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Abstract
A major challenge for representative longitudinal studies is panel attrition, because some respondents refuse to continue partic-
ipating across all measurement waves. Depending on the nature of this selection process, statistical inferences based on the
observed sample can be biased. Therefore, statistical analyses need to consider a missing-data mechanism. Because eachmissing-
data model hinges on frequently untestable assumptions, sensitivity analyses are indispensable to gauging the robustness of
statistical inferences. This article highlights contemporary approaches for applied researchers to acknowledge missing data in
longitudinal, multilevel modeling and shows how sensitivity analyses can guide their interpretation. Using a representative
sample of N = 13,417 German students, the development of mathematical competence across three years was examined by
contrasting seven missing-data models, including listwise deletion, full-information maximum likelihood estimation, inverse
probability weighting, multiple imputation, selection models, and pattern mixture models. These analyses identified strong
selection effects related to various individual and context factors. Comparative analyses revealed that inverse probability
weighting performed rather poorly in growth curve modeling. Moreover, school-specific effects should be acknowledged in
missing-data models for educational data. Finally, we demonstrated how sensitivity analyses can be used to gauge the robustness
of the identified effects.
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The conditions for successful learning and obstacles to aca-
demic achievement are among the most prevalent topics de-
bated by educational specialists, psychologists, and policy
makers alike. Therefore, several large-scale efforts, such as
the Programme for International Student Assessment (PISA)
or the Programme for the International Assessment of Adult
Competences (PIAAC), have been initiated that allow the
identification of individual and context factors fostering aca-
demic success. Although these cross-sectional studies provid-
ed important insights into, for example, the associations be-
tween motivations and academic achievement (Jansen,
Scherer, & Schroeders, 2015), they are silent on within-
person processes such as the development of cognitive

abilities over time. These research questions require coherent
measurements of competences across distinct educational
stages (e.g., from elementary school to secondary school)
and, thus, longitudinal data across an individual’s school ca-
reer (Weinert et al., 2011). Only rather recently, large-scale
assessments have been enriched by longitudinal components
that allow for these types of analyses (e.g., Prenzel,
Carstensen, Schöps, & Maurischat, 2006; Rammstedt,
Martin, Zabal, Carstensen, & Schupp, 2017). By design, these
studies are representative of their target population (e.g., 15-
year-olds in grade 7 or above in PISA, or adults residing in a
country aged 16 to 65 years in PIAAC) and, thus, strive for
population-based inferences. In these studies, nonresponse
poses a fundamental threat to the representativeness of the
observed samples, especially in voluntary, low-stakes assess-
ments, because certain respondents refuse to participate in a
study as a whole or refuse to provide responses to selected
items of the administered instrument. In longitudinal studies,
this problem is evenworse because repeated participation (i.e.,
at multiple measurement occasions) is expected from each
respondent. However, in repeated measurement designs, it
is not uncommon to observe pronounced dropout rates
over the course of a study because of, for example,
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dwindling motivations, survey fatigue, or time constraints
(see Helmschrott & Martin, 2014). This is particularly trou-
bling if dropout does not occur randomly but is associated
with distinct respondent characteristics. In these situations,
statistical analyses that ignore the selection bias can lead to
invalid inferences regarding effects on the population level
under study. Although several articles have highlighted issues
associated with missing values in longitudinal research (e.g.,
Enders, 2011; Muthén, Asparouhov, Hunter, & Leuchter,
2011), awareness of the problem has, as of yet, not diffused
into mainstream psychological practice. Most longitudinal re-
search still resorts to complete case analyses and implicitly
assumes random dropout processes, without evaluating this
assumption empirically. This article details and contrasts com-
mon statistical methods that can be used for modeling com-
petence development in large-scale assessments when a non-
random dropout mechanism is suspected and the propensity
toward nonresponse over time presumably depends on the
outcome variable under study. Particular emphasis is put on
the clustered data structures that are typical in educational
research, where, for example, students are nested within dif-
ferent schools. Readers are encouraged to replicate our work
and to adapt it for their own research projects using the doc-
umented analysis syntax that is provided as a supplement to
this article.

