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SUMMARY

Graph theory-based analysis describes the brain as a complex network. Only a
few studies have examined modular composition and functional connectivity
(FC) between modules in patients with spinal cord injury (SCI). Little is known
about the longitudinal changes in hubs and topological properties at the modular
level after SCI and treatment. We analyzed differences in FC and nodal metrics
reflecting modular interaction to investigate brain reorganization after SCI-
induced compensation and neurotrophin-3 (NT3)–chitosan-induced regeneration.
Mean inter-modular FC and participation coefficient of areas related to motor co-
ordination were significantly higher in the treatment animals than in the SCI-only
ones at the late stage. The magnocellular part of the red nucleus may reflect the
best difference in brain reorganization after SCI and therapy. Treatment can
enhance information flows between regions and promote the integration of mo-
tor functions to return to normal. These findings may reveal the information pro-
cessing of disrupted network modules.

INTRODUCTION

Every year, 250,000–500,000 people worldwide suffer from spinal cord injury (SCI), which interrupts the

efferent (motor) and afferent (sensory) connections between the cerebral cortex and the spinal cord. SCI

can result in motor and sensory dysfunction,1,2 which severely affects functional independence and quality

of life.3,4 Restoring the motor function of patients with SCI to the greatest extent has always been a hot and

difficult issue in clinical research. In the past few decades, many researchers have analyzed various methods

to repair SCI, such as cell transplantation,5–7 neurotrophic drug injection,8 tissue engineering,9,10 and

biomaterial implantation.11–14 These treatments promote the recovery of residual structure/function, inte-

gration of replacement tissues, and formation of new neurons/fibers in the injured area. The bioactive ma-

terial (neurotrophin-3 [NT3]–chitosan) previously developed by our group has been shown to trigger the

robust activation of endogenous neural stem cells (NSCs) in the injured spinal cord of non-human primates.

The bioactive material attracts NSCs to migrate to the injured area through the slow release of NT3 and

NSCs, which are differentiated into neurons. Enhanced angiogenesis and reduced inflammatory responses

also provide a favorable microenvironment for neurons. These biological effects promote the formation of

functional neural networks that rebuild severed connections, leading to the restoration of sensorimotor

functions.14

The spinal cord is responsible for the transmission and integration of signals to and from the brain. The ner-

vous system undergoes major remodeling after SCI. Brain–spinal cord interactions and dynamic changes in

function play a crucial role in the reconfiguration of neurological function, whichmay have important clinical

implications for the treatment of patients with SCI and evaluation of their efficacy. Previous studies mostly

focused on the local injury regions of the spinal cord, and there now has been a growing focus on brain

research in recent years. The brain is closely related to the structure and function of the spinal cord. Quan-

tifying brain network changes after SCI can further improve the understanding of the mechanisms of brain

reorganization induced by SCI and help develop appropriate rehabilitation treatment plans for patients

suffering from SCI with motor/sensory dysfunction and neuropathic pain.

Blood-oxygen-level-dependent fMRI technology can be applicable for identifying interactive brain regions

during non-task states to detect endogenous brain activity. The detection indicators of non-task state fMRI

data after post-processing can reflect the nature of local and whole-brain activity, of which functional
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connectivity (FC) is the most widely used because it can depict activity consistency across regions. Over the

past two decades, an increasing number of clinical studies have employed fMRI technology and subse-

quent FC calculations to characterize cortical connectivity changes after SCI.15–20 Most of these studies

focused on FC of sensorimotor areas after SCI to explore compensation and functional changes in senso-

rimotor cortical regions.21,22

In addition to studies on compensatory changes in local brain regions, Bullmore et al.23 proposed a graph-

theoretical approach using brain regions as nodes and FC values between brain regions as edges to form a

large-scale brain network to analyze the global and local topological properties of networks.23,24 At pre-

sent, numerous brain fMRI studies applying a graph-theoretical method have been carried out in neurolog-

ical diseases such as Alzheimer disease25,26 and epilepsy.27 These studies using a graph-theoretical

method revealed abnormal functional network states induced by diseases, as well as provided new insights

into the diagnosis and new hopes for the treatment of these diseases. As SCI research has advanced, a

small number of studies have also begun to focus on abnormalities of whole-brain functional networks us-

ing a graph-theoretical approach to explore the heterogeneity of brain network modules in patients with

SCI.28,29 These changes of modules reflect the topological properties of brain networks, modularity, which

suggests that the brain network is densely connected within modules and sparsely connected between

modules. Topological properties of functional networks (i.e., connectomics)30,31 must reveal the integra-

tion and separation of brain functions after SCI. Hawasli et al.28 used a graph-theoretical approach to

analyze functional networks and found that SCI disrupts the internal connectivity of the default mode

network (DMN) and the normal connectivity between the executive control network and somatosensory

motor network (SMN) network. Kaushal et al.29 performed large-scale functional network analysis in pa-

tients with complete cervical SCI and found that FC of whole-brain subnetworks in patients with SCI

decreased, whereas FC between the sensorimotor cortex and the subnetwork of the cerebellar network

increased. Kaushal et al.32 applied a modular algorithm to perform graph-theoretical analysis of patients

with complete SCI. The functional network of patients with SCI was divided into nine modules and the num-

ber and composition of nodes in eachmodule differed from those of healthy subjects; the local efficiency of

the functional network showed a statistically significant decrease at multiple thresholds. Although these

studies have observed disruption of brain modular organization after SCI, injury-induced alterations in

modular properties, such as hubs, remain unclear. Hubs play a central role in brain communication and neu-

ral integration. They were provincial hubs highly linked within their own modules for specialized functions,

and connector hubs linking different modules. In addition, there are no reports of functional brain network

changes following regenerative treatment for SCI. Theoretically, reconfigured neural projections can

reshape connections between peripheral nerves and brain, so ‘‘silent’’ brain areas are activated and other

brain areas closely connected to them are affected. How these pathophysiological changes alter the prop-

erties of brain networks remains to be explored in depth.

