4,5)P3 that 
is transiently present on forming phagosomes (40, 51, 52), 
are required for FcγR-mediated ingestion of large IgG-
 opsonized particles and appear to play roles in both fusion of 
 intracellular membranes with the phagosome and contractile 
activity during phagosome closure (53–56). In contrast, PI(3)P 
appears in phagosomal membranes at around the time of 
 closure. PI(3)P generation requires the activity of the class III 
PI3 kinase (also known as VPS34), and this phosphoino-
sitide persists for many minutes in fully formed phagosomes 
(39, 40, 51).

We examined the eff ects of the PI3 kinase inhibitors 
wortmannin and LY294002 on phagocytosis and NADPH 
oxidase activation in murine peritoneal exudate macrophages 
(PEMs) fed small (3.30-μm) IgG-opsonized latex beads be-
cause the ability to ingest small particles is less sensitive to PI3 
kinase inhibitors compared with phagocytosis of large targets 
(55). The phagocytic index for 3.3-μm beads declined by only 

50% in the presence of 100 nM wortmannin or 100 μM 
LY294002, with 75% of macrophages still capable of phago-
cytosis (Fig. 6 A). In contrast, NADPH oxidase activity dur-
ing phagocytosis of IgG-opsonized beads was substantially 
reduced by even small amounts of wortmannin or LY294002, 
with an IC50 of 
2 nM or 2 μM, respectively (Fig. 6 B). This 
IC50 is similar to that reported for the eff ect of wortmannin 
on oxidase activity in human and murine macrophages 
 ingesting zymosan particles, where phagocytosis was also rel-
atively preserved (57). Note that PI3 kinase inhibitors do not 
eliminate PMA-stimulated NADPH oxidase activation in 
COSphoxFcγ cells (not depicted) or neutrophils (58). These 
results indicate that PI3 kinase activity is important for 
NADPH oxidase activation during Fcγ receptor–mediated 
phagocytosis by professional phagocytes, independent of its 
role in regulating particle ingestion.

DISCUSSION

The role of p40phox in the phagocyte NADPH oxidase has 
been enigmatic since it was discovered more than a decade 
ago as a 40-kD polypeptide that copurifi ed in a 250-kD com-
plex with p67phox and p47phox (9, 17, 18). The primary association 
of p40phox appears to be with p67phox via a high-affi  nity inter-
action involving their PB1 domains. The p40phox subunit 
is dispensable for high-level NADPH oxidase activity in 

cell-free assays and in whole cells, and both inhibitory and 
activating eff ects have been described (9, 28, 31–34). With 
the recent recognition that the PX domain of p40phox binds 
specifi cally to the phosphoinositide PI(3)P (27, 28), which is 
synthesized by class III PI3 kinase in newly forming phago-
somes (39, 40), p40phox has been speculated to participate in 
phagocytosis-induced superoxide production. However, until 
now, direct evidence for this link was lacking. Here, we show 
that concomitant expression of p40phox is necessary and suffi  -
cient to activate superoxide production during phagocytosis 
in COS7 cells expressing the FcγIIA receptor along with the 
fl avocytochrome b558, p47phox, and p67phox com ponents of 
the phagocyte NADPH oxidase. These observations are sup-
ported by and provide a mechanistic basis for neutrophil 
NADPH oxidase activation defects in mice with a targeted 
genetic deletion of p40phox, as reported in the accompanying 
article by Ellson et al. (59). In the current study, additional 
experiments using mutant derivatives of p40phox and pharma-
cological agents suggest that this subunit activates the NADPH 
oxidase by a network of interactions involving PI(3)P, p47phox, 
and p67phox.