Drivers of adolescent competence
development: The data example

There is broad consensus that intelligence is a driving force
behind higher mathematical competence, with correlations be-
tween the two constructs frequently exceeding .60 (e.g.,
Deary, Strand, Smith, & Fernandes, 2007; Kuncel, Hezlett,
& Ones, 2004). However, motivational constructs such as
intrinsic motivation or ability self-perceptions show incremen-
tal effects on domain-specific competences, even after con-
trolling for general intelligence (Trautwein et al., 2012).
Although numerous studies identified robust cross-sectional
associations between competence, intelligence, and motiva-
tion, little is known about the relative contribution of cognitive
and noncognitive factors to the growth of domain-specific
competences over time. Only recently did a reanalysis of data
from PISA 2003 show that among 15-year-old students, task-
specific self-efficacy also predicted growth in mathematical
competence within a year (Kriegbaum, Jansen, & Spinath,
2015). Because nonresponse was not addressed in this study,
it is unknown to what degree a potential selection bias might
have affected these results. We approach this issue by present-
ing a conceptual replication of the study and focus on the
question of how to model competence development in the
presence of selection bias. Our analyses make use of a repre-
sentative sample of German students from the National

Educational Panel Study (NEPS; Blossfeld, Roßbach, & von
Maurice, 2011), who were assessed in grade 9 and again three
years later. We examine the relative effects of general intelli-
gence and mathematical self-concept on the growth of math-
ematical competences over three years.

In psychology, changes over time are typically analyzed
using growth curve models (GCM; Curran, Obeidat, &
Losardo, 2010; Liu, Rovine, &Molenaar, 2012). GCMs spec-
ify repeated measures of an outcome (i.e., mathematical com-
petence in our example) as a function of time (and, potentially,
various covariates), thus estimating growth trajectories.
Because they comprise individual-specific random effects, in-
dividual differences in competences can be accounted for.
Formally, a basic GCM can be written as

Y ti ¼ γ0 þ γ1⋅xti þ ui þ eti ð1Þ
where Yti represents the competence score for individual i at
time t (with t = 1 . . . T), xti is the time indicator for individual i
(in our case: 0 for the first and 1 for the second measurement
point), γ0 and γ1 represent the growth parameters reflecting
the intercept and the linear growth process across all individ-
uals, ui captures the random effect for individual i (i.e., the
deviation from the average intercept γ0), and eti is a residual
term. In our application, a common time effect is assumed for
all individuals; therefore, no time-specific random effects are
considered. The model in Eq. 1 can be comparably specified
as a structural equation or a mixed effects model (Chou,
Bentler, & Pentz, 1998; Curran et al., 2010; McCallum,
Kim, Malarkey, & Kiecolt-Glaser, 1997). For sake of simplic-
ity and without loss of generality, we will rely on mixed-effect
models with manifest time variables in this article. A compli-
cation arises because in educational assessments such as the
NEPS students are typically not randomly sampled. Rather,
the sampling units are school classes or entire schools (see
Steinhauer et al., 2015). Therefore, the residuals eti are unlike-
ly to be independent for different students, and thus violate a
basic assumption of GCM (Singer & Willett, 2003). To ad-
dress this problem, the GCM in Eq. 1 can be extended by an
additional random effect vs that captures school-specific vari-
ations (see Eq. 2).

Y tis ¼ γ0 þ γ1⋅xtis þ ui þ vs þ etis ð2Þ

The random effects ui and vs, as well as the model residual
etis, are assumed to follow a normal distribution with zero
mean. Moreover, the latter variable is uncorrelated to the
former ones. The model in Eq. 2 can easily be extended to
include additional covariates, predicting the change in com-
petence over time as well as interactions with time that rep-
resent moderating influences on the studied change trajectory.
In our analyses, we focused on the effects of reasoning
(REAS) as an indicator of general intelligence and mathemat-
ical self-concept (SC) on competence development in
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mathematics (MATH) over time (TIME). Thus, the formal
representation in Eq. 3 gives the analysis model pertaining
to our research question.

MATHtis ¼ γ0 þ γ1⋅TIMEtis þ γ2⋅REASis þ γ3⋅SCis

þ γ4⋅TIMEtis⋅REASis þ γ5⋅TIMEtis⋅SCis

þ ui þ vs þ etis

ð3Þ

This model is estimated using data of the NEPS (Blossfeld
et al., 2011) that suffers from panel attrition and wave nonre-
sponse (Steinhauer & Zinn, 2016). Particularly, competence
measurements exhibit increasing missing rates in progressive
assessment waves.