To explore the effects of SCI and regenerative treatment on the reorganization of functional brain networks

and changes in modular properties, we longitudinally investigated changes in the modular topology of the

whole brain after SCI and NT3 treatment in rhesus monkeys using a graph-theoretical approach. We

hypothesized that SCI animals would exhibit abnormalities in intra- and inter-modular FCs, whereas regen-

erative treatment animals would alleviate such changes to some extent. In this study, the mean intra- and

interhemispheric FCs, intra- and inter-modular FCs, within-module degree (WM), and participation coeffi-

cient (PC) were calculated and intergroup differences were analyzed to characterize information exchange

patterns within and between different brain modules and understand underlying the functional reorgani-

zation mechanism after SCI and NT3 treatment.
RESULTS

Modular reorganization and increased mean intrahemispheric FC after SCI

In this study, 470 cortical and subcortical ROIs (235 brain regions on the left and right sides with reference to

the INIA19 rhesus monkey brain atlas) were selected, and 470 3 470 network matrices were constructed

using fMRI data under anesthesia state. Every whole-brain network was divided into different modules,

and intergroup module differences in rhesus monkeys were analyzed at the healthy period and at 1, 2, 3,

6, and 12 months postoperatively.

The brain network at the healthy period in rhesus monkeys was divided into five modules: default mode

network (module 1, red), brainstem structure (module 2, blue), somatosensory motor network and salience
2 iScience 26, 106784, June 16, 2023
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network (module 3, purple), limbic system (module 4, yellow), and cerebellar network (module 5, cyan).

Module 1 mainly includes brain regions such as the precuneus, inferior temporal gyrus, posterior cingulate

gyrus, and superior frontal gyrus. Module 2 mainly contains the solitary nucleus, spinal trigeminal nucleus,

dorsal cochlear nucleus, facial nucleus, and other nuclei related to visceral sensation and somatosensation.

Module 3 mainly includes brain areas such as precentral gyrus, postcentral gyrus, and insula. Module 4

mainly has structures such as amygdala, hippocampus, dentate gyrus, and hypothalamus. Module 5 mainly

has structures such as fastigial nucleus, dentate nucleus, globose pallidus, and lobule III. The brain func-

tional networks in the SCI-only group at 1, 2, 3, 6, and 12 months postoperatively were divided into 6, 7,

9, 7, and 9 network modules, respectively; meanwhile, 9, 6, 8, 6, and 11 network modules in the treatment

group were obtained, respectively (Figure 1A). The SCI-only group and treatment group showed varying

degrees of increases in the number of modules at multiple postoperative time points, indicating enhanced

functional separation of the entire brain network after SCI and NT3 treatment.

Further analysis about modular separation revealed no significant difference in mean FC strength between

the left insula and bilateral somatosensory areas within 2 months postoperatively (early stage) for the SCI-

only group and treatment group. The above FC strength was similar to it in the healthy period. At 3–

12 months postoperatively (late stage), however, a significant group difference was found in the FC

strength (p = 0.011). The FC strength in the SCI-only group was significantly lower than that in the treatment

group (p = 0.04972) and the healthy period (p = 0.033), but no difference was noted between the treatment

group and the healthy period (Figure 1B). Different from the left hemisphere, no significant difference was

found among the three groups for mean FC strength between the insula in the right hemisphere and bilat-

eral somatosensory areas.

The examined results of the right hindlimb’s normalized thermal pain threshold (NTPT) corresponding to

the left hemisphere showed that the NTPT of SCI-only group was clearly lower than that of the treatment

group (p = 0.017) and the healthy period (p = 0.003 3 10�3) (Figure S1A). Moreover, a significant positive

correlation was also observed for mean FC strength between the left insula as well as bilateral somatosen-

sory areas and the NTPT (SCI-only group: r = 0.530, p = 0.010; treatment group: r = 0.506, p = 0.012;

Figure S1B).

In the late stage, a significant between-group difference was found in mean intrahemispheric FC strength

(p = 0.020), and the mean intrahemispheric FC strength in the SCI-only group was significantly higher than

that in the healthy period (p = 0.042). Thus, functional integration within the cerebral hemispheres occurred

in the SCI-only group at the late stage of injury (Figure 2).

Decreased provincial hubs and increased connector hubs

During the healthy period, connector hubs of the brain network were mainly distributed in sensory and mo-

tor-related brain areas such as lobule III and mesencephalic nuclei of the trigeminal nerve, whereas provin-

cial hubs weremainly found in brain regions such asmedial dorsal nucleus, thalamus, amygdala, hippocam-

pus, and dentate nucleus. Brain regions in the limbic system and higher sensory centers such as thalamus,

hippocampus, and amygdala were developed from provincial hubs to connector hubs after SCI. In addi-

tion, brain regions in the treatment group that were originally non-hubs, such as the midbrain and inferior

colliculus, were developed into connector hubs. By 12 months, the magnocellular part of the red nucleus

became connector hubs. In addition, the superior central nucleus, dorsal raphe nucleus, cuneiform nucleus,

and parvicellular reticular nucleus in the brainstem gradually became connector hubs in the treatment

group to support functional integration of the whole-brain network (Figure 3A). The quantification result

of hubs at different time points is shown in Figure 3B, where an increase in connector hubs in the SCI-

only group and treatment group can provide additional support for enhanced integration of network func-

tions (Figure 3B).