Figure 6. Effects of PI3 kinase inhibitor on macrophage phago-

cytosis and NADPH oxidase activity elicited by IgG-opsonized latex 

beads. Murine PEMs were incubated with varying concentrations of 

wortmannin or LY294002 for 30 min at 37°C or with DMSO vehicle 

(control) before adding IgG-opsonized latex beads (3.3 μm). Data is the 

mean ± SD (n ≥ 3 experiments). (A) The percentage of macrophages with 

internalized beads (black bars) and the phagocytic index (white bars; data 

normalized as the percentage of the phagocytic index for vehicle-treated 

control macrophages, which was 
400–600) are shown. (B) NADPH oxi-

dase activity during phagocytosis of IgG beads, as measured by lucigenin-

dependent chemiluminescence integrated over 60 min. Data is the mean 

± SD (n ≥ 3 experiments). The background signal from gp91phox-null PEM 

samples run in parallel was 90.0 ± 27.8 and has been subtracted from 

the wild-type PEM signal.
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Interactions between p40phox and PI(3)P appear to be es-
sential for NADPH oxidase activation in the phagosome. 
FcγIIA receptor–stimulated NADPH oxidase activity was ab-
rogated by point mutations in p40phox that disrupt PI(3)P bind-
ing. This is consistent with studies by Ellson et al. (28), in 
which a PX domain–defi cient form of p40phox failed to aug-
ment NADPH oxidase activity in a semi-recombinant cell-
free system containing PI(3)P that was otherwise markedly 
enhanced by wild-type p40phox. Similarly, studies by Brown 
et al. (21) showed that the isolated p40phox PX domain acted in 
a dominant-negative fashion to suppress 
50% of the NADPH 
oxidase activity in a permeabilized neutrophil system stimu-
lated by phorbol ester. Experiments using primary macro-
phages also support an important role of phosphoinositides for 
activation of the NADPH oxidase on the phagosome. We 
found that NADPH oxidase activation induced by macro-
phage phagocytosis of IgG beads was inhibited by PI3 kinase 
inhibitors to a much greater extent than was phagocytosis it-
self (for 3.3-μm beads, IC50 ≈ 2 nm wortmannin or 2 μM 
LY294002 vs. 100 nM wortmannin or 100 μM LY294002, 
respectively). These data extend the results of Baggiolini et al. 
(57), who studied murine and human phagocytes ingesting ei-
ther unopsonized or serum-opsonized zymosan particles, 
which are taken up by the dectin receptor (60) or via β2 inte-
grin and FcγR receptors (61), respectively. In addition to class 
III PI3 kinase–catalyzed formation of PI(3)P, class I PI3 kinases 
generate PI(3,4)P2 and PI(3,4,5)P3 early during phagocytosis 
(40). Although it is possible that they may also contribute to 
NADPH oxidase activation on the phagosome, these phospho-
inositides are present only for a short time on the phagocytic 
cup and disappear upon phagosome closure (40, 52).

Additional studies established that the p40phox SH3 and 
PB1 domains are also critical for mediating FcγIIA receptor–
induced NADPH oxidase activity on the phagosome. Inter-
estingly, in contrast to disruption of the p40phox PI(3)P-binding 
pocket, mutation of either the SH3 or PB1 domain in p40phox 
reduced but did not eliminate the appearance of NADPH 
oxidase activity in phagosomes, and their simultaneous muta-
tion was required to abrogate phagosome oxidant  production. 
A p40phox–p67phox–p47phox complex has been isolated from 
resting neutrophils, although recent evidence suggests that 
the presence of p47phox may refl ect a partially activated state 
(21). In a current model, p67phox is linked to both p40phox via 
heterodimerization of their PB1 domains and to p47phox via a 
tail-to-tail interaction of the p67phox C-terminal SH3 domain 
and the C-terminal PRR of p47phox (Fig. 1) (10, 11). The 
p40phox subunit also contains an SH3 domain whose only 
identifi ed binding partner is also the C-terminal PRR of 
p47phox. The p47phox PRR exhibits an 
20-fold lower affi  nity 
for the p40phox SH3 domain compared with the p67phox SH3 
domain, as evaluated in vitro using derivative peptides and 
protein fragments (10, 11). However, these relative affi  nities 
may change in the assembled membrane complex, such that 
the p40phox participates in a dynamic series of interactions be-
tween p67phox and p47phox during NADPH oxidase activation 
on the phagosome.

