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Abstract. Dynamic changes in body weight have long been recognized as important indicators of risk for human 
health. Many population-based observational studies have shown that rapid weight gain during infancy, including a 
catch-up growth phenomenon or adiposity rebound in early childhood, predisposes a person to the development of obesity, 
type 2 diabetes, and cardiovascular diseases later in life. However, a consensus has not been established regarding which 
period of weight gain contributes to future risks. This review evaluates recent evidence on the relationship between early 
rapid growth and future obesity and cardiometabolic risk, with a focus on the differential significance of rapid weight 
gain in infancy and early childhood. Although there is a need for attention to childhood growth during early infancy 
before 1 yr of age as it may be related to future obesity, emerging evidence strongly suggests that toddlers showing an 
increase in body mass index (BMI) before 3 yr of age, a period normally characterized by decreased BMI, are prone to 
developing later cardiometabolic risk.
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Introduction

Obesity is a public health concern worldwide. The 
most common cause of obesity in children is a positive 
energy balance due to caloric intake higher than caloric 
expenditure combined with a genetic predisposition for 
weight gain (1). While the rate of increase in the overall 
prevalence of childhood obesity in the developed world 
has slowed or plateaued (2–4), the most severe and 
recalcitrant form of obesity has increased progressively 
(5). In the United States in 1999–2004, almost 4% of 
children and adolescents of 2–19 yr of age were classified 
as severely obese, and as recently as 2011–2012, the 
prevalence of severe obesity increased to approximately 
6% in this age group (5, 6). Inokuchi et al. (7) suggested 
a generally recognized increased prevalence of central 
fatness in Japanese youth aged 6–17 yr, and central 
fatness associated with severe obesity is linked to 
adverse metabolic and cardiovascular complications. 
Therefore, childhood obesity has led to the emergence 
of multiple obesity-related comorbidities and future 
cardiovascular diseases (8–12).

The term cardiometabolic risk refers to the 

possibility of damage to heart and blood vessels when 1 or 
more risk factors, including obesity, dyslipidemia, high 
blood pressure, insulin resistance, and type 2 diabetes, are 
present (13). Cardiometabolic risk factors are associated 
with bodyweight: the greater the severity of obesity, 
the higher the risks of a low high-density lipoprotein 
(HDL) cholesterol level, high triglyceride and insulin 
levels, and high systolic and diastolic blood pressures 
(13, 14). A 55-yr follow-up in the Harvard Growth Study 
showed that being overweight in adolescence resulted in 
a 2-fold higher risk of coronary heart disease mortality, 
independent of adult weight (15).

There is increasing evidence that the path to obesity 
is established early in life, and several early risk factors 
for obesity have been identified in systemic reviews of 
observational studies (16–18). Recently, it was suggested 
that rapid childhood growth or rapid weight gain during 
infancy through mid-childhood was associated with the 
future risk of obesity (10, 20). In developing a strategy for 
prevention of obesity and cardiometabolic risk from early 
childhood, identification of the period of rapid weight 
gain (infancy or toddlerhood) is important because this 
process may constitute a risk factor for subsequent 
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adiposity and metabolic complications (21, 22).
This review evaluates recent evidence on the 

relationship between early rapid growth and future 
obesity and cardiometabolic risk, with a focus on the 
differential significance of rapid weight gain in infancy 
or early childhood.

Assessment of Rapid Weight Gain

Rapid weight gain (rapid growth) in infancy and 
early childhood is thought to be a predictor of increased 
risk of obesity in later life (1, 19). On average, weight 
decreases within the first 7–14 d after birth; then, it 
increases rapidly until about 6 mo of age and thereafter, 
increases at a reduced rate. The body fat content of a 
healthy full-term infant rises sharply from 10 to 14% 
at birth to 25 to 30% at 6 mo of age. Length increases 
quickly in the first few months, and thereafter, the rate 
of increase reduces (23, 24). Body mass index (BMI) 
increases from birth to late infancy, after peaking at 
6 to 12 mo of age (the so-called infant BMI peak), the 
BMI then normally declines to a nadir at 5–6 yr old 
and then “rebounds”, rising progressively throughout 
late childhood and adolescence. This transition from 
a decrease in BMI to an increase is referred to as the 
adiposity rebound (AR), and an early or exaggerated AR 
portends an increased risk of obesity in later childhood 
and adolescence (1).