Missing-data mechanisms

Generally, three kinds of nonresponse mechanisms are distin-
guished (Goldberger, 1981; Rubin, 1976): missing completely
at random (MCAR), or random selection; missing at random
(MAR), or nonrandom explicit selection; and missing not at
random (MNAR), or nonrandom incidental selection. In the first
case (MCAR), nonresponse occurs randomly and is not associ-
ated with (observed or unobserved) respondent characteristics or
context factors. In the second case (MAR), the propensity to-
ward nonresponse can be fully explained by the variables ob-
served from the studied population. An example is the smaller
propensity of working people to participate in a telephone inter-
view conducted during the workday. This is in contrast to
MNAR, where the probability of a missing value in a variable
depends either on the measured variable itself or on some other
unobserved factor correlated with it. For instance, high earners
are less likely to divulge their income and to participate in finan-
cial surveys. In our data example, MAR processes might result
for the second measurement of mathematical competence, be-
cause low-ability students with inferior test performance at the
first assessment are likely to have a higher propensity to drop out
of the study. At the same time, various unobserved variables,
such as interest in the study domain or having enough spare time
(cf. Helmschrott & Martin, 2014), can be driving forces for
survey participation and, thus, contribute to MNAR processes.
It is important to note that the distinction between MAR and
MNAR is not exclusively a characteristic of the data, but also
depends on the statistical analyses (see Graham, 2009). Assume
that the initial competence levels are the cause for the
missingness of mathematical competence at the second wave
(as described above). If the observed competence scores from
Wave 1 (or a time effect, as in Eq. 3) were included in the
statistical analyses, then mathematical competence in Wave 2
would be conditioned on the previous competence estimates;
thus, the model would be MAR. However, if the competence
scores from Wave 1 were excluded from the analyses, then the

missingness problem would becomeMNAR, because the cause
of missingness would not be included in the statistical model.

If a selection pattern is caused by an MCAR process, the
dropout process can be ignored in the statistical modeling
approach without producing biased results; thus, complete
case analyses do not bias statistical tests. In contrast, MAR
and MNAR processes must be specifically addressed in the
statistical analyses to avoid invalid inferences. Ignoring the
nonresponse mechanism (as is the case with listwise deletion)
would produce misleading (if not erroneous) results. For ex-
ample, if students with lower interest in the tested domain (i.e.,
mathematics) have weaker growth rates and, at the same time,
exhibit a higher propensity to drop out of the study, ignoring
this pattern would yield an overestimation of competence
growth. Similar, if students with a high workload due to de-
manding vocational training are less likely to participate but,
at the same time, show stronger growth rates, a model not
accounting for this process would underestimate competence
growth over time. To emphasize the consequences of ignoring
the dropout mechanism, consider the artificial example in
Fig. 1: For a simulated sample of 10,000 participants, the true
correlation between an outcome Y and a predictor X is 0 (left
panel). Assume that nonrandom dropout leads to a nonre-
sponse rate of 20% (in empirical studies, these sometimes
even approach 50%; Chatfield, Brayne, & Matthews, 2005)
and that both variables are correlated at .50 with the response
probability. Then, the observed sample would exhibit a corre-
lation between Y and X of r = – .12. In the case of a negative
correlation between the outcome and the response probability,
the observed correlation in the sample would be r = .12. Thus,
depending on the selection mechanism, either a positive or a
negative correlation would arise, despite the two variables
being uncorrelated in the full sample. This example demon-
strates the adverse effects of selection bias on observed sample
statistics. For MAR, several established methods exist that
have been shown to produce unbiased parameter estimates
and standard errors of population effects. Examples are mul-
tiple imputation (Rubin, 1987; Van Buuren, 2011, 2012),
likelihood-based approaches such as full-information maxi-
mum likelihood (Allison, 2001, 2003; Enders, 2010; Enders
& Bandalos, 2001), and inverse probability weighting (Kalton
& Flores-Cervantes, 2003; Valliant, Dever, & Kreuter, 2013).
However, the situation is more complicated if the response
probability depends on the outcome Y itself or on some unob-
served variables. In both cases, the selection process is non-
random (MNAR).