A positive role for p40phox in NADPH oxidase activation 
in whole cells was also reported by Kuribayashi et al. (32), 
who used K562 leukemia cells expressing transgenic phox 
subunits, and by He et al. (33) in COSphox cells activated 
through a transgenic fMLP receptor (33). In fMLP-activated 
COSphox cells, p40phox enhanced NADPH oxidase activity by 
approximately twofold (33). Expression of p40phox in the 
K562 model also increased superoxide production by two- to 
threefold in response to PMA and had an even greater eff ect 
for activation by a muscarinic receptor peptide that acts via Gi 
(32). In K562 cells, disruption of the p40phox–p67phox inter-
action by reciprocal PB1 domain mutations in either p40phox 
or p67phox was suffi  cient to prevent p40phox translocation and 
enhancement of superoxide production (32). In contrast, we 
observed only partial reduction of FcγIIA receptor– stimulated 
NADPH oxidase activation using a PB1 domain mutant of 
p40phox, unless the p40phox SH3 domain was also disrupted.

The molecular basis by which p40phox activates superoxide 
production will require further investigation. It is possible 
that p40phox facilitates or stabilizes recruitment of p47phox and 
p67phox to the phagosome. However, in intact cells, the initial 
translocation of cytosolic phox components to the membrane 
upon cellular activation is driven by the p47phox adaptor pro-
tein, as p67phox and p40phox fail to translocate in chronic granu-
lomatous disease patients lacking p47phox (22, 62). Membrane 
localization of p40phox in activated K562 cells (32) is also de-
pendent on its interaction with p67phox and, indirectly, p47phox, 
and EYFP-tagged p40phox does not translocate to phagosomes 
in COS7 cells expressing the FcγIIA receptor, but not the 
other phox subunits (unpublished data). Thus, p40phox may act 
primarily as a PI(3)P-dependent tether that optimally posi-
tions the p40phox–p67phox–p47phox complex and the fl avocyto-
chrome in phagosome membranes to activate the superoxide 
production. Studies in which PI(3)P (21, 28) and p40phox (28) 
markedly enhance superoxide production in semi-recombinant 
systems support a role for PI(3)P-bound p40phox in directly reg-
ulating activity of the assembled NADPH oxidase complex. 
In addition, the analysis of p40phox mutants in our study sug-
gests that the SH3 domain of p40phox also participates in stim-
ulating NADPH oxidase activity on phagosomes.

In phagocytic leukocytes, the role of p40phox in activating 
the NADPH oxidase in the phagosome may be selective, 
based on studies described in the accompanying article by 
Ellson et al. (59), who saw a substantial reduction in NADPH 
oxidase activity with phagocytosis of IgG-coated latex beads 
or of Staphylococcus aureus, but little or no eff ect upon phago-
cytosis of zymosan particles. Signaling events initiated by 
phagocytosis are complex and incompletely understood, and 
the relative roles of diff erent downstream pathways are likely 
to vary depending on the phagocytic receptor and on the type 
and size of the target particle (46, 47).

In conclusion, this study identifi es a positive role for 
p40phox in coupling NADPH oxidase activation to FcγIIA 
receptor–induced phagocytosis and establishes a critical require-
ment for the p40phox PI(3)P-binding domain in superoxide 
production. Moreover, although the functional importance 
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of the p40phox PB1 domain in mediating binding to p67phox 
was previously recognized, this study suggests that the SH3 
domain in p40phox also contributes to NADPH oxidase 
 activation during phagocytosis. The COSphox model should 
be a useful system to analyze contributions of other signaling 
events to NADPH oxidase activation during phagocytosis 
and to elucidate their underlying mechanisms.

MATERIALS AND METHODS
Chemicals were purchased from Sigma-Aldrich unless otherwise stated. 

PBS, pH 7.2, blasticidin, penicillin/streptomycin, neomycin, trypsin/EDTA, 

Lipofectamine reagent, DMEM with low glucose, and RPMI 1640 were 

purchased from Invitrogen Life Technologies, hygromycin was from EMD 

Biosciences, puromycin was from BD Clontech, and bovine growth serum 

and FCS were from HyClone Laboratory.