Most longitudinal studies on the later outcomes 
of early weight change use metrics to identify growth 
beyond that anticipated from growth charts. A common 
metric is a change in weight for age ≥0.67 SD seen in 
the first 1–2 yr of life (24, 25). This is referred to as the 
“upward crossing of the SD line or percentile line”, “rapid 
infant weight gain”, or “catch-up growth” (26). These 
changes can be visually confirmed on the growth chart 
for Japanese children (27).

Adiposity Rebound

Early adiposity rebound

The phenomenon of AR is described above. In 1984, 
a French study by Rolland-Cachera first noted that early 
rebounders (before 5.5 yr old) had substantially higher 
adiposity at 16 yr than those who rebounded later (28). 
This finding has been replicated in other studies (29, 
30). In Japan, in 2003, the first population-based study 
on AR showed that a rapid increase in BMI from 4 yr 
of age onwards was associated with later obesity (31).

AR may represent a critical window of development 
or may simply be an epiphenomenon of early rebound of 
BMI occurring in children who were already in higher 
BMI percentiles (32–34). Previous studies have looked 
at the BMI pattern of the percentile curves constructed 
cross-sectionally, whereas studies using longitudinal 
data have shown that many children with early AR had a 
normal or even low BMI at or before the AR, independent 
of BMI at AR age, followed by an increased BMI after 

AR (29, 34–36).
Moreover, whether the later high BMI in early 

rebounders reflects high fat or high fat-free mass has 
been a matter of discussion. Evidence suggests that it 
is mainly attributable to high fat (37, 38), with early 
rebounders having a higher fat mass in adolescence as 
measured by dual-energy X-ray absorptiometry than late 
rebounders (39). In a review, Taylor et al. (40) concluded 
that changes in BMI during AR occur due to the high 
velocity of weight gain, which in turn is due to rapid 
deposition of fat rather than fat-free mass, with early 
rebounders gaining fat mass at around 3 times the rate 
of late rebounders.

In the ALSPAC study (16), the adjusted odds ratio 
for obesity at age 7 yr was 15 for children with very early 
AR (before 3.5 yr) compared to those with late AR (after 
5 yr). In other studies, early AR has been linked to other 
components of metabolic syndrome, including insulin 
resistance (41, 42), type 2 diabetes (43), dyslipidemia 
(41, 44), and elevated blood pressure (44). Additionally, 
an early rebound was associated with early menarche 
in girls, suggesting that the timing of AR is an indicator 
of physical maturity (45).

Furthermore, there is evidence that AR currently 
occurs earlier than in the past, and it has been argued 
whether this shift is due to the obesity epidemic or 
a secular trend of accelerated growth and pubertal 
development (46, 47). The strongest determinant of AR 
onset appears to be maternal BMI, with early rebounders 
having heavier mothers (48). In others, excessive rebound 
results from dietary indiscretion and/or sedentary 
behavior at toddler age (35, 48, 49). Breastfeeding in 
infancy may delay and reduce the magnitude of AR (49), 
with some investigators postulating that the low protein 
content of breast milk (compared with infant formula) 
reduces circulating levels of insulin and insulin-like 
growth factor-I and thereby limits adipogenesis and 
fat deposition (50, 51).

A recent long-term study showed that age at AR 
was associated with nutritional status and metabolic 
syndrome in adulthood (20–60 yr old) (52). Therefore, 
the identification of factors that influence the timing 
of AR should improve our understanding of the early 
pathways for the development of obesity and impaired 
cardiometabolic health.