High mean intra- and inter-modular connectivity after treatment

Longitudinal analysis showed that for the SCI-only group, mean inter-modular connectivity did not vary

with the injury time, whereas mean intra-modular connectivity was significantly correlated with the injury

time (p = 0.001). Both mean intra-modular connectivity (p = 0.0043 10�3) and mean inter-modular connec-

tivity (p = 0.003 3 10�1) were correlated with time in the treatment group (Figure 4). The comparison be-

tween groups showed that the mean inter-modular connectivity in the early stage in both the SCI-only

group and treatment group were similar, both of which were not different from the healthy period.
iScience 26, 106784, June 16, 2023 3



Figure 1. Visualization of group-level functional brain network matrixes constructed from fMRI data under

anesthesia state, spatial distribution of brain modules, and between-group differences of averaged FC between

the left insula and bilateral somatosensory areas

(A) Left column: Group-level functional connectivity matrix was reorganized by its modular organization with red boxes

and expressed as correlations among 470 brain regions. Right column: Modules were identified based on the parcellation

of the group in each time point. Different color schemes depict different modular communities.

(B) Between-group differences in the strength of averaged functional connectivity between the left insula and bilateral

somatosensory areas in the early- and late-stages after surgery (both post-hocs: LSD). Data are shown as mean values and

standard errors. PoCG, postcentral gyrus; INS, insula; *p < 0.05. n.s., none significance.
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Figure 2. Visualization of module, mean interhemispheric and intrahemispheric connectivity results, and comparison

(A) The brain networks’ modular reorganizations were visualized. The nodes represent spatial locations of the brain

regions, and the edges represent the connections among the nodes.

(B) Between-group differences in the strength of mean interhemispheric and intrahemispheric functional connectivity

among the three groups in the early- and late-stages post-SCI (post-hoc: Games-Howell). Group mean values and

standard errors are shown. *p < 0.05. n.s., none significance.
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Figure 3. Differences in spatial distribution and the number of two types of hubs

(A) Left column: Network-specific normalized within-module degree and participation coefficient. Right column: Provincial

and connector hubs in brain functional networks. Spatial distribution of provincial (yellow) and connector hubs (red) across

the three groups.

(B) The number of provincial and connector hubs.
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However, in the late stage, the mean inter-modular connectivity in the treatment group was significantly

enhanced (p = 0.002). Mean intra-modular connectivity was the same in the early and late stages, with

the lowest connectivity at the healthy period. Mean intra-modular connectivity in both the SCI-only group

and treatment group was significantly higher than that in the healthy period (p < 0.018; Figure 4).

Participation coefficient and within-module degree

Node-level analysis revealed a highly complex change mode in brain networks after SCI and NT3 treat-

ment. In the late stage, the SCI-only group showed significantly decreased PC in several brain regions,

involving brain regions related to cognitive and motor control such as left precentral gyrus, bilateral sub-

thalamic nuclei, bilateral magnocellular parts of the red nucleus, and right insula (Figure 5; detailed data
6 iScience 26, 106784, June 16, 2023



Figure 4. Post-SCI time-associated trajectories of mean intra- and inter-modular functional connectivity in the

lesion-only and treatment groups

Significant between-group differences of mean intra- and inter-module functional connectivity strength in the early- and

late-stages post-SCI are shown (all post-hocs: Games-Howell). *p < 0.05, **p < 0.01, ***p < 0.001. n.s., none significance.
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information was given in Table S1). By contrast, PC in the treatment group remained essentially normal, and

only a significant decrease in PC was observed in the right insula in the early stage (p = 0.005; Figure 5).

Similarly, for FC in regions associated with the motor system, at the late stage, FC strengths between the

left precentral gyrus and right postcentral gyrus, between the right precentral gyrus and right postcentral

gyrus, and between the right precentral gyrus and right entorhinal area in the treatment group were higher

than those in the SCI-only group (p = 0.013, p = 0.020, p = 0.040, respectively; Figure S2A). FC strength

between the left precentral gyrus and right accessory basal nucleus of the amygdala in the SCI-only group

was lower than that in the healthy period (p = 0.004; Figure S2A). In addition, at the late stage, FC in the

treatment group between the right oral pontine reticular nucleus and right claustral amygdalar area, which

functionally belongs to the cortical subplate nuclei was also clearly higher than that in the SCI-only group

(p = 0.003; Figure S3).