Expression plasmids. The human p40phox cDNA (provided by S. Chanock, 

National Institutes of Health [NIH], Bethesda, MD) was cloned into 

the EcoRI site of pRK5 (BD Biosciences) (33) and pcDNA6/myc-HisC 

(Invitrogen Life Technologies) to generate p40pRK5 and p40-pcDNA6/

myc-HisC, where the myc tag is not in frame with the p40phox cDNA. 

p40phox-EYFP and p40PX-EYFP (27) plasmids for expression of fl uore-

scently tagged full-length p40phox or its PX domain, respectively, were pre-

pared using pEYFP-C1 (BD Clontech). The YFP-tagged p40phox cDNA 

was also subcloned into the HpaI and EcoRI sites of pMSCVpuro (BD 

Clontech), and the phosphoglycerate kinase puromycin-resistance gene cas-

sette was removed by digesting with EcoRI and ClaI, blunting, and religating. 

Site-directed mutagenesis of p40phox was performed in p40pRK5 using 

the QuikChange Site-Directed Mutagenesis kit (Stratagene) and confi rmed 

by sequencing. To generate YFP-tagged p40phox mutants, the pEYFP-C1 

plasmid containing the p40phox cDNA was digested with BamHI (which cuts 

at an internal site in the p40phox cDNA just 5′ to the codon for R58) and 

XmaI (a site in the 3′ polylinker). The excised wild-type p40phox cDNA 

fragment was replaced with the corresponding BamHI–XmaI  fragment 

from p40pRK5 plasmids harboring specifi c p40phox mutations. The MFG-

FcγRIIa vector was constructed by inserting the human FcγRIIa cDNA 

(provided by B. Seed, Massachusetts General Hospital, Boston, MA) into 

the NcoI site of the MFG-S retroviral vector (provided by H. Malech, 

NIH, Bethesda, MD).

Cell lines. COS7 lines were grown in low-glucose DMEM with 10% 

 bovine growth serum at 37°C under 5% CO2. Media for COSphox cell 

lines (63) also included 0.2 mg/ml hygromycin, 0.8 mg/ml neomycin, and 

1 μg/ml puromycin. Lipofectamine reagent was used for transfection, with 

a transient transfection effi  ciency of 
40% as monitored using pIRES2-

EGFP (BD Clontech). Lines with stable expression of the FcγRIIa receptor 

were generated by retroviral transduction of COS7 and COSphox cells with 

VSVG-pseudotyped MFG-FcγRIIa packaged using the Pantropic Retro-

viral Expression System (BD Clontech). Transduced cells were stained with 

an FITC-conjugated CD32 antibody (BD Biosciences) and sorted for 

FcγRIIa expression using a FACSVantage (BD Biosciences). The resulting 

COS7-FcγR and COSphoxFcγR lines were grown as described above. 

To generate COS7 lines with stable expression of p40phox, COS7-FcγR and 

COSphoxFcγR cells were transfected with p40-pcDNA6/myc-HisC, fol-

lowed by cloning in the presence of 10 μg/ml blasticidin. A clone with the 

highest expression of p40phox was selected from each group and carried in 

30–60 μg blasticidin to maintain stable p40phox expression.

Human PLB-985 myelomonocytic cells were cultured as described 

 previously (64). PLB-985 cells with stable expression of EYFP-p40phox were 

generated by retroviral transduction with VSVG-pseudotyped MSCV-

EYFP-p40phox packaged using the Pantropic Retroviral Expression System 

(BD Clontech). After transduction, 89% of the cells were EYFP+. For 

 granulocytic diff erentiation, PLB-985-EYFP-p40phox cells were cultured in 

0.5% dimethylformamide for 5 d.

Isolation of murine macrophages. Sodium periodate–elicited murine 

PEMs were prepared from 8–10-wk-old male or female C57/BL6J mice 

(The Jackson Laboratory) as described previously (65, 66). In experiments 

where macrophage NADPH oxidase activity was measured by chemilumi-

nescence, PEMs were also prepared from C57/BL6J mice that have a 

 targeted deletion in the gp91phox gene and lack NADPH oxidase activity 

(67). PEMs were cultured on gelatin-coated coverslips (Fisher Scientifi c) for 

24–72 h before functional assays. For murine bone marrow–derived macro-

phages, a protocol using L cell–conditioned medium was used (68).