Late adiposity rebound

The phenomenon of early AR is well-documented, 
but the clinical significance of late AR is not fully 
understood. Recently, Moon (53) reported that late AR 
(≥7 yr) was significantly associated with a decreased risk 
of developing obesity in a representative national cohort 
that included 31,316 children, from early childhood 
longitudinal studies of kindergarten classes of 1998–1999 
and 2010–2011. Moreover, in an analysis of 217 children 
aged 12 yr, the relationships among the timing of AR 
(early vs. late: <3 vs. ≥7 yr), the timing of puberty, BMI, 
and plasma lipid profiles were evaluated. The results 
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showed that pubertal timing was approximately one 
year delayed in both sexes with late AR compared to 
those with early AR, and serum lipid profiles were less 
atherogenic in children with late AR than in those with 
early AR. Thus, late AR was associated with delayed 
pubertal maturation and reduced cardiometabolic risks 
(54).

Energy demand of the brain and adiposity 
rebound

Kuzawa and Blair (55) recently proposed a 
remarkable hypothesis linking the energy demand of 
the brain to obesity risk. The brain consumes about 
40% of daily energy expenditure in early childhood 
(compared to 20% for adults), and glucose alone cannot 
supply this energy. Therefore, ketone bodies generated 
in the liver from body fat are used as an energy source 
for brain development. This means that brain energy 
expenditure is inversely related to body fat gain. Thus, 
this hypothesis states that brain energy expenditure 
helps to explain variation in the timing of AR (55, 56).

Infantile Obesity

Although the long-term health relevance of body 
composition in infancy has not been extensively studied, 
multiple longitudinal observational studies have shown 
that rapid weight gain in infancy is associated with 
an increased risk of obesity. In a systemic review of 
21 studies, Ong and Loss (57) concluded that rapid 
weight gain during infancy (up to 2 yr) is consistently 
associated with subsequent obesity risk. Taveras et al. 
(58) found that upwards crossing of 2 major weight-
for-length percentiles during the first 6 months of life 
was more predictive of obesity at age 5 and 10 yr than 
were crossings during later age intervals. Ekelund et 
al. (59) showed that the risk of metabolic syndrome was 
predicted by rapid weight gain during infancy (0–6 mo). 
These reports caused infant obesity to be perceived as a 
condition requiring countermeasures due to the risk of 
future obesity and metabolic disorders (60–62).

Against the views described above, the association 
between infant growth and overweight status in later life 
has been disputed by subsequent studies that extended 
the observation period for weight gain. To assess the 
predictive ability of infant weight gain on subsequent 
obesity, Druet et al. (63) performed a meta-analysis 
of individual-level data for 47,661 participants from 
10 cohorts and concluded that weight gain from birth 
to 2 yr had a stronger association with the risk of obesity 
in schoolchildren than weight gain from birth to 1 yr 
(odds ratio 2.46 vs. 1.96, respectively). In a longitudinal 
cohort study, Liem et al. (64) found that large relative 
increases in weight from 2 to 7 yr were associated with 
adolescent adiposity and metabolic syndrome. Sovio et 
al. (65) showed that early AR was a risk factor for an 
adverse cardiometabolic profile independently of early 
growth or BMI at rebound.

In a study in Japan, in which Sugiura et al. (66) 
tracked infantile obesity, the weight gain velocity of 
patients with infantile obesity declined until the age of 6 
mo and subsequently, was constant from 7 mo onwards, 
suggesting that early infantile obesity is less likely to 
lead to later obesity. In our birth cohort, we found no 
association between weight gain during infancy (0–12 m) 
and timing of AR. Therefore, we concluded that infantile 
overweight or obesity was not a risk for future obesity 
or metabolic syndrome (67).

The controversy over whether the risk for later 
obesity was associated with obesity during infancy or 
early childhood was ended by a report from Germany in 
2018 (68). In a retrospective analysis of 34,196 children 
(0–18 yr), Geserick et al. (68) found that among the 
adolescents who were obese, the greatest acceleration in 
annual BMI increments occurred between 2 and 6 yr of 
age, with a further rise in BMI percentile thereafter. 
Therefore, it was concluded that the critical age for 
the development of sustained obesity is during early 
childhood, which includes the period of AR and not in 
infancy (68, 69).