For WM, the SCI-only group also displayed significant changes in the late stage (Figure 6; detailed data

information was given in Table S2). Compared with the treatment group and the healthy period, the

SCI-only group demonstrated significantly lowerWM in the superior parietal lobule (p = 0.037) and left pre-

cuneus (p < 0.034); there was no difference among the three groups forWM in the right precuneus, whereas

the SCI-only group showed significantly higher WM in the left ventral anterior nucleus of the thalamus (vs.

healthy period: p = 0.112 3 10�3, vs. treatment group: p = 0.047), left dentate nucleus (p = 0.045), and

globose nucleus (p = 0.029) associated with sensory information integration.
iScience 26, 106784, June 16, 2023 7



Figure 5. Significant differences in the participation coefficient among the SCI-only and treatment groups and

health status

For multiple comparisons, LSD post-hoc was performed. *p < 0.05, **p < 0.01, ***p < 0.001. n.s., none significance.
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There were similar findings in FCs in regions associated with the sensory system; FC strengths between the

right postcentral gyrus and left solitary nucleus, between the right postcentral gyrus and right solitary nu-

cleus, and between the right postcentral gyrus and right superior parietal lobule in the SCI-only group were

higher than those in the treatment group (p = 0.029, p = 0.023, p = 0.011, respectively; Figure S2B). More-

over, at the late stage, FC between the left postcentral gyrus and right nucleus of the diagonal band in the

SCI-only group was lower than that in the treatment group (p = 0.021; Figure S2B). All FC data information

and comparison results were shown in Table S3.

Receiver operating characteristics (ROC) analysis allows us to compare multiple acquisition strategies

and multiple post-processing indices quantitatively and objectively.33,34 ROC analysis for PC and

WM of brain regions with statistically significant difference (p < 0.001) between the SCI-only

group and treatment group was performed and results for the area under the ROC curve >0.7 were dis-

played. ROC analysis showed that the PC of the right magnocellular part of the red nucleus in the brain

network could be the indicator that can best distinguish the SCI-only group and the treatment group.

Thus, the magnocellular part of the red nucleus may reflect the best difference in brain remodeling

induced by spontaneous compensation after SCI versus neural regeneration after NT3 treatment

(Figure 7).
8 iScience 26, 106784, June 16, 2023



Figure 6. Significant differences in the within-module degree among the SCI-only and treatment groups and the

health status

For left anteroventral nucleus of the thalamus, Games-Howell post-hoc multiple comparison was performed. For others,

LSD post-hoc was performed. *p < 0.05, ***p < 0.001. n.s., none significance.
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The extent of spinal cord lesions and motor impairments

To assess the severity of injury, the ratio of the lesion area post-SCI to the spinal cord area in the healthy

period was calculated for each animal. Results showed that there was no significant difference in the per-

centage of spinal damage area between the SCI-only and treatment groups at one month after operation,

which proved the consistent degree of injury between the two groups. At 12 months post-SCI, however, a

significant difference between the two groups was observed (p = 0.003; Figure S4A). The corresponding

motor function of these animals was also analyzed. No difference of stride length was found at the healthy

period and 2 months post-operation. But a significant recovery of stride length in the treated animals was

observed at 12 months post-SCI compared to that in the SCI-only ones (p = 0.013; Figure S4B). The trajec-

tories for time-dependent recovery from motor impairments on an individual basis were shown in

Figure S4C.

DISCUSSION

The extent to which SCI can cause brain reorganization is unclear, and quantifying these reorganizations

will help understand the cortical changes in the brain after SCI and NT3 treatment. Unlike previous beliefs

that only a specific sensorimotor network is involved in SCI,28,35 recent studies have found that SCI

affects brain network regions or interconnected systems on a large scale.21,32 Previous studies have used
iScience 26, 106784, June 16, 2023 9



Figure 7. Receiver operation characteristic curves for discriminating functional changes of brain regions between

the SCI-only and treatment groups

Areas under the lines represent the area under the curve (AUC), whereas black lines indicate random classification. The

AUCs for the ROC of ①–⑥ are 0.882, 0.918, 0.924, 0.858, 0.889, and 0.785, respectively.
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large-scale networks to analyze the modular organization of whole-brain resting-state FC networks in pa-

tients with complete SCI, demonstrating the potential application of the graph-theoretical method in as-

sessing changes in brain network properties after SCI.

In this study, 470 ROIs were included to compare differences in large-scale network modules between an-

imals in the SCI-only and treatment groups. By examining the modules and hubs of functional brain net-

works, we found the following findings: (1) Compared with the healthy period, the number of modules

increased in the SCI-only and treatment groups at all postoperative time points. (2) The intra-modular

FC strengths in the SCI-only and treatment groups at the early and late stages increased, and the mean

intrahemispheric FC strength in the SCI-only group at the late stage increased. (3) The number of connector

hubs in the SCI-only and treatment groups increased, whereas the number of provincial hubs decreased. (4)

The affected brain regions of PC and WM after SCI and NT3 treatment were involved in areas related to

sensorimotor control, cognition, and pain perception, such as insula, precentral gyrus, red nucleus, thal-

amus nucleus, and cerebellar nuclei. The magnocellular part of the red nucleus could distinguish the

furthest distinct brain plasticity induced by spontaneous compensation after SCI and neural regeneration

after NT3 treatment.

During the healthy period, the insula and primary somatosensory area were tightly functionally connected.