Analysis of protein expression. COS7 lines and human peripheral blood 

leukocytes were stained with either FITC-conjugated CD32 antibody for 

FcγIIA or an IgG2bκ isotype control and analyzed using a FACSCalibur 

(BD Biosciences) as described previously (66). Monocytes and neutrophils 

were identifi ed based on forward-side scattering properties. Cell lysates were 

prepared from COS7 cell lines and from human neutrophils for sodium 

 dodecyl sulfate-PAGE (SDS-PAGE) and immunoblotting using ECL detec-

tion (GE Healthcare) as previously described (30). Human neutrophils were 

isolated from heparinized whole blood using Polymorphprep (Axis-Shield 

PoC AS). A rabbit polyclonal antibody against p40phox and a mouse mAb 

against Rac were from Upstate Biotechnology, and mAbs against p67phox and 

p47phox were from BD Biosciences.

Phagocytosis and NADPH oxidase activity determinations. IgG-

coated RBCs (IgG-RBC) were freshly prepared as described previously 

 using sheep RBCs and rabbit anti–sheep RBC IgG (MP Biomedicals) (66). 

Opsonization of latex beads (1.98 or 3.30 μm; Bangs Laboratories, Inc.) with 

human IgG was also performed as described previously (69). Opsonized targets 

were resuspended in DMEM or RPMI.

Phagocytosis of IgG-RBCs was performed essentially as described 

 previously (66). Derivative COS7 cell lines were split and replated at a con-

centration of 3.0 × 104 cells/well in eight-well chamber slides (Nalge Nunc 

International). In experiments where p40phox was transiently expressed, cells 

were replated into chamber slides 1 d after transfection. 2 d after replating, 

slides were placed on ice and washed with PBS. IgG-RBCs in DMEM con-

taining 20% of a saturated NBT solution were added at a 100:1 ratio of IgG-

RBCs to cells. Cells were then either incubated at 37°C for 30 min or, for 

synchronized phagocytosis, fi rst centrifuged for 5 min at 800 rpm at 18°C 

before replacement of medium with prewarmed DMEM containing 20% 

NBT. Non-internalized RBCs were lysed by incubating with ddH2O for 

1 min. Slides were air dried, fi xed with methanol, and stained with 0.2% 

 safranin before microscopic examination to assess NBT reduction by super-

oxide to dark purple formazan deposits (70). At least 200 cells were scored 

for each variable. In some experiments, duplicate wells were processed in the 

absence of NBT and stained with Diff -Quik (Dade Behring Inc.) to deter-

mine the phagocytic index as the number of IgG-RBCs ingested per 100 cells. 

In some experiments, COS7 derivatives were activated with 400 ng/ml 

phorbol myristate acetate and NADPH oxidase activity was  assayed by NBT 

staining or by cytochrome c reduction (30).

NADPH oxidase activity was also measured using zymosan opsonized 

with Fc OxyBURST Green (Invitrogen), where dichlorodihydrofl uorescein 

(H2DCF) is covalently linked to BSA and then complexed with purifi ed rabbit 

polyclonal anti-BSA antibodies (43). Zymosan A was opsonized for 60 min at 

room temperature with Fc OxyBURST Green in PBS. After washing three 

times with PBS, Fc OxyBURST Green–opsonized zymosan was resuspended 

in PBSG (PBS plus 0.5 mM MgCl2, 0.9 mM CaCl2, and 7.5 mM dextrose) 

(30). Prewarmed labeled particles (50 per cell) were added to derivative COS7 

cell lines, plated the previous day at 3 × 104 per well in eight-well chamber 

slides. Cells were incubated at 37°C for 30 min. Phagocytosis was terminated 

by putting the cells on ice. Cells were removed from the wells with trypsin/

EDTA and analyzed immediately by fl ow cytometry (FACSCalibur; Becton 

Dickinson). All measurements were performed with the instrument excitation 

wavelength set at 488 nm and emission wavelength set at 530 nm. In some ex-

periments, trypan blue was added just before fl ow cytometry, which quenches 

oxidized dye that might be bound extracellularly, with similar results.
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Phagocytosis of IgG-opsonized latex beads by murine macrophages was 