Missing-data models for MNAR

Generally, two classes of methods exist that can be used under
MNAR (Molenberghs & Kenward, 2007; Rubin, 1987). The
first class uses external information for the variables with
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missing values, such as findings from previous studies, expert
knowledge, or information recorded by national agencies
(e.g., official statistics), to compensate for distortions in the
model likelihood. The second class explicitly models the
missing-data mechanism by assuming a specific missing-
data model. The first class is clearly the one that should be
preferred, because it uses the proper distribution for the miss-
ing values. However, often reliable external information to
compensate for missing values might not be accessible or
available, or it simply might not exist. Therefore, the second
approach poses the only viable solution in many applied con-
texts. Two common likelihood-based approaches for model-
ing MNAR are selection and pattern mixture models (Enders,
2011; Little, 1995, 2008; Muthèn et al., 2011):

Let Y = (yij)i = 1,…, NT; j = 1,…, p be theNT × p data matrix for
N individuals, p variables, and T time points, and let R = (rij)i =
1, …, NT; j = 1, …, p be the NT × p indicator matrix that specifies
whether a value of Y is observed (i.e., rij = 0 if yij is missing,
and rij = 1 otherwise). In our data example, there are two
measurement waves, with incomplete data for the second
wave. Then, the full data likelihood can be written as f(Y, R |
θ, ψ), where θ contains the parameters of the analysis model
andψ the parameters of the missing-data model. The selection
model and the pattern mixture model differ in the factorization
of the full data likelihood, and thus in their handling of miss-
ing values. The selection model factorizes the full data likeli-
hood into Eq. 4, whereas the pattern mixture model uses Eq. 5.
Here, the stacked vector Yobs contains the observed values of Y,
and the stacked vector Ymis contains the missing values of Y.
Pattern mixture models can also be formulated as latent class
models that specify different latent classes for each dropout
pattern (Gottfredson, Bauer, & Baldwin, 2014), as given in
Eq. 6 for K latent classes.

f Y ;Rjθ;ψð Þ ¼ f Y jθð Þ⋅ f RjY ;ψð Þ ð4Þ
f Y ;Rjθ;ψð Þ ¼ f Y jR; θð Þ⋅ f Rjψð Þ
¼ f Y obsjθð Þ⋅P R ¼ 1jψð Þ þ f Ymisjθð Þ⋅P R ¼ 0jψð Þ ð5Þ

f Y it;Ritjθ;ψð Þ

¼ ∑
K

k¼1
P cit ¼ kð Þ⋅ f Y itjcit ¼ k; θð Þ⋅ f Ritjcit ¼ k;ψð Þ ð6Þ

Thus, the selection model specifies the marginal distribu-
tion of Y conditioned on the missing-data mechanism. In con-
trast, the pattern mixture model specifies the full data likeli-
hood as a mixture over response patterns or unobserved fac-
tors driving the missing-data mechanism. A limitation of both
approaches, the selection model and the pattern mixture mod-
el, is that they make untestable distributional assumptions. In
the selection model the distribution f(R | Y, ψ) has to be spec-
ified, whereas in the pattern mixture model the distribution
f(Ymis | θ) needs to be stated. For example, for f(R | Y, ψ) a
probit model might be assumed, and for f(Ymis | θ) a normal
distribution can be specified. The fact that both approaches
rely on untestable assumptions makes it advisable to estimate
both types of models and to compare results from different
modeling strategies.

The need for sensitivity analyses

Over the last decade, an increasing awareness has emerged
among psychometricians and applied statisticians in general
(especially among biostatisticians) that sensitivity analyses of
incomplete-data models are an essential element in longitudi-
nal data analyses (e.g., Carpenter & Kenward, 2012; Enders,
2011; Little et al., 2012; Molenberghs, Verbeke, & Kenward,
2008; Muthén et al., 2011). Sensitivity analyses evaluate the
impact of nonresponse and different missing-data models on
observed sample effects. Because missing-data handling
methods are based on different assumptions (of which many
are empirically untestable), it is mandatory to evaluate the
degree to which the hypothesized missing-data process and
the respective missing-data modeling strategy affect the esti-
mated model parameters. For example, if data with MNAR
are incorrectly treated as MAR or MCAR, the misspecified
missing-data process is likely to produce biased parameters
and standard errors (e.g., Li, Chen, Cui, & Liu, 2017). It
should be noted that it is impossible to decide on an empirical
basis whether a missing-data process is MAR or MNAR, be-
cause for every MNAR model there is a MAR model with an
identical fit to a set of observed outcomes (see Molenberghs,
Beunckens, Sotto, & Kenward, 2008). Moreover, since differ-
ent ways of modeling MAR or MNAR incorporate different

Fig. 1 Example of selection bias in a simulated sample with regression lines, for a response rate of 80%. The correlations between the outcome and the
response group were .50 (middle panel) and – .50 (right panel)
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assumptions (e.g., regarding unobserved distributions), ap-
plied researchers are well-advised to conduct sensitivity anal-
yses to evaluate the robustness of their derived parameters
with regard to missing-data handling choices.