Insula belonging to the salience network (SN) and the primary somatosensory area belonging to SMN

belong to the same module. However, in the late stage after injury, the insula and primary somatosensory

area were split into two modules, and the network separation of SN and SMN was found. A previous study

about the network module after SCI demonstrated that the insula is in the same module as the precentral

and postcentral gyrus in healthy controls, and the observations of our study were consistent with this

finding.32 The dissociation of these two networks in the late stage may reflect the loss of input from the ex-

tremities, leading to decreased spontaneous functional activity in primary sensorimotor cortical areas36

and decreased demand for synchronized activation processing between brain regions. The insula, as a

core node of the SN, is functionally and anatomically closely connected to the sensorimotor cortex37,38

and is involved in information processing related to somatosensory and visual sensory stimulation. By

contrast, in the late stage after SCI, a significant decrease in FC strength between the left insula and bilat-

eral primary somatosensory areas occurred. This phenomenon indicated a loss of afferent information from

the spinal cord to the primary somatosensory cortex, as well as reduced functional activity in the corre-

sponding representative areas of the sensorimotor cortex. Moreover, synchronous activity was reduced be-

tween brain areas.39,40

In addition, low FCbetween the left insula and bilateral primary somatosensory areas in the SCI-only group was

positively related to low NTPTs (increased pain signs), but restoring the FC after treatment can reduce pain

signs, suggesting that NT3 treatmentmay relieve pain signs through reconnection of the insula. It was reported

that the insula exerts a descending inhibitory effect on thermal nociception in the pain pathways of the
10 iScience 26, 106784, June 16, 2023
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contralateral spinal dorsal horn.41 The difference in the integrity of the descending pain regulation pathwaymay

be one of the reasons for the distinct NTPTs between the SCI-only and treatment groups. As a node in the pain

regulation neural circuits, the FC strength change of the insula may be a potential marker for pain signs.

Previous studies have demonstrated substantial spontaneous reorganization after SCI occurred in the subcor-

tex, and new connections may compensate for damaged pathways connecting important motor areas.42 One

study found that the intrahemispheric FC strength of the primary sensorimotor cortex of patients with SCI

increased, but interhemispheric FC strength did not increase,39 which may be due to the limited ability of

axonal long-distance spontaneous regeneration. In this study, consistent with previous results, we also

observed that the mean intrahemispheric FC strength in the SCI-only group at the late stage was higher

than that in the healthy period, but the mean interhemispheric FC strength was not significantly different.

The increase in mean intrahemispheric FC may be associated with spontaneous plasticity after SCI, such as

axonal sprouting to form new connections and projection patterns.42 Although, in the late stage, there was

no difference for mean left and right intrahemispheric FC strength post-SCI. There were significant differences

among the three groups for WM in the left precuneus andmean FC strength between the left insula and bilat-

eral somatosensory areas. Hemisection leads to lack of proprioception and fine tactile sensation information in

the left hemisphere, which may disrupt the functional integration of DMN and reduceWM in the precuneus (a

core node of DMN). Consistently, a significantly reduced regional homogeneity (ReHo) in the precuneus

contralateral to injury has been reported.43 The absence of nociception and temperature information in the

right hemisphere had a minimal effect on these brain regions, suggesting that different kinds of sensory

afferent loss lead to distinct brain network changes. To transfer information between different brain regions

to perform various tasks, the integration and separation of networks is essential. FC strengths of whole-brain

networks at the modular level in this study were analyzed to characterize the separation and integration of

whole-brain networks. Compared with the healthy period, the mean intra-modular FC in both the early and

late stages of the treatment group increased, suggesting that smaller cliques within brain network modules

are more tightly connected after SCI to enhance the output of information and achieve the demands of sen-

sory motor tasks.28 In the late stage, the mean inter-modular FC strength in the treatment group was signif-

icantly higher than that in the SCI-only group, which could be partially attributed to NT3 treatment. Previous

studies have shown that NT3 treatment can promote the recovery of sensorimotor information transmis-

sion.14,44 Thus, the information flow between modules increased, and the functional integration of brain net-

works was enhanced after NT3 treatment. Furthermore, the mean intra-modular connectivity in the SCI-only

group and the mean intra- and inter-modular connections in the treatment group increased with the injury

time, suggesting that cortical function was affected continuously with the injury time.

Functional separation of brain networks can be thought to improve partly the ability of the brain to perform

various tasks in parallel, and the separatedmodules contribute to the development of specific brain functions.

In this study, WM and PC at the node level were calculated to describe the separation and specificity of func-

tional modules. WM can be used to evaluate how well a node is connected to other nodes within the same

module. In the late stage, the SCI-only group showed higher WM in the left ventral anterior nucleus of

thalamic, dentate nucleus, globose nucleus, and superior parietal lobule than the treatment group. The

high WM of these brain regions related to somatosensory reflected reduced input to the ipsilateral (right) pri-

mary somatosensory area after SCI; thus, the contralateral (left) somatosensory-related brain regions in the

module played a major compensatory role. Given the imbalance of sensory input after SCI, the integrated

reorganization of different thalamic subnuclei in the thalamocortical pathway and functional alterations inmul-

tiple sensory-related brain regions after SCI may provide a contribution and compensation for adaptive and

non-adaptive cortical changes observed after SCI.45 In this study, the SCI-only group showed significantly

higherWMof the left ventral anterior nucleus of thalamic, dentate nucleus, andglobose nucleus than the treat-

ment group and the healthy period. This difference may be due to the lack of afferents from the lower motor

center, which caused an imbalance of sensory inputs and a compensatory increase in WM. Brain regions asso-

ciated with sensory integration likely spontaneously increase their regional and network functions to compen-

sate for sensory dysfunction, and this compensatory effect is greater in the SCI-only group than in the treat-

ment group. There were similar findings in FCs in regions associated with the sensory networks. Abnormal

sensory responses were reported after SCI.46 FC strength between the postcentral gyrus and nucleus of the

diagonal band, which is specialized in the sensory processing of tactile stimuli, was significantly lower in the

SCI-only group than that in the treatment group. Thismay reflect abnormal sensory responses to tactile stimuli

post-SCI. In addition, extraspinal sensory pathways, such as a spinal cord bypassed vagal nerve pathway, may

develop following injury.47 In the SCI-only group, FC strength between the postcentral gyrus and solitary
iScience 26, 106784, June 16, 2023 11
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nucleus, the main component of vagal nerves, was higher than other groups, which may reflect a developed

spinal cord-bypass vagal nerve pathway to sustain sensory function. In addition, previous studies have shown

an association between abnormal thalamic function and chronic pain.48,49 Reorganization and integration of

different thalamic subnuclei in the thalamocortical pathway after SCI may also be a factor for mood disorders

and pain-processing deficits in patients with SCI.