performed as described previously (69), with minor modifi cations. PEMs 

on 12-mm gelatin-coated glass coverslips were pretreated 30 min at 37°C 

with phosphatidylinositol (PI) 3 kinase inhibitors at 20, 50, or 100 nM for wort-

mannin and 20, 50, or 100 μM for LY294002, or with DMEM containing 

DMSO vehicle alone. Medium was then replaced with prewarmed DMEM 

containing the same concentration of inhibitors, or DMSO alone, and IgG-

opsonized 3.3-μm latex beads (3:1 beads per cell). After centrifugation 

(800 rpm at 18°C for 5 min), plates were incubated at 37°C for 30 min 

and washed with ice-cold PBS, and external beads were stained with Cy3-

 conjugated anti–human IgG (Jackson ImmunoResearch Laboratories) before 

fi xation with 4% paraformaldehyde and staining with 1% methylene blue. 

Macrophage-associated latex beads were counted using bright fi eld micro-

scopy, and external beads were identifi ed using fl uorescence to determine 

the fraction of cells undergoing phagocytosis and the phagocytic index.

NADPH oxidase activity in PEM-ingesting 3.3-μm beads was moni-

tored by a lucigenin chemiluminescence assay (71). Wild-type and gp91phox-

null PEMs were plated at 5 × 105 cells per well into 96-well fl at-bottom 

tissue culture–treated plates (Corning Inc.) for 24 h. Before the addition of 

IgG latex beads, some wells were pretreated for 30 min at 37°C with 1–20 

nM wortmannin, 2–20 μM LY294002, or PBSG containing DMSO vehicle 

alone. IgG latex beads in PBSG with 12.5 μM lucigenin were added (two 

beads per cell) with the same concentration of inhibitors. Cells were then 

incubated at 37°C for 60 min in an Lmax microplate luminometer (Mole-

cular Devices). The relative amount of superoxide produced over 60 min 

was determined by integrating the chemiluminescence unit signals using 

SoftMax PRO software (Molecular Devices). The background signal from 

gp91phox-null PEM samples run in parallel, which did not change with IgG 

latex bead stimulation, was subtracted from the wild-type PEM signal.

Confocal microscopy. COSphoxFcγR cells were transfected with p40PX-

EYFP, p40phox-EYFP, or mutant derivatives of p40phox-EYFP and plated 

onto gelatin-coated coverslips. 2 d after transfection, cells were incubated 

with either rabbit IgG–coated RBCs or human IgG–coated 1.98-μm latex 

beads labeled with either goat anti–rabbit IgG or goat anti–human IgG con-

jugated to Alexa Fluor 555 (Molecular Probes) for 30 min at room temperature. 

In some experiments, cells were preincubated with 50 nM wortmannin for 

15 min before adding IgG beads. After phagocytosis, the plates were put on 

ice for 2 min and rinsed twice for 5 min with cold PBS/1% BSA. Unin-

gested IgG beads were stained with Alexa Fluor 633 goat anti–human IgG 

(Invitrogen). Non-internalized IgG-RBCs were lysed by incubation with 

water for 4 min. Cells were fi xed with 4% paraformaldehyde in PBS at room 

temperature for 10 min. Coverslips were mounted in DABCO, sealed and 

stored at 4°C overnight, and imaged on a Zeiss LSM-510 confocal micro-

scope system with a 100× 1.4 N.A. oil-immersion objective. Metamorph 

6.0 (Molecular Devices) was used to create projections (through- focus 

 images) from three to eight 0.35-μm sections covering the middle of the 

cell. For confocal microscopy of PLB-985 granulocytes expressing YFP-

tagged p40 phox, cells were deposited onto polylysine-coated coverslips by 

centrifugation (800 rpm for 2 min) on day 5 of dimethylformamide diff er-

entiation and cultured overnight. 1.98-μm IgG latex beads in RPMI were 

then deposited onto cells by centrifugation (800 rpm for 2 min), and cells 

were incubated at 37°C for 30 min. In some experiments, cells were prein-

cubated with 50 nM wortmannin for 30 min before adding IgG beads. Fixa-

tion of cells, image acquisition, and analysis were as described above for 

COS7 derivatives.
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