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The increasing prevalence of neurodevelopmental disorders, especially autism spectrum disorders (ASD) and attention deficit
hyperactivity disorder (ADHD), calls for more research into the identification of etiologic and risk factors. The Developmental
Origin of Health and Disease (DOHaD) hypothesizes that the environment during fetal and childhood development affects the
risk for many chronic diseases in later stages of life, including neurodevelopmental disorders. Epigenetics, a term describing
mechanisms that cause changes in the chromosome state without affecting DNA sequences, is suggested to be the underlying
mechanism, according to the DOHaD hypothesis. Moreover, many neurodevelopmental disorders are also related to epigenetic
abnormalities. Experimental and epidemiological studies suggest that exposure to prenatal environmental toxicants is associated
with neurodevelopmental disorders. In addition, there is also evidence that environmental toxicants can result in epigenetic
alterations, notably DNA methylation. In this review, we first focus on the relationship between neurodevelopmental disorders
and environmental toxicants, in particular maternal smoking, plastic-derived chemicals (bisphenol A and phthalates), persistent
organic pollutants, and heavy metals. We then review studies showing the epigenetic effects of those environmental factors in
humans that may affect normal neurodevelopment.

1. Introduction

Neurodevelopmental disorders are a group of conditions
characterized by impairments of social skills or intelligence
with onset in the developmental period. According to the
Diagnostic and Statistical Manual of Mental Disorders, Fifth
Edition (DSM-V), they include intellectual disability (Intel-
lectual Developmental Disorder), communication disorders,
autism spectrum disorder (ASD), attention deficit hyperac-
tivity disorder (ADHD), specific learning disorders, and
motor disorders [1]. In 2011–2013, the estimated prevalence
for ASD and other neurodevelopmental disabilities in chil-
dren aged 3 to 17 years in the United States were 2.24% (1
in 45) and 3.57% (1 in 28), respectively [2]. Alarmingly,
The Autism and Developmental Disabilities Monitoring
(ADDM) Network that surveils children aged 8 years showed
that the prevalence of ASD has increased from 0.66% to
1.46% over 10 years from 2002 to 2012 [3, 4]. Similarly, the

prevalence of ADHD in children from 3 to 17 years also
showed a 25.64% increase from 7.8% to 9.8% from 2003 to
2015 [5, 6]. The reasons for the increasing trend in ASD
and ADHD are still controversial; explanations include
changes in diagnostic criteria, reporting methods, or other
factors such as environment, culture, and social-economic
status that may affect the prevalence of neurodevelopmental
disorders [7–9]. A previous study found indeed that the
changes in diagnostic criteria alone account for only 33%,
and a combination of changes in diagnostic criteria and
reporting methods account for 60% of the increase in preva-
lence of ASD [7]. The search for etiologic and risk factors of
neurodevelopmental disorders remains therefore an urgent
issue and calls for further monitoring and research.

In the 1980s, epidemiologic studies by Barker et al. in
England andWales found that areas with high ischemic heart
disease mortality rates also had high infant mortality rates at
the time when the observed generation was in its early
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childhood. A birth cohort study from 1911 by the same group
found that the lower the birth weight, the higher the cardio-
vascular disease mortality rate, hypertension, and impaired
glucose tolerance rate [10–13]. From these findings, Barker
et al. proposed an “adult-onset of fetal origin” hypothesis
called “Barker’s hypothesis,” stating that a low nutritional
environment in the fetal stage increases the risk of chronic
diseases in adulthood, which is the concept underlying the
Developmental Origin of Health and Disease (DOHaD)
[14]. The DOHaD concept is that the fetal-childhood envi-
ronment affects the risk of chronic diseases in adulthood,
based on knowledge obtained from epidemiological assess-
ments of birth cohort studies. Research on developmental
biology and human and animal physiology showed that the
environment of fetal and early childhood have strong effects
on development, health maintenance, and incidents of dis-
ease [15]. Based on the DOHaD theory, obesity, diabetes,
and mental illness tend to develop in children born from
women who are exposed to starvation during wartime
[16–18]. Furthermore, folate and vitamin deficiency in
the mother during pregnancy increases the risk of neuro-
developmental disorder [19–21]. In addition to maternal
malnutrition, maternal stress due to various reasons is
associated with child behavioral problems including ASD
and ADHD [22–25].

Not limited to maternal stress or malnutrition, epide-
miological studies have linked maternal exposure to envi-
ronmental toxicants and neurodevelopmental disorders,
particularly ASD and ADHD [26, 27]. Here, we focus on
reviewing the relationship between maternal exposure to
environmental toxicants and neurodevelopmental disor-
ders and propose epigenetics as the linking mechanism.

2. Epigenetics and Neurodevelopmental
Disorders

Epigenetics is defined as “a stably heritable phenotype result-
ing from changes in a chromosome without alterations in
the DNA sequence” [28]. Thus, epigenetic mechanisms rely
on DNA methylation, histone modification, histone varia-
tion, or noncoding RNAs, which change the chromatin
structure and consequently control gene expression. Many
conditions that fall under the term “neurodevelopmental
disorders” are related to epigenetic abnormalities, namely
the Prader-Willi syndrome, Angelman syndrome, ICF
syndrome, and Rett syndrome.

Genomic imprinting is the concept underlying epige-
netics, introduced 20 years ago. Specifically, in genomic
imprinting, only one allele of a gene is expressed, depending
on its parental origin. To date, more than 70 imprinted genes
are identified in the human genome, together with a number
of related diseases named “imprinting disorders” [29]. The
Prader-Willi syndrome and Angelman syndrome are two
illustrative examples for imprinting disorders originating in
the 15q11-13 imprinted region. In this region, normally,
the paternally derived chromosome expresses several genes
such as small nuclear ribonucleoprotein polypeptide N
(SNRPN), SNRPN upstream reading frame (SNURF), small
nucleolar RNA, C/D box 116 cluster (SNORD116), and