Patients with SCI are 13 times more at risk for cognitive dysfunction than healthy people,50 and up to 60% of

patients with chronic SCI have deficits in attention, memory, and cognition.51 The precuneus, as a core

node of DMN, receives signals from the frontal, parietal, and temporal lobes. It is considered associated

with a high level of cognitive function.52,53 Our research showed that WM of the left precuneus in the

SCI-only group was significantly lower than that in the treatment group and the healthy period, demon-

strating that SCI can affect the DMN network and may contribute to cognitive decline after SCI.43

PC can be used to assess FC of nodes between modules. The treatment group showed greater PC in mo-

tor-related brain regions than the SCI-only group, such as bilateral globose nucleus, left precentral gyrus,

right insula, and bilateral subthalamic nucleus, and it did not differ from the healthy period. This finding

demonstrated that NT3 treatment could enhance information flows between brain regions and promote

the integration of whole-brain motor functions to return to the healthy period. Sensorimotor activity has

been shown to play a key role in functional recovery after partial SCI. In this study, FCs between the pre-

central gyrus and limbic system (entorhinal area and amygdala), between the precentral gyrus and postcen-

tral gyrus, displayed stronger connections after treatment than SCI-only, suggesting treatment might

restore the functional interaction of the motor network and promoting the improvement of motor function,

such as stride length.

Notably, the present study found themagnocellular part of the red nucleus could distinguish the difference

in brain network changes induced by spontaneous recovery after SCI and neuroregeneration after NT3

treatment. Following impairment of spinal axonal projections, retrograde axonal responses in the red nu-

cleus may occur, typically involving chromatin dissolution and accumulation of neurofilaments, microtu-

bules, and various membranous organelles54 and related response of microglia to astrocytes.55 Chromati-

nolysis, gliosis, and neuronal loss of the red nucleus occurred in brains of German shepherds with chronic

degenerative myelopathy.56 In this study, NT3 treatment inhibited inflammation, alleviated axonal degen-

eration, and promoted axonal regeneration. Thesemarkedly different pathological processes after SCI and

NT3 treatmentmay explain why themagnocellular part of the red nucleus exhibited different PCs in the two

groups of animals. The magnocellular part of the red nucleus preserved in the treatment group was

involved more in the functional integration of brain networks, reflecting differences in brain network

changes between the two groups of animals.

In conclusion, this study analyzed the changing processes of modularity in the functional brain network af-

ter SCI and NT3 treatment, revealed differences in brain modular connectivity after injury and treatment,

and demonstrated the effect of NT3 treatment on improving SCI-induced dissociation in the brain network.

These findings laid the foundation for further understanding the impact of SCI or neuroregeneration treat-

ment on brain function and provide evidence for distinguishing between different subtypes of brain reor-

ganization induced by spontaneous recovery and neuroregeneration. This work may help further guide the

treatment of SCI.
Limitations of the study

This study had some limitations. First, the validity of the statistical analysis may be affected by the small

number of animals. Second, further longitudinal changes with the injury time in topological properties

(PC andWM) of nodes at themodular level were not analyzed. Subsequent research could expand the sam-

ple size and explore the changing processes of nodal topological properties in depth to reflect the plas-

ticity of brain networks comprehensively. Third, performing MRI on animals usually requires anesthesia

to obtain adequate immobilization.57,58 The use of anesthetics may affect biochemical information, thereby

masking or enlarging possible interactions between brain regions.59 However, the reliability of test–retest

results for longitudinal studies of fMRI activation and connectivity under anesthesia is reliable.60 For this

reason, the use of consistent anesthesia procedures and anesthetics in longitudinal studies allows data

to be compared to show changes in brain network modules.
12 iScience 26, 106784, June 16, 2023
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals

Eight adult female rhesus monkeys (mean weight: 5 G 1 kg, mean age: 5–6 years old) with good coordina-

tion and low aggression were chosen in this study. The animals were randomly divided into two groups: the
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SCI-only group and the treatment group. The experimental procedure was approved by the Biological and

Medical Ethics Committee of Beihang University (BM20180046). All animal experiments were performed in

accordance with the ARRIVE guidelines.
Experimental model

All monkeys were kept alone in a room with controlled temperature and humidity. Food and water were

freely available, and fresh fruit was provided daily. Anesthesia was administered by intramuscular injection

of ketamine hydrochloride solution (10 mg/kg) before surgery and then maintained by intramuscular injec-

tion of xylazine hydrochloride (5 mg/kg). And then maintained with sodium pentobarbital (20 mg/kg) by an

intravenous drip. The right spinal cord hemi-transection model was performed using laminectomy at the

T7–T9 thoracic vertebrae. Under a surgical microscope, the tissue (10 mm long and 2–3 mm wide) was

removed at 0.5 mm right of the posterior central vein of the spinal cord for all animals. After topical hemo-

stasis, the repair materials with corresponding size were implanted into the SCI area of the animals in the

treatment group. All animals were given daily antibiotics (penicillin 240 mg per day) and painkillers (pentaz-

ocine 2 mg/kg) for 5 days postoperatively.
METHOD DETAILS

MRI scan

All data were acquired via a custom-made four-channel primate head transmitter receiver coil on a 3T

Siemens MR system (Magnetom Skyra, Siemens, Erlangen, Germany). Scanning was executed at healthy

period (baseline) and 1, 2, 3, 6, and 12 months post-SCI.