In the present application, we adopted two popular selec-
tion models: those introduced by Diggle and Kenward (1994)
and Wu and Carroll (1988). The Wu–Carroll model (WC)
specifies a probit link to relate the dropout probability f(R|
Y,ψ) to the analysis model, whereas the Diggle–Kenward
model (DK) uses a logit specification. Moreover, in the DK
the missing probability at time t depends on the past and the
current individual growth trajectory, whereas in the WC this
probability depends on an individual’s overall growth trajec-
tory (see Fig. 2). Thus, at a given time point, f(R| Y,ψ) also
acknowledges future observations. Both selection models al-
low for individual- and group-specific random effects, such as
school effects, in the analysis model (see Eq. 2), but they
consider only individual-specific effects in the selection equa-
tion. As an example of a pattern mixture model, we used
Little’s (1995) latent-class model, which specifies different
dropout groups over which the outcome distribution is a
(latent) mixture, with f(Ymis | θ) taken to be normal. Latent-
class membership is defined by a multinomial logistic regres-
sion using dropout dummy variables as covariates. The model
does not specify individual- or group-specific random effects
when assigning class membership, but both types of random
effects are possible in the analysis model. A formal descrip-
tion of these models as they pertain to our data example is
given in the supplement. Under the MAR assumption, we
used the full-information maximum likelihood (FIML) ap-
proach, a multivariate-imputation-by-chained-equations
method (MI) that imputes competence data from a linear
model (Van Buuren & Groothuis-Oudshoorn, 2011), and
inverse probability weighting (Wooldridge, 2007). Each of
these approaches makes it possible to consider the cluster
structure of the data by allowing for school-specific random
effects.

Present study

We applied sensitivity analyses to the responses of a rep-
resentative sample of German students, to evaluate how
different missing-data models affect the estimated effects
of self-concept and general intelligence on the growth of
mathematical competence over three years. Thus, the re-
sults for the same analysis model for competence devel-
opment are compared under different MAR and MNAR
data schemes. The properties of the MAR and MNAR
methods studied in this article, together with related sta-
tistical software (without claiming to be exhaustive), are
summarized in Table 1.

Method

Participants

We used data from the longitudinal National Educational
Panel Study (NEPS), which follows German students across
their school careers (see Blossfeld et al., 2011). In 2010, a
representative sample of students in lower secondary educa-
tion from grade 9 was drawn across the country (see
Steinhauer et al., 2015, for details on the sampling
procedure). Students were tested in small groups at their re-
spective schools by a professional survey institute. In sum,
competence scores of 13,417 students (6,664 girls) in 538
schools were available. Their mean age was M = 14.92 (SD
= 0.62) years. Three years later (i.e., in 2013), all students who
did not refuse further participation were invited to a follow-up
assessment. The students who remained at their original
school were retested in the school context (3,651 students),
whereas students who had switched school or left school al-
together were tracked and individually tested at home (1,641
students). Thus, 8,125 of the students measured at Time 1 did
not participate at Time 2 (i.e., almost 61% of the original
sample). Further information on the data collection process, in-
cluding the survey execution and the tracking of respondents, is
provided in Steinhauer and Zinn (2016) and on the project
website (www.neps-data.de).

Instruments

Mathematical competence was measured at both measure-
ment occasions with achievement tests that were specifically
constructed for administration in the NEPS (see Neumann
et al., 2013). To measure the competences with greater accu-
racy, different tests including either 22 or 29 items (with mul-
tiple choice or short constructed response formats) that were
targeted at the competence level of the average student in the
respective age group were administered in the two waves. All
tests were scaled using models of item response theory (see
Pohl & Carstensen, 2013). Competence scores were estimated
as weighted maximum likelihood estimates (Warm, 1989) and
linked across time to allow for valid mean level comparisons
across the two measurement waves (see Fischer, Rohm,
Gnambs, & Carstensen, 2016). The two tests exhibited IRT-
based (marginal) reliabilities (Adams, 2005) of .79 and .75.
Further details regarding the psychometric properties of these
tests (including measurement invariance across measurement
occasions and assessment contexts) are summarized in
Duchhardt and Gerdes (2013) and Fischer, Rohm, and
Gnambs (2017).

Mathematical self-concept was measured in grade 9 with
three items (e.g., “I have always been good in math”) on four-
point response scales from 1 = does not apply at all to 4 =
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applies completely. The composite reliability (McNeish,
2017) was good withωtotal = .90.

Reasoning was measured in grade 9 with a matrices test
including 12 items (see Brunner, Lang, & Lüdtke, 2014).
Because the figural content of these matrices is prototypical
for fluid intelligence, matrices tests are good proxies for gen-
eral intelligence (Wilhelm, 2005). Each item consisted of sev-
eral fields with geometrical elements that followed a logical
rule. Participants had to identify the underlying rule and select
the correct element from a series of available response options.
The number of correctly solved items served as an indicator of
students’ reasoning abilities. On average, the participants cor-
rectly solved M = 8.65 (SD = 2.46) items. The categorical
omega total reliability (Green & Yang, 2009) of this measure
was ωtotal = .74.

Modeling strategy

The growth curve model in Eq. 3 was estimated under differ-
ent missing-data schemes. In these analyses, the time effect

(TIME) was coded as 0 and 1 for the first and second mea-
surement occasion, respectively. The two predictors of
growth, mathematical self-concept (SC) and reasoning
(REAS), were z-standardized across all students. Before esti-
mating our substantive model in Eq. 3, selectivity analyses
examined potential predictors of nonresponse at the second
measurement occasion. Selection variables identified in these
analyses were subsequently used to model nonresponse under
different missing-data schemes.

MCAR model We estimated one MCAR model using listwise
deletion (LWD). However, in our case a MCAR assumption
justifying a complete case analysis is rather unlikely. Indeed,
Little’s (1988) test rejected the MCAR hypothesis. However,
LWD was used as a benchmark to highlight deviations origi-
nating from the MCAR assumption.

MAR models We considered three different MAR models.
First, the model in Eq. 3 was estimated using full maximum
likelihood (FIML) without acknowledging the selection
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mechanism. Although it is theoretically possible to consider
selection variables in FIML (see Graham, 2003), to our
knowledge current software implementations are limited to
single level models. Hence, in our analyses FIML does not
accommodate information about the selection process.
Second, we used a multivariate imputation by chained equa-
tions method (Van Buuren & Groothuis-Oudshoorn, 2011)
that accounts for within- and between-individual variation in
the imputation model (MI). However, it neglects variation
between schools. The reason is that prevalent software (see
Table 1) only implements two-level imputation methods (e.g.,
Grund, Lüdtke, & Robitzsch, 2016). In this situation, it is best
to focus on the level explaining more variance as indicated by
the intra-class correlation. In our case, this is the individual
level with 63%.On the school level, we onlymeasure an intra-
class correlation of 31%. Third, inverse probability weights
(WE) were calculated using the identified selection variables
(Wooldridge, 2007). Theoretically, WE would allow for con-
sidering any kind of cluster structure when computing re-
sponse probabilities and, hence, inverse probability weights.
However, the data problem at hand prevented considering
individual random effects, since only one observation per in-
dividual indicated participation. Furthermore, even though the-
oretically the school level may be included when predicting
response probabilities, our data allowed for predicting random
intercepts for only 85% of the schools, because of identification

issues. Thus, we derived inverse probability weights without
acknowledging the multilevel data structure.

MNAR modelsWe considered three MNAR models that have
previously been described in more detail: the Diggle–
Kenward selection model (DK), the Wu–Carroll selection
model (WC), and the pattern mixture model of Little (PM).
Note that for PM in the group of nonrespondents no change in
mathematical competence can be estimated because no obser-
vations were available for this group at the second measure-
ment point. None of the three models implemented a school-
specific random effect in the selection equation or for the
assignment of individuals to latent classes (cf. Fig. 2). Only
WC specifies an individual effect in the selection model,
whereas DK and PM condition participation and group atten-
dance on the preceding outcome values. A formal description
of the mathematical models is given in the supplement.

Model comparisons The identification of the model that de-
scribes the data best among all of the models considered
would require