melanoma-associated antigen (MAGE) family L2 (MAGEL2),
while ubiquitin protein ligase E3A (UBE3A) is expressed
from the maternally derived chromosome specifically in
neurons. The Prader-Willi syndrome, a neurodevelopmental
disorder characterized by a short stature, muscle tension
reduction, overeating and subsequent obesity, diabetes, and
personality persistence, is caused by mutation or deletion
of the paternally derived chromosome or by a maternal uni-
parental disomy (both chromosomes 15 were derived from
the mother) [30]. The Angelman syndrome, characterized
by intractable epilepsy and severe developmental delay, is
caused by a genomic imprinting abnormality of the 15q11-
q13 region, similar to the Prader-Willi syndrome, but its
pattern is reversed. The causative gene is the UBE3A gene,
expressed on the maternal chromosome but not the paternal
chromosome in neurons [31]. In addition to the loss of gene
expression in the 15q11-13 region, which results in the
Prader-Willi syndrome or Angelman syndrome according
to the parental origin of the chromosome, overexpression
of genes in this locus results in a different disorder: the
15q11-13 duplication syndrome (Dup15q). The duplication
is almost always of maternal origin and the disease is charac-
terized by hypotonia, speech disorder, behavior disorders,
abnormal EEG, and developmental delay with other associ-
ated symptoms such as autism and seizures [32]. Very
recently, a large whole-genome bisulfite sequencing (WGBS)
analysis on human brain and neuronal cell culture model of
Dup15q revealed a global decrease in DNA methylation in
both CpG regions and long intersperse element 1 (LINE-1)
repetitive elements [33]. Furthermore, when compared to
control samples, gene ontology analyses in the same study
found that the differentially methylated regions are enriched
for genes related to cell adhesion, brain, calcium channel,
and membrane, many of which are known to have functions
at neuronal synapses and are related to ASD [33]. More
importantly, the authors also observed overlapped changes
in DNA methylation and gene expression between neuronal
cells exposed to polychlorinated biphenyl (PCB 95), an envi-
ronmental toxicant, Dup15 model cells, and Dup15q model
cells exposed to PCB 95, demonstrating an effect of environ-
mental toxicant on neuronal genes via epigenetic mechanism,
which will be discussed later in this review. Together with pre-
vious studies performed on postmortem human brain tissue,
the results have suggested that epigenetic alterations, together
with genetic dosage, contributed to the changes in gene
expression in the pathology of the disease [34, 35]. The fact
that loss or enhanced function of these imprinted genes leads
to developmental disorders implies the importance of proper
gene expression in neurodevelopment.

Another congenital disease caused by epigenetic abnor-
malities that impact development is ICF syndrome. The
name ICF stems from the main symptoms of the disease:
immunodeficiency, instability of the chromosome resulted
from centromere instability, and facial anomalies. In this
disease, the heterochromatin region near the centromere
of chromosomes 1, 9, and 16, which is normally strongly
methylated, is hypomethylated by DNA methyltransferase
(DNMT3B) deficiency, resulting in chromosome instability
[36]. DNMT3B, together with DNMT3A, are considered
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de novo DNA methyltransferase, acting to add methyl group
to the cytosine residues in DNA. In vitro knockout or knock-
down of DMNT3B was resulted in hypomethylation of satel-
lite 2 repeats, leading to centromeric instabilities [37, 38].
Using induced pluripotent stem cells (iPSCs) and WGBS, a
previous study revealed the alteration of gene expression
and hypomethylation of promoters and enhancers in genes
related to ICF syndrome phenotypes [39]. Another study
revealed that changes in gene expression during neuronal dif-
ferentiation were similar between DNMT3B knockdown
human embryonic stem cells (hESCs) and ICF patient-
derived iPSCs and that DNMT3B knockdown caused hypo-
methylation at pericentromeric regions and X chromosome
but not at promoter regions of divergent genes as analyzed
byWGBS [38]. Of late, there are studies that signified the role
of DNMT3B in the maintenance of intragenic CpG methyla-
tion to ensure proper mRNA transcription and regulate alter-
nating splicing [40, 41]. Moreover, a disease caused by a
genetic mutation of DNMT3A was reported, characterized
by overgrowth and developmental disorders [42]. These find-
ings suggest that DNA methylation enzymes have important
functions in the development of the immune system and the
cranial nervous system.

Rett syndrome (RTT), a disease characterized by repeated
hand movements, epileptic seizures, staggering gait, and
autistic tendencies, is a representative case of a developmen-
tal disorder caused by epigenetic abnormalities. Most of the
cases of typical RTT are caused by a mutation in methyl
CpG-binding protein 2 (MeCP2) located on Xq28 [43]. Thus,
RTT is a dominant inherited X-linked disease that affects
1 : 10,000 female live births, while affected males become
embryonic lethal. In the brain, MeCP2 is highly expressed
and increases over time during development. It is not only
abundant in neurons but also expressed in astrocyte and glia
cells, which is suggested to play an important role in the
pathology of RTT. MeCP2 was first described as binding to
methylated cytosine, recruiting other proteins such as
nuclear receptor corepressor (NCOR)-SMRT (a silencing
mediator of retinoic acid and thyroid hormone receptors)
and corepressor complex Sin3A/HDACs to form a repressor
complex and suppress gene expression. In addition to its
repressing function, our knowledge of MeCP2 has increased
overtime, and it is now known that MeCP2 can interact with
coactivator cyclic AMP-responsive element-binding protein
1 (CREB1) to activate the expression of its target genes, alter-
nate splicing sites via an interaction with YB1, a Y-box tran-
scription factor, or regulate microRNA (miRNA) processing
by interacting with DGCR8 to prevent the formation of the
Drosha-DGCR8 complex [44]. Specifically, among various
brain cells, it regulates the expression of a number of genes
involved in synaptic functions or brain development—brain-
derived neurotrophic factor (BDNF), distal-less homeobox 5
(DLX5), inhibitor of differentiation (ID), corticotropin-
releasing hormone (CRH), insulin-like growth factor bind-
ing protein 3 (IGFBP3), cyclin-dependent kinase like 1
(CDKL1), protocadherin beta 1 (PCDHB1), and protocadherin
7 (PCDH7) [45]—and regulates glutamatergic synapse forma-
tion in early postnatal development [46]. In recent years, using
RTT patient-derived iPSCs, several studies have revealed the

defects of MeCP2 mutant neurons as seen in mouse mod-
els—smaller soma size, reduction of the number of synapse
and spine, altered calcium signaling, and electrophysiological
defects [47, 48]—or proposed a role of astrocytes in RTT
[49, 50]. On the other hand, not only the loss of normal
MeCP2 function but also a gain inMeCP2 function was found
to cause neurodevelopmental disorders [51, 52]. MeCP2
transgene mouse models recapitulated the phenotype of the
MeCP2 duplication syndrome, showing an increase in anxiety
and deficits in coordination, learning, and memory [53].

Taken together, epigenetic mechanisms play an impor-
tant role in brain development, especially the methylation
of DNA. Any disturbances in the establishment, mainte-
nance, or reading of DNA methylation are associated with
neurodevelopmental disorders. As mentioned above, mater-
nal stress, malnutrition, and exposure to environmental tox-
icants could alter the normal development and are related to
neurodevelopmental disorders. Moreover, it has been long
thought that epigenetics is one of the underlying mechanisms
of the DOHaD hypothesis [54], and epigenetic patterns are
more susceptible to environmental stresses than genome
sequences [55]. There is evidence that expose to various envi-
ronmental factors, such as mental stress and malnutrition
during fetal and neonatal periods which can induce alter-
ations in the epigenomics of the offspring [56–61]. Therefore,
epigenetic mechanisms, particularly DNA methylation, may
be the link between environmental toxicants and neurodeve-
lopmental disorders.

3. Environmental Toxicant Exposure and
Neurodevelopmental Disorders

3.1. Experimental Evidence of Environmental Toxicant Effects
on Neurodevelopment

3.1.1. Maternal Smoking. Maternal smoking during preg-
nancy has been related to many adverse effects in offspring
including decreased birth weight, congenital anomalies,
smaller neonate head circumferences, and sudden infant
death syndrome [62]. The prevalence of woman smoking at
any time during pregnancy differs between countries, rang-
ing from 5% to 19%, and about one fifth of these quit smok-
ing in later stages of the pregnancy [63, 64]. Tobacco smoke
contains thousands of compounds that may have neurotoxic
effects; among those, nicotine is the one most widely investi-
gated. Prenatal exposure to nicotine has been proven to cause
abnormal cognitive and emotional behavior and attention
deficits [65–67]. Studies with the purpose to find out the
mechanism of the relationship between smoking and behav-
ioral problems exist, but there is no agreement. In brief, rat
models treated with nicotine and mimicking a coexisting
intermittent hypoxia state showed that nicotine-induced
hypoxia reduces the expression of cyclin-dependent kinase
5 (Cdk5), an indispensable gene in the central nervous sys-
tem, and plays a critical role in neurodevelopment [68] and
delayed neuronal migration [69]. Another study has shown
that prenatal nicotine exposure only impairs neurogenesis
but not neuronal migration as observed by reducing the
number of glutamatergic neurons in the medial prefrontal
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cortex and decreasing and disrupting cell cycles of neural
progenitor cells in the ventricular and subventricular zones
[70]. Recently, using tobacco smoke extract (TSE) to better
demonstrate the effects of tobacco smoke, studies have
suggested that TSE may have different effects on neurodiffer-
entiation compared to nicotine alone [71]. Using PC12 cells
in a neural differentiation model, a study showed that
TSE exerted higher effect on inhibiting DNA synthesis
and reducing cell proliferation compared to equivalent
concentration of nicotine alone in undifferentiated cells,
while in differentiated cells, TSE promoted the growth of
dopaminergic phenotypes [72].

3.1.2. Plastic-Derived Chemicals: Bisphenol A and Phthalates.
Bisphenol A (BPA) is a chemical predominantly polymerized
or modified and used in the plastic industry; thus, it is used in
a wide range of consumer goods and commodities, especially
in daily used food and beverage containers, dispensers, baby
bottles, microwave cookware [73], or in healthcare-related
products such as medical devices [74] or dental composite
resins [75]. However, incomplete reaction or degradation of
the polymer may release residual monomers of BPA. Human
exposure to BPA is widespread, Centers for Disease Control
and Prevention (CDC) reported BPA found in the urine of
more than 90% of the US population, and more importantly,
the concentration is higher in children (available in https://
www.cdc.gov/exposurereport/). BPA has been proven to dis-
rupt the endocrine system by interacting with estrogen,
androgen, or thyroid hormone receptors [76, 77] and its
effects on the reproductive system have been widely investi-
gated [78]. In addition, perinatal exposure to BPA reduces
synaptogenesis and synaptic proteins, alters the structure of
synapse, affects behavior, and impairs learning-memory in
male mice [79, 80]. Neonatal and perinatal BPA exposure
affects postnatal gene expression and morphology of sexually
dimorphic regions in the rat hypothalamus [81, 82]. In addi-
tion to effects on neurons, in the prefrontal cortex of the rat,
adolescent exposure to BPA decreases the number of microg-
lia in male rats and increases the number of microglia in
female rat in adulthood, but does not affect the number of
neurons or astrocytes, suggesting a long-term sex- and cell
type-dependent effect of BPA [83].

Together with BPA, phthalates, chemicals used in the
plastic industry, are also known to disrupt the endocrine sys-
tem [84]. Based on their molecular weight and chemical
properties, phthalates are classified into 2 subtypes that have
different usage. High molecular weight phthalates including
di-2-ethylhexyl phthalate (DEHP), butylbenzyl phthalate
(BBzP), di(n-octyl) phthalate (DOP), diisononyl phthalate
(DiNP), and diisodecyl phthalate (DiDP) are used in food
containers, flooring, and wall covering and in medical tubing.
Low molecular weight phthalates, dimethyl phthalate
(DMP), diethyl phthalate (DEP), and dibutyl phthalate
(DBP) are used in personal care products [84] or the coating
of some medications [85]. Moreover, an earlier study has
shown that BPA and phthalates may leak from food
containers and enter the human body, as the usage of food
that is not canned or packaged in plastic reduces urine levels
of BPA and phthalates significantly [86]. While BPA and

phthalate exposure is widespread, more importantly, phtha-
lates have been proven to pass to the baby through the pla-
centa and breast milk [87, 88]. An earlier study has claimed
that DEHP added to the diet of mice has negative effects on
behavioral tests of the offspring, although the author dis-
cussed that the results in some tests may not be the conse-
quence of DEHP. Furthermore, the author debated that the
concentration of DEHP in the environment may not be the
cause for adverse effects in humans [89]. It is however known
that DEHP is metabolized into mono-2-ethylhexyl phthalate
(MEHP), and the effects of MEHP may therefore represent
the toxic effects of DEHP. In a differentiation model of
PC12 cells using nerve growth factor (NGF), MEHP expo-
sure for 4 days enhanced neurite outgrowth induced by
NGF [90]. MEHP upregulated choline acetyl transferase
(ChAT) mRNA, a marker for cholinergic neurons, while it
downregulated tyrosine hydroxylase (TH), a marker for
dopaminergic neurons, suggesting that exposure to MEHP
affects neuron differentiation [90]. This result suggests an
effect of phthalates, particularly MEHP, on midbrain dopa-
minergic neurons, which are implicated in ADHD or schizo-
phrenia (reviewed in [91]). In the developing rat brain,
maternal exposure to DEHP decreases the concentration of
essential lipids, particularly free cholesterol and sphingomye-
lin, as well as the mono- and poly-unsaturated fatty acid lipid
composition, which plays an important role in neurodeve-
lopment [92]. In respect to low molecular weight phthalates,
prenatal and postnatal DBP exposure upregulates aromatase,
an enzyme that has an important role in reproduction and
neuroprotection, and downregulates estrogen receptor beta
(ERβ), which in turn reduces the expression of phosphate
CREB and BDNF, two important neuroprotective proteins,
in the rat hippocampus [93]. In line with these results,
recently, in mouse neocortical neuronal cultures, treatment
with DBP has been shown to impair the estrogen receptor
pathway and induce neurotoxicity in a mechanism involved
in the aryl hydrocarbon pathway [94].

3.1.3. Persistent Organic Pollutants (POPs). Persistent organic
pollutants (POPs) have two main characteristics: resistance
to environment degradation and accumulation in human or
animal tissue. POPs are comprised of many different struc-
tures that have different toxicity [95]. Polychlorinated biphe-
nyls (PCBs), a group of 209 related structures of chlorinate
substituents on biphenyl rings, are used for heat resistance;
organochloride pesticides (OCPs), such as hexachloroben-
zene (HCB) or dichlorodiphenyltrichloroethane (DDT), are
examples of POPs, many of them well-known as endocrine
disruptors [96]. Exposure to POPs is widespread through
environmental pollutants, daily used cosmetics, daily used
items, or food. Importantly, POPs can be transferred from
the mother to the child prenatally through the placenta [97]
or postnatally by secreting into breast milk [98]. Therefore,
prenatal and postnatal exposure to POPs may have many
adverse health effects on the immune system and the repro-
ductive system and may be related to other diseases such as
cancer, diabetes, and obesity or to adverse pregnancy out-
comes [98]. Moreover, since it is well-known that thyroid
hormones are essential for neurodevelopment, prenatal and
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postnatal exposure to POPs could lead to neurobehavioral
problems in children [99]. PCBs and OCPs have been sug-
gested to be related to the pathogenesis of many neurodeve-
lopmental and neurodegenerative disorders (reviewed in
[100]). Experiments in rats exposed to PCBs during gestation
and lactation showed increased activity of caspase 3 and
DNA fragmentation, a marker for apoptosis, compared to
control at postnatal day 1 but not at postnatal day 21 [101],
suggesting that PCBs induce apoptosis in the developing
brain. Another study in mice showed that low doses of
non-dioxin-like polychlorinated biphenyls (NDL PCBs)
given to the mother during the lactation period altered
behavioral performances recorded during the mice’s devel-
opment [102]. Moreover, neurobehavioral toxicity of NDL
PCBs increased from postnatal day 9 to postnatal day 28,
but disappeared with increasing age, except for its effect on
anxiety-related behavior, which was sex-dependent and per-
manent [102]. Newer chemicals that belong to POPs such as
perfluoroalkyl acid (PFAA), perfluorooctanoic acid (PFOA),
or perfluorooctane sulfonate (PFOS) were also shown to have
neurotoxicity in mice or neuronal cell cultures by inducing
apoptosis, inducing oxidative stress, and inhibiting neuronal
differentiation [103–105], all of which may contribute to the
changes in spontaneous behavior, habituation, and learning
and memory observed in mice [106]. Exposure to PFOS
and PFOA has also been shown to repress the expression of
glutamine synthase-related genes and increase the extracellu-
lar level of glutamate in mouse primary astrocytes [105].

3.1.4. Heavy Metals. Methyl mercury (MeHg) and lead are
two representative heavy metals that have negative effects
on neurodevelopment. Humans are widely exposed to MeHg
through the consumption of contaminated seafood. The neu-
rotoxicity of MeHg has been recognized since the incidence
of Minamata bay, coining the term “Minamata disease.”
The Minamata disease has occurred in humans who ingested
fish and shellfish contaminated by MeHg discharged in waste
water from a chemical plant. Children of women who had no
symptoms of MeHg poisoning also showed abnormalities or
neurodevelopmental problems [107]. Animal models have
shown that gestational and lactational exposure to MeHg
can cause significant deficits in behavioral tests and learning
disabilities [108, 109], although a recent study showed that
exposure to low doses of MeHg only affects the preadolescent
but not the young adult period [110]. Experimental studies in
animal or cell lines suggested that MeHg induced neurotox-
icity by inducing oxidative stress, altering the kynurenine
pathway and NMDA receptors, and impairing cytoskeleton
instabilities [111–114]. Exposure to lead is also widespread
as the sources may be air or water, and even a low level expo-
sure to lead may cause negative effects in humans [115].
Prenatal and lactational lead exposure has been proven to
affect learning and memory in mice by inducing pathological
changes in the ultrastructure of synapses, downregulating
synaptic genes, insulin-degrading enzyme (IDE) and
insulin-like growth factor 2 (IGF2), and increasing beta amy-
loid 40 (Aβ40) and tumor necrosis factor- (TNF-) α [116–
119]. Together with studies in mice, a study on human neu-
rons revealed that exposure to lead increases the expression

of serine/threonine protein phosphatases, which are associ-
ated with learning and memory [120].

Taken together, experimental studies indicate negative
effects of environmental toxicants on neuronal cells and/or
neurodevelopment; the mechanisms are however not fully
understood, and certain findings are still controversial.
Although some results are not directly related to any disease,
the findings presented here support the hypothesis of
DOHaD on neurodevelopmental disorders. For a complete
evaluation of the DOHaD hypothesis in respect to neurode-
velopmental disorders, cohort studies in human populations
also have to be considered. Due to the large number of epide-
miological studies on environmental toxicants, we only focus
on several recent birth cohort studies that focused on those
environmental toxicants described above.

3.2. Epidemiological Evidence for the Relationship between
Environmental Toxicants and Neurodevelopmental Disorders

3.2.1. Maternal Smoking. Several earlier reviews of studies
from 1975 showed a relationship between tobacco smoke
exposure and poorer academic achievement as well as an
increased risk of mental retardation and neuropsychological
and behavior problems; there were however still inconsis-
tencies [121, 122]. Many studies observed a higher risk for
ASD or ADHD symptoms in subjects prenatally exposed to
environmental tobacco smoke (ETS) and have been reviewed
elsewhere [63, 123–128]. Recently, several cohort studies in
different countries supported the link between ADHD and
prenatal tobacco exposure [129–131]. A mother-child cohort
study of 1113 families in France that followed the child up to
5 years of age showed that maternal smoking predicted high
symptoms of hyperactivity or inattention [129]. A Danish
cohort study with a 7-year follow-up reported that not only
maternal smoking but also the use of nicotine replacement
products by the mother increased the risk for ADHD [131].
A Finish cohort study with more than 50,000 participants
showed that, after adjusting for confounding factors, mater-
nal smoking, no matter whether only in the first trimester
or continuing after the first trimester, is associated with an
increased risk for ADHD [130]. In another study that
followed the child up to 15 years of age showed that maternal
smoking of more than 10 cigarettes/day increased the risk for
Tourette syndrome, Tourette syndrome comorbid with
ADHD, and chronic tic disorders [132]. On the other hand,
a case-cohort study of 633,989 children from parts of 11 US
states and a recent meta-analysis of 6 cohort and 9 case-
control studies found no relationship between ASD and
ETS [133, 134].

3.2.2. BPA and Phthalates. The relationship between plastic-
derived chemicals and neurodevelopmental disorders is
more complicated because of the sex-dependence of the lat-
ter. In a study of 244 mothers and their 3-year-old children,
higher gestational BPA concentrations were associated with
higher anxiety, hyperactivity, and depression scale scores,
especially in girls [135]. However, in several later studies,
prenatal BPA exposure was reported to have greater effects
on boys [136] or have opposite effects on boys and girls

5International Journal of Genomics



[137–139]. Briefly summarized, higher BPA concentrations
in the mother’s urine samples during pregnancy were associ-
ated with higher scores on emotionally reactive, aggressive
behavior and inattention symptoms that related to ADHD
or conduct disorders. Prenatal phthalate exposure was also
shown to be related to behavioral difficulties in children. In
a Polish cohort study, prenatal phthalate exposure was
inversely correlated with child psychomotor development
such as cognitive, language, and motor abilities [140]. In line
with this study, a Taiwanese cohort study showed that higher
concentrations of DBP and DEHP in maternal urine samples
were associated with externalizing disorders in children
[141]. In contrast, in a Japanese cohort study, prenatal DEHP
exposure did not lead to changes in infant thyroid hormone
levels and had no adverse effects on neurodevelopment at
early life stage [142].

3.2.3. POPs. The relationship between POPs and neurodeve-
lopmental disorders is also not clear. Several studies in
Danish, Greek, and Faroese populations suggested no rela-
tionship between POPs and child neurobehavioral problems
but a potential link with a reduction in cognitive abilities
[143–145]. A German cohort study of polychlorinated
dibenzo-p-dioxins and furans (PCDD/Fs) and PCB exposure
suggested an effect of PCDD/Fs and PCB on attention perfor-
mance in healthy children [146]. Another cohort study in a
Japanese population showed that prenatal PFOA exposure
had negative effects on the neurodevelopment of female
infants at 6 months of age as assessed by Mental and Devel-
opmental Indices [147]. However, this study found no asso-
ciation between PFOA and neurodevelopment in infants at
18 months of age or PFOS at both 6 and 18 months of age,
suggesting that the effects of POPs may be transient during
early infancy.

3.2.4. Heavy Metals. The negative effects of heavy metal on
neurodevelopment are well described. A recent meta-
analysis showed that increase of arsenic and manganese
concentrations was associated with lower IQ, and prenatal
exposure to manganese increased the risk of ADHD [148].
Other studies found that postnatal exposure to lead, which
is measured by blood lead concentration, is associated with
an increased risk for neurodevelopmental disorders and a
decrease in cognitive scores [149, 150].

Overall, there is an abundance of cohort studies support-
ing the idea that exposure to environmental toxicants during
pregnancy could result in neurodevelopmental disorders in
children (summarized in Table 1). The molecular mechanism
underlying the relationship between environment and neuro-
developmental disorders is however not clear. There is evi-
dence suggesting that epigenetic mechanisms may constitute
the link between environmental toxicants and disorders.

4. Epigenetic Alterations by Environmental
Toxicants

4.1. Maternal Smoking. DNA methylation is the most well-
known epigenetic mechanism involved in neurodevelopment
[153]; thus, many studies on neurodevelopment focus on

alterations of DNA methylation patterns (summarized in
Table 2). DNA methylation is the process of adding a methyl
group to the 5′position of cytosine. This process mainly hap-
pens in a CG context, especially at regions rich in CG (CpG
island), and catalyzed by DNA methyltransferase (DNMT)
enzymes. DNMT3A and DNMT3B are known as de novo
DNMTs that, in combination with DNMT3L, establish the
methylation status. During cell division, DNMT1 and its
associated proteins maintain the pattern of methylation
(recently reviewed in [154]).

Brain-derived neurotrophic factor (BDNF) gene plays a
key role in neurodevelopment, neurogenesis, and synaptic
plasticity. BDNF has been linked to a number of neuro-
logic disorders including neurodevelopmental disorders
[155–157] and is now a gene of interest to investigate the
neurological effects of environmental toxicants. Prenatal
exposure to maternal cigarette smoking has been reported
to induce a long-term effect on adolescent behavior possibly
by inducing hypermethylation at BDNF promoter VI and 5′
untranslated region (UTR) [158].

Moreover, maternal smoking has been shown to alter
the expression of genes related to neuropeptide signaling
and signal transduction, as well as development, particu-
larly tachykinin 3 (TAC3), left-right determination factor
2 (LEFTY2), heparin-binding EGF-like growth factor
(HBEGF), mitochondrial fission factor (MFF), and fibulin1
(FBLN1), via mechanisms possibly related to genome-wide
changes in DNA methylation [159]. A recent study
showed that maternal smoking during pregnancy induced
hypomethylation at CpG3 and CpG4 in total 13 CpG of
the placental NR3C1 gene, which has shown associations
with newborn behavior [160]. Prenatal smoke exposure is
known to result in a persistent effect on DNA methylation
levels in adult peripheral blood granulocytes, as measured
by repetitive element satellite 2 (Sat2) [161]. Epigenome
Wide Association Studies (EWAS) provide a powerful tool
for the identification of changes in epigenetics, specifically,
in DNA methylation, induced by environmental toxicants
[162]. One of the largest EWAS, screening 1062 newborn
cord blood samples using Infinium Human Methylation
450 (HM450) platform, has identified hypomethylation of
the aryl hydrocarbon receptor repressor (AHRR) and growth
factor independent 1 transcription repressor (GFI1) and
hypermethylation of cytochrome P450 1A1 (CYP1A1) and
myosin IG (MYO1G) that were related to maternal smoking
[163]. Later, another study focused on changes in the DNA
methylation of the AHRR gene and found that the hypome-
thylation caused by maternal smoking was different between
cord blood mononuclear cells, buccal epithelia, and placenta
and that AHRR gene hypomethylation was maintained at 18
months [164]. Interestingly, the authors also reported that
DNA methylation levels of monozygotic twins were more
similar compared to dizygotic twins, suggesting that genetic
variance has influences on the methylation level [164].
Another epigenetic mechanism that has been investigated
in respect to neurodevelopment involves microRNA, an
important regulator of gene expression that was found to
have important roles in normal neuronal function and
homeostasis [165]. Maccani et al. demonstrated that
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maternal cigarette smoking downregulated miR-16, miR-
21, and miR-146a in the placenta, as confirmed in placen-
tal cell lines 3A, TCL-1, and HTR8 [166]. Later, the same
group showed that high levels of placental miR-146a are
associated with increased quality of movement scores;
interestingly, high levels of placental miR-16 reduced
attention scores in newborns [167]. In addition, smoking,
together with other environmental toxicants such as BPA
mixture, several POPs, and arsenic, were reported to alter
transcription factor binding at promoter regions of miR-
NAs [168]. The study moreover pointed out that actin-
dependent regulator of chromatin, subfamily a, member
3 (SMARCA3), and Forkhead Box P1 activated in embry-
onic stem cells (FOXP1_ES) were commonly enriched at
promoter regions of miRNAs, suggesting that though
different in responsive miRNA, environmental toxicants
may have effect on similar transcription factor [168].

4.2. BPA and Phthalates. Most of the knowledge of DNA
methylation alteration of BPA and phthalates comes from
mouse models. A study on developing fetus mouse brains
using spot DNA and methylation-sensitive quantitative
PCR techniques showed that exposure to BPA was able to
cause both hyper- and hypomethylation [169]. Intrauterine
exposure to BPA was also reported to induce hypermethyla-
tion at BDNF promoter IV in a sex-specific manner [170].
Prenatal BPA exposure was reported to alter the level of
DNMTs in mouse brain and this alteration may be sex-,
region-, and dose-dependent. Briefly, gestational BPA expo-
sure decreased DNMT1 but prevented female-specific reduc-
tion of DNMT3a in female mouse brains, while leaving the
male mouse brain unaffected [171]. In line with this study,
another study found that prenatal exposure to BPA
decreased DNMT1 and DNMT3a in both the male and
female mice prefrontal cortex and hypothalamus, but the
alteration happened at different concentrations and at differ-
ent trends between both sexes [172]. Furthermore, the
authors also observed that changes in ERα and DNMTs were
related to the changes in DNA methylation of the ERα (Esr1)
gene [172], which was also observed in human breast cancer
cells after DBP treatment [173]. A recent study reported for
the first time that perinatal exposure to BPA induced hypo-
methylation at LINE-1 repetitive element in the human liver
[174]. Given that LINE-1 is suggested to be a risk factor for
schizophrenia or autism [175, 176], this finding suggests a
link between BPA and other neurodevelopmental disorders
via alteration of DNAmethylation. Placental cell lines treated
with BPA show an increase in miR-146a expression com-
pared to untreated cell [177]. High concentration of phtha-
lates in urine was found to be associated with a decrease in
the expression of miR-185 in placenta [178]. In rat primary
neuron cultures, exposure to BPA increased expression of
Mecp2 and MECP2 binding when reduced histone H3 lysine
9 acetylation at potassium chloride cotransporter 2 (Kcc2,
Slc12a5) promoter, subsequently, repressed KCC2 expression
[179]. It is well known that KCC2 is upregulated during
neurodevelopmental period and has important roles in
GABAergic function, neuronal plasticity, and formation of
dendritic spine (reviewed in [180]).

4.3. POPs. Alterations of DNA methylation due to POPs in
humans have been investigated in several studies, although
those studies did not directly link to any disorders. The first
study on changes in DNA methylation by POPs in a human
population was performed using blood DNA of 70 Green-
landic Inuit and found a correlation between increased
plasma concentrations of POPs and global DNA hypomethy-
lation [181]. Kim et al. investigated changes in DNA methyl-
ation in Alu sequences in healthy Koreans and observed a
similar correlation between a decrease in Alu DNA methyla-
tion and increased concentrations of POPs [182]. In accor-
dance with these results, a later study by Itoh et al. showed
that higher serum concentrations of POPs decreased global
DNA methylation in a Japanese population [183]. In con-
trast, a study by Lind et al. on a population of 70-year-old
Swedish found a relationship between high serum levels of
POPs and global DNA hypermethylation [184]. Only one
study examined PCB levels in human postmortem brains of
patients with neurodevelopmental disorders and found that
PCBs 95 was detected in 3/6 Prader-Willi syndrome post-
mortem brains and 5/6 postmortem brains with Dup15q.
Moreover, this study reported hypomethylation of LINE-1
repetitive elements in postmortem brains of patients with
Dup15q compared to control or ASD patients [185]. In con-
sonance with this study, recent whole genome bisulfite study
revealed an exceedance of hypomethylated genes toward
hypermethylated genes in SH-SY5Y cells after long-term
exposure to PCB 95 [33]. Moreover, of the 255 genes hypo-
methylated with long-term PCB 95 exposure, 209 and 201
genes are in common with SH15M, a cell model for Dup15q,
and SH15M cell exposed to PCB 95, respectively. Further-
more, histone variant H2A.Z, which is also related to epi-
genetic mechanisms, was found to be enriched in the gene
body and alleged to the transcriptional instability of those
hypomethylated genes [33]. Noticeably, transcriptional
instability induced by PCB 95 exposure was similar to
the observation in Dup15q postmortem brain samples
[34]. Altogether, these studies suggest epigenetic effects of
POPs, particularly PCBs, in the pathology of neurodeve-
lopmental disorders.

In rat primary hippocampal neurons, treatment with
PCB 95 upregulated miR-132 and increased spine density
[186]. Although the effect of PCB 95 seems to be positive, it
is important to notice that increased spine density is also
observed in patients with ASD [187]. Moreover, miR-132
is known to downregulate MeCP2, a key gene in neurode-
velopment [188]; thus, the finding that PCB 95 upregulates
miR-132 suggests a possible epigenetic mechanism behind
PCBs neurotoxicity.

4.4. Heavy Metals. Exposure to heavy metals, particularly
lead and mercury, is also known to alter DNA methylation.
A study on methylation patterns in the promoter of p16, a
gene related to neurodegeneration disorders, of 10 unex-
posed and 9 exposed individuals found that when unexposed
group had an unmethylated pattern, the promoter of the p16
gene was partially methylated and fully methylated in the
low-exposed and high-exposed groups, respectively [189]. A
study reported for the first time that maternal exposure to
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lead was associated with alterations of DNA methylation in
the umbilical cord blood [190]. In this study, the authors
assessed maternal lead exposure using bone lead measure-
ments and found a dose-response relationship between
maternal patella lead concentrations and hypomethylation
of LINE-1 repetitive elements and maternal tibia lead con-
centrations with hypomethylation of Alu sequence [190].
Regarding neurodevelopment, a study using mouse embry-
onic cortical neural stem cells found that MeHg treatment
decreased mRNA levels of Dmnt3b but not Dnmt1 and
Dnmt3a and induced global DNA hypomethylation [191].
Interestingly, the changes in gene expression and DNA
methylation patterns were also observed in daughter cells,
even after the treatment with MeHg was stopped, suggesting
an inherited possibility of epigenetic modifications [191]. A
recent study using human embryonic stem cells, neural pro-
genitor stem cells, and neurons showed that treatment with
lead affected the neural differentiation process; global DNA
methylation changes were observed including both hyperme-
thylation and hypomethylation [192].

5. Epigenetic Inheritance

A critical question arising from the research presented here is
whether epigenetic alterations induced by environmental
toxicants propagate to later generations. Environmental fac-
tors affect not only the person who was exposed but also
the next and further generations. This phenomenon in which
the acquired phenotype is transmitted is called “transgenera-
tional inheritance.” Classically, the constitutional change in
the offspring is considered to be due to gene mutation. How-
ever, recent epigenetic studies suggest and support the idea
that epigenetic changes could be inherited in the offspring,
termed “transgenerational epigenetic inheritance” [193]. In
fact, epigenetic modifications and mutations caused by envi-
ronmental toxicants and nutritional disorders are main-
tained without being eliminated during the gametogenesis
process and development after fertilization [194].

There are only a few, if any, studies that focus on the
transgenerational epigenetic inheritance of environmental
toxicant-induced alterations, especially, related to neurode-
velopmental disorders. Although not spotlight environmen-
tal toxicants, animal models show that epigenetic effects
caused by mental stress on parents can be transmitted to off-
spring. In addition, alterations of the epigenome in the neo-
natal brain induced by postnatal mental stress also occur in
the spermatozoa. Furthermore, epigenomic alterations in
brain and behavioral abnormalities were identified not only
in children but also in grandchildren [195, 196]. A compre-
hensive review by Babenko et al. on animal experiments
concluded that alterations of miRNA expression and DNA
methylation in the placenta and the brain due to stress,
which are linked to greater risks of schizophrenia, ADHD,
autism, and anxiety- or depression-related disorders, are
transmitted to later generations [196]. Moreover, the trans-
generational epigenetic inheritance is not limited to mental
stress or neurodevelopment disorders; exposure to environ-
mental toxicants, which act as endocrine disruptors, also
changes DNA methylation in spermatozoa and transmits

these changes to the next generation [197–200]. A study by
Manikkam et al. investigated the effect of plastics (BPA,
DEHP, and DBP mixture), dioxin, pesticides, and hydrocar-
bons on reproductive diseases and showed that phenotypes
and changes in the differential methylation regions are
remained in the F3 generation [199]. A further study on
plastic mixtures by the same group revealed that the inci-
dence of obesity and reproductive disorders, but not kidney
and prostate diseases, was increased in the F3 generation and
that changes in the differential methylation regions associ-
ated with obesity-related genes (namely, Tnfrsf12a, Esrra,
Fgf19, Wnt10b, and Gdnf) were observed in the sperm of
the F3 generation [200]. This observation supports the idea
of transgenerational epigenetic inheritance; it suggests how-
ever that only some diseases that have the underlying epi-
mutation can be inherited. In another study, Marczylo and
colleagues found that smoking induced changes in miRNA
expression in the spermatozoa; importantly, many of those
miRNAs have HDACs as the predicted target genes [201].
More recently, although not studied in humans, BPA
exposure has been shown to downregulate ten-eleven
translocation (Tet) in the testes of Gobiocypris rarus
[202]. Given that the TET protein family plays a critical
role in regulating DNA methylation and in development
[203], the downregulation of TETs due to BPA exposure
may relate to methylome maintenance, and further studies
need to look at the changes in genes that have roles in
establishing DNA methylation.

However, the epigenetic inheritance theory should be
interpreted with some caution. One possible explanation
for epigenetic inheritance is that environmental factors can
affect not only the pregnant mother (F0) who has been
exposed but also her fetus (child—F1) and even the primor-
dial germ cells (grandchild—F2) in the fetus, so that it is
not the inheritance but the changes in the grandchild that
are under the direct effect of grandparent exposure. Thus,
in order to demonstrate true epigenetic inheritance, it is nec-
essary to determine whether the influence will remain until
the next generation (F3 or more) of the grandchild [204].
In view of our recent knowledge about epigenetic mecha-
nisms, there is not enough evidence for supporting a conclu-
sion on epigenetic inheritance—which is different from the
inheritance of changes in DNA sequences, and is therefore
by some authors referred to as “soft inheritance” [205–207].

6. Conclusion and Perspective

In summary, a number of research have pointed out the
relationship between in utero exposure to environmental
toxicants and an increase in the risk of neurodevelopmental
disorders; several lines of research describe the changes
in epigenetic markers, mainly on DNA methylation.
Although some studies reveal epigenetic changes in
neurodevelopment-related genes [158, 172], it is unclear
whether there is a relationship between the epigenetic alter-
ations induced by environmental toxicants and the related
neurodevelopmental disorders. The DOHaD hypothesis in
particular is mainly based on cohort epidemiological studies
and proposes epigenetics as its underlying mechanism. It is
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therefore important for further cohort studies to focus on
epigenetic alterations of specific genes related to neurodeve-
lopmental disorders, in order to clarify the etiological path-
ways. One study on oxytocin receptor (OXTR) gene
methylation, for example, found that higher OXTR methyla-
tion at birth, which is associated with maternal abnormal
behavior, psychopathology, and substance use, is related to
higher callous-unemotional traits [208].

In addition to epidemiological findings, which will point
out the suspected changes in epigenome, experimental stud-
ies are in need to endorse such changes which are the conse-
quence of environmental toxicants and are the inceptions of
neurodevelopmental disorders. These studies, however, will
have to face difficulties in modeling the neurodevelopment
especially in human, the underlying genome that may have
influence on the susceptibility to environmental toxicants,
as well as the demonstration for epigenetic changes at desired
targets. Animal models have been used in studies for pheno-
types, pathological changes, and the inheritability due to
prenatal and perinatal exposure of environmental toxicants
as reviewed in Section 3.1 of this paper. The existed mouse
model for neurodevelopmental disorders (review in [209])
further supplied indispensable tools for investigating effects
of toxicants on vulnerable genotype. Nevertheless, the differ-
ences in the underlying biology between mouse and human
may deceive the epigenetic alterations after exposure to envi-
ronment toxicants. The recent advances in iPSCs would
provide a powerful material to overcome those barriers.
Moreover, iPSCs have advantages in both directions: they
can be reprogrammed from patients, and thus obtain the
susceptible genotype; reversely, they can be differentiated
into many cell types including neuronal cells and represent
the process of neural development although the differentia-
tion methods are still different between laboratories. A recent
study, for instance, using iPSC found that chlorpyrifos, a
potential POP [210], downregulated of neurogenesis genes
during neural differentiation process [211]. Genome editing
has been in research for decades and used productively; epi-
genome editing, on the other hand, is just in its beginning.
Recent progresses have implicated the utility of CRISPR
(clustered regularly interspaced short palindromic repeats)
and Cas9 (CRISPR-associated protein 9) fused with epige-
netic modifying enzyme such as TET1, DNMT1, or histone
acetyltransferase p300 for epigenome editing [212, 213].
The application of these tools will provide strong evidences
for the relationship between epimutations and diseases.

In this review, we discuss several environmental toxi-
cants: tobacco smoke, plastic-derived BPA and phthalates,
POPs, and heavy metals, which have been under investiga-
tion for decades. Hand in hand with industry develop-
ments, more and more toxicants are identified. Further
studies are thus needed to investigate the relationship
between newly identified environmental toxicants such as
particulate matter (PM2.5) and polycyclic aromatic hydro-
carbons (PAH), which were recently suspected to have a
negative impact on fetal development [214]. In addition
to prenatal environmental toxicant exposure, a recent
review focused on neurodevelopmental disorders, particu-
larly ASD, ADHD, and schizophrenia, and described that

the susceptibility of neurodevelopmental disorders to toxi-
cant exposure is not limited to the gestational period but
extends into the postnatal period [215]. As described
earlier, epigenetic mechanisms, especially DNA methyla-
tion, are assumed to be the mechanism underlying the
effect of toxicants on neurodevelopment. In mammals,
DNA sequences are methylated mostly at CpG sites and
the reprogramming process of CpG methylation occurs
during the prenatal period [216]. However, non-CpG
methylation (CpA, CpC, and CpT) has also been detected,
most abundant in stem cells and the brain of mice and
humans, and found to have functions in regulating gene
expression and possibly a role in genomic imprinting
[217, 218]. Moreover, non-CpG methylation was found
to be more abundant than CpG methylation in neurons
and, interestingly, the percentage of non-CpG methylation
sites increased during the postnatal period from 0 to 5
years [153]. Therefore, the role of non-CpG methylation in
neurodevelopmental disorders is still unclear. As postnatal
exposure to environmental toxicants also increases the risk
of neurodevelopmental disorders, it is reasonable to consider
the changes of DNA methylation at non-CpG sites under the
effect of environmental toxicants. Lastly, as mentioned
above, there is a lack of research focus on the transgenera-
tional epigenetic inheritance of environmental toxicant-
induced neurodevelopmental disorders. Gaining knowledge
in the inheritability of epigenetic alteration by environmental
toxicants will immensely aid in the progress of diagnosis and
prevention of neurodevelopmental disorders.
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