Anesthesia was induced by intramuscular injection of ketamine hydrochloride solution (10 mg/kg) before

scanning, and atropine sulfate was injected intramuscularly (0.05 mg/kg) to reduce salivary secretion. Anes-

thesia was maintained by intravenous puncture with a mixed saline solution of propofol (0.25 mg/kg/min)

and ketamine (0.03 mg/kg/min). All animals were placed in the prone position.

Functional data were obtained using the gradient echo-echo planar imaging sequence (GRE-EPI) with the

following imaging parameters: repetition time (TR)/echo time (TE) = 2000 ms/30 ms; field of view = 128 3

128 mm; matrix = 64 3 64; slice thickness = 2 mm; and flip angle = 90�. A total of 25 consecutive slices of

axial images covering the whole brain were collected. Scanning lasted for 4 min to obtain 120 volumes

of data.

Structural data were obtained via the 3D magnetization-prepared rapid acquisition gradient echo

sequence with the following imaging parameters: TR/TE = 1520 ms/4.42 ms; flip angle = 15�; inversion
time (TI) = 520 ms; and 240 consecutive slices to cover the whole brain with an isotropic voxel size of

0.5 mm3.

Spinal cord structural images were acquired by proton-density weighted sequence with the following pa-

rameters: TR = 3050 ms; TE = 11 ms; flip angle = 15�; matrix = 3203 320; field of view = 1963 196 mm, and

resolution = 0.6 3 0.6 3 2.0 mm3. Scanning center was located at the surgical position of the spinal cord,

and 27 consecutive slices of axial images covering the SCI region were collected.
Data preprocessing

The non-task state fMRI data under anesthesia were preprocessed with Data Processing Assistant for

Resting-State fMRI (http://restfmri.net/forum/DPARSF), which is based on Statistical Parametric Mapping

(SPM12) (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). First, the first 10 volumes of each functional

time series were removed due to signal equilibrium. Second, we conducted slice timing correction on

the remaining 110 vol Head motion between volumes was evaluated and corrected using rigid body regis-

tration, and we excluded datasets with maximum translation exceeding 2 mm, with the maximum rotation

exceeding 2�. On the basis of the standard stereotaxic coordinate system, we spatially normalized the cor-

rected fMRI images to the space of the INIA19 primate brain atlas by using T1 images unified segmenta-

tion. Each voxel was resampled to isotropic 0.5 3 0.5 3 0.5 mm3. The images were then smoothed with a

Gaussian kernel with a 6-mm full-width half-maximum Gaussian kernel. To remove the possible variances

from the time course of each voxel (including global signals and signals from white matter and
18 iScience 26, 106784, June 16, 2023
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cerebrospinal fluid), we regressed the nuisance covariates. Finally, a bandpass filter (0.01–0.1 Hz) was

applied to reduce the low-frequency drifts and high-frequency noise.
Functional network construction

We first parcellated the whole brain into 470 cortical and subcortical regions according to the INIA19 pri-

mate brain atlas61 except for white matter regions. The time series in each region of interest (ROI) was ob-

tained by averaging the time series of all voxels within the ROI. Edges of the correlation matrix were

measured by computing Pearson’s correlation coefficients between the preprocessed time series of every

pair of ROIs. Given the obscure explanation of negative correlations,62–64 the modularity analysis was only

performed on positive correlations.65

For statistical purposes, Pearson’s correlation coefficients between each pair of nodes were transformed

into Fisher’s z scores. Accordingly, for each animal, we obtained a 4703 470 symmetric positive FC matrix.

All matrices obtained for animals in each group at each time point were averaged to generate the group-

level FC matrix. To compare the SCI-only group and the treatment group under the condition of the same

cost, a range of cost thresholds from 0.10 to 0.50 with 0.01 as an increment was applied to the matrix, with

the cost defined as the ratio of the number of edges to the total number of possible edges. In addition, ROI-

based FC analyses were performed by defining the left and right precentral gyrus, postcentral gyrus as

ROIs and calculating FC between the ROI and other brain regions within the whole brain to investigate

the functional integration patterns in region association with the sensorimotor system. FC in the oral

pontine reticular nucleus was calculated and analyzed to observe cortico-reticular connectivity.
Modularity

Modularity is an important feature for complex brain networks, and modules refer to clusters of nodes with

high within-module connectivity and low between-module connectivity.23 Module is defined as a commu-

nity, the inside of which has denser connections than the rest of the network. Several algorithms have been

developed to detect those modules. The basic approach is to measure the maximum modularity value Q.

High Q scores mean highly modular networks, which contain segregated modules and few inter-modular

connections.66,67

To investigate modular-level topological disruptions, the greedy algorithm68 was used to measure the

maximum modularity value, Q, which is defined as follows:

Q =
1

2m

X
i;j

�
Aij � kikj

2m

�
d
�
ci; cj

�

where Aij is the FC strength connecting the nodes i and j, and m = 1
2

P
ijAij. ki represents the sum of FC

strength connecting node i, cj is the module that node j belongs to, and d (u, v) is equal to 1 if u = v and

0 otherwise.

On thebasis of themodule assignments of the group-level FCmatrix of the healthy period at sparsity = 10%, as

in previous studies,65,69,70 we further determined themodule of each node in the SCI-only group and the treat-

ment group.We then calculated the intra-modular connectivity and inter-modular connectivity of each animal.
Hubs

Hubs play central roles by integrating and distributing information in powerful ways due to the number and

position of their contacts in a network.71 The disruptions of hub connections are related to many manifes-

tations of brain dysfunction.72

The topological role of each node was determined based on its density of intra-modular and inter-modular

connections by tracking the WM (Zi) and participation coefficient (PCi) of each node. Zi shows how well no-

des are connected within modules; it measures the number of connections of node compared with other

nodes in the same module. A node with high Zi indicates that this node is important to information ex-

change within the module. PCi measures the distribution of a node’s connections among the modules.73

PCi is close to 1 if the node is extensively linked to all other modules and zero if it is linked exclusively to

nodes of its own module. A node with high PCi indicates that this node communicates frequently with no-

des in other modules.
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For a node i in module cj (j = 1, 2, ., C), Zi and PCi are defined as follows:

Zi =
kci � kc

sc
PCi = 1 �
XC
cj = 1

�
kci
ki

�2

x

where kci is the total FC strength connected to node i in module c. kc is defined as the mean of kci across all

nodes in module c, and sc is defined as the standard deviation of kci across all nodes in module c. ki is the

total FC strength of the edges connected to node i, and C is the number of modular partitions.

Several studies have shown that hubs can be divided into provincial and connector hubs based on their to-

pological location in the network (measured by Zi and PCi).
31,74,75 Connector nodes are considered to inte-

grate information between modules for efficiency information exchange, whereas local nodes integrate in-

formation within modules for specialized function.31,76 Local nodes are subdivided into peripheral nodes

and provincial hubs that both have low PCi, in which only provincial hubs have high Zi (greater modular

integration).73,77

By setting thresholds for Zi and PCi (thrz and thrpc), we detected hubs and divided them into provincial and

connector hubs from three group-level networks. If Zi > thrz and PCi > thrpc, this node was classified as a

connector hub; otherwise, if Zi > thrz but PCi < thrpc, it was identified as a provincial hub. In the results

of this experiment, thrz was set to 1.0 and thrpc was set to 0.3. After detecting hubs of each group at

each time point, we further calculated Zi and PCi of all ROIs of all animals in the three groups. All network

analyses were performed using the Brain Connectivity Toolbox (http://www.brain-connectivity-toolbox.

net)24 and the Graph Theoretical Network Analysis (GRETNA) Toolbox in MATLAB.

Sensorimotor function evaluation

To examine the possible presence of pain, the NTPT at the healthy period, early- and late-stage postop-

eratively was tested and analyzed to reflect the possible pain signs post-SCI. A series of thermal stimuli

generated by the laser stimulator (BWT Beijing Ltd, Beijing, CN) was applied to the skin of the animal’s right

(ipsilateral to the injury) hindlimb, and the stimulus intensity was recorded when the animal appears avoid-

ance movement. The distance from the fiber port to the skin was set to 10 mmwith a spot diameter�5 mm.

The current intensity ranged from 6.5 A to 11 A with a step of 0.75 A. When no obvious response to each

stimulus for more than 30 s, themachine was terminated and rested for 5 min. The stimulus of each intensity

is repeated three times and stopped when the animals appeared to dodge. To decrease the effect of in-

dividual variability, the stimulus intensity of each animal was divided by its own stimulus intensity in the

healthy period to standardize. The ratio of the stimulation intensity post-SCI to the healthy period was

used as the NTPT.

To assess the motor function, gait trajectory at the healthy period, early- and late-stages postoperatively of

the right hindlimb were recorded when animals walking on the treadmill bipedally with restraining upper

body. The Vicon system (Oxford Metrics Limited Company, Dayton, UK) was used to capture the step ac-

tion, and the stride length was extracted for subsequent analysis. Treadmill speed was set to 0.5 m/s.

The extent of spinal cord lesions

To assess the severity of injury, the lesion area of the spinal cord at the center of the injury site was drawn

manually and quantified at 1 month and 12months post-SCI. To decrease the effect of individual variability,

the lesion area at the center of the injury site of each animal was divided by its own spinal cord area in the

healthy period to standardize. The ratio of the lesion area post-SCI to the SCA in the healthy period was

used as the extent of SCI.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using the SPSS software version 20 (SPSS, Inc, Armonk, NY, USA). To

examine the differences of FC strength, network indicators, andNTPT among the SCI-only group, the treat-

ment group, and the healthy period, a one-way analysis of variance (ANOVA) was performed. Then, post-

hoc comparisons using the LSD test (Homogeneity of variance) or Games-Howell test (Inhomogeneity of
20 iScience 26, 106784, June 16, 2023
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variance) were applied. To assess the motor function and the extent of spinal cord lesions between the SCI-

only and treatment groups, an independent sample t-test was executed. The nonparametric Kolmogorov-

Smirnov test was performed to detect the data normality. The significance level of group differences was

set at p < 0.05. Spearman correlation analysis was then used to study the relationships of inter- and intra-

modular connectivity and injury time, and was used to study the relationship of mean FC strength between

the left insula as well as bilateral somatosensory areas and the normalized thermal pain thresholds.
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