Although infant obesity is unlikely to lead to future 
obesity, infants born as large for gestational age (LGA) 
due to maternal obesity or gestational diabetes should be 
considered as exceptions. These infants have difficulty 
losing weight during infancy, and there is a risk of infant 
obesity leading to early childhood obesity (70, 71).

Catch Up Growth

There is an increasing interest in the long-term 
adverse effects of the recovery phase of growth or “catch-
up growth (CUG)”. CUG was first defined as acceleration 
in growth in response to recovery from illness or 
starvation (72–74). This concept was extended to include 
children who were born small for gestational age (SGA) 
and showed rapid post-natal growth, a phenomenon 
assumed to be CUG due to recovery from undernutrition 
in utero (26, 75).

The benefits of CUG for later neurodevelopment 
favors the promotion of rapid growth in infants born 
preterm; however, CUG in infants born at term (normal 
or low birth weight for gestation) is likely to have adverse 
effects on long-term health (75). Children born with low 
birth weight or SGA have an increased risk for non-
communicable diseases (NCDs) such as type 2 diabetes 
and cardiovascular disease later in life, as illustrated 
by the concept of Developmental Origins of Health and 
Disease (DOHaD) (76–80). Poor maternal nutritional 
status or smoking during pregnancy are major causes 
of intrauterine growth restriction (76, 77).

General mechanism of CUG

Weight recovery or CUG is primarily driven by 
energy conservation (thrifty) mechanisms operating via 
suppressed thermogenesis; in this case, the sympathetic 
nervous system is suppressed to reduce energy 
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expenditure. Independent of the timing, the dynamic 
process of CUG is characterized by a disproportionately 
faster rate of fat deposition than that found in lean 
tissue. This phenomenon of preferential catch-up of 
fat is intimately associated with the development of 
insulin resistance and leptin resistance (72, 81). The 
resulting compensatory hyperinsulinemia serves 
to redirect glucose spared from oxidation in skeletal 
muscle toward de novo lipogenesis and fat storage in 
white adipose tissue (72, 81). Leptin resistance causes 
hunger and reduces energy expenditure by suppressing 
the sympathetic nerve activity (82).

CUG in SGA infants

Leunissen et al. (83) found that SGA infants with 
rapid weight gain in the first 3 mo of life had lower 
insulin sensitivity and HDL-cholesterol and higher 
triglyceride levels at age 18–24 yr, than SGA infants 
without CUG who had no adverse effects. Additionally, 
this was observed in animal models (84). Notably, catch-
up weight gain in SGA children is associated with visceral 
fat deposition, insulin resistance, hyperinsulinemia, and 
hypoadiponectinemia (85, 86). Therefore, promoting 
CUG by nutritional supplementation in SGA infants from 
high-income countries is unlikely to have advantages 
for long-term health (75, 87).

Insulin resistance acquisition in SGA infants

In a prospective study, Soto et al. (88) found that 
the fasting insulin concentration at 1 yr was significantly 
higher in SGA infants with CUG than in those without 
CUG and with appropriate for gestational age (AGA) 
infants. These data indicate that the pathophysiological 
mechanisms linking prenatal growth and postnatal 
sensitivity to insulin are present as early as 1 year. 
Furthermore, in a recent prospective follow-up study, 
blood cord insulin levels at birth were lower in SGA 
infants than in AGA infants, but plasma insulin levels 
at 3 yr of age in SGA infants with CUG were higher than 
that in SGA infants without CUG and AGA infants, 
indicating that insulin resistance in SGA infants may 
develop after birth (89).

Optimal weight gain in SGA

The optimal weight gain pattern in the first 2 yr of 
life for term SGA infants has not been fully investigated 
(75). Data from a longitudinal, community-based cohort 
study on growth and development of SGA infants 
collected from 2004 to 2010 in Shanghai suggested 
that for term SGA infants, CUG crossing two centile 
levels (from <10th to the interval between 25th and 50th) 
in the first few months, along with on-track growth 
and maintenance at a median level by age 2, maybe 
the optimal CUG trajectory that minimizes the risk of 
adverse health outcomes in childhood (90). Monitoring 
and ensuring optimal CUG starting from birth may be 

the first step towards the prevention of childhood adverse 
outcomes (50, 92). Breastfeeding is recommended to 
achieve this moderate growth during infancy because 
breastfed infants are relatively undernourished and 
grow more slowly than those fed formula milk (50, 91).

Relationship between CUG and AR

In some SGA infants, the boundary between CUG 
and AR is indistinguishable (72). Maeyama et al. found 
that approximately 7% of SGA children developed AR 
before 3 yr (92).

Sexual Dimorphism

Sexual dimorphism may account for the effect of 
fat distribution during infancy on cardiometabolic risk 
factors (93, 94). A children’s cohort study in Australia 
showed sex differences in the relationship between 
early childhood obesity and subsequent metabolic risk 
clustering in young adult life; females destined for higher 
metabolic risk as young adults show higher skinfold 
thickness from 1 yr of age than corresponding males 
in whom measures of growth and adiposity were not 
distinguishable until 3–5 yr old (95).

Gender may play a role in how childhood growth 
trajectories influence subsequent obesity. Some evidence 
suggests that girls tend to experience AR earlier than 
boys, particularly in the high BMI percentiles, whereas 
other studies have found negligible or nonexistent gender 
differences (96). In the analysis of our birth cohort, it 
appeared that girls with an increase in BMI before 3 yr 
were more prone to develop insulin resistance at 12 yr 
than boys. Therefore, an increase in adiposity during 
early growth periods might be of long term relevance 
for altered insulin sensitivity to adiposity, particularly 
in girls (97).

Studies on human fetal programming of metabolic 
risk factors indicate that low birth weight is associated 
with increased cardiovascular disease in males and 
females, but females show an additional association 
of high birth weight with subsequent cardiovascular 
risk. This suggests that males are more susceptible to 
low birth weight than females and females are more 
susceptible to high birth weight than males during fetal 
programming (98).

Early Prediction of Future Cardiometabolic 
Risk

Among various anthropometric indices of obesity 
(99), the waist-to-height ratio is thought to be the best 
predictor to identify adolescence with a cardiometabolic 
risk associated with excess visceral fat (100). However, 
this risk can be reversed if individuals attain a low level 
of adiposity by adolescence or avoid becoming obese. 
Identifying children at high risk of developing obesity 
would allow preventive and intervention efforts to be 
initiated at an early life-stage (101, 102).
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In our cohort, we showed that, as compared to a 
stable or decreased BMI, a BMI increase from age 1.5 to 
3.0 yr was related to increased insulin resistance at 12 
yr of age, even if BMI is in the normal range just before 
this increase (103). These data were obtained during 
follow-up at 1.5 and 3.0 yr, which included weight and 
height measurements, as defined by the Ministry of 
Health, Labour and Welfare in Japan.

This finding suggests that children with a BMI 
increase before 3 yr, a period normally characterized 
by decreased BMI, are more prone to developing insulin 
resistance in adolescence (102, 103). Similarly, Aris et 
al. (104) reported that the risk of future obesity was 
increased if BMI did not decrease between the ages of 
1 and 3. Another population-based longitudinal study 
in Japan showed that AR before 3 yr of age with low 
pre-rebound BMI increased the risk of obesity among 
preschool children (105).

Conclusions

This review considered the specific evidence 
for the developmental origins of obesity and related 

cardiometabolic risk and the mechanisms involved, with 
a focus on the relationship between rapid weight gain in 
early childhood and future cardiometabolic risk. There 
is a need for attention to early infancy before 1 yr of 
age as an element of childhood growth that is related to 
future obesity, especially for low birth weight infants who 
present with accelerated CUG. However, rapid weight 
gain (a growth pattern showing an increase in BMI) in 
toddlerhood from 1 to around 3 yr is significantly related 
to subsequent cardiometabolic risk. Recognition of these 
growth patterns may help to identify high-risk children 
at an early age and permit tailored intervention that 
may prevent future cardiometabolic diseases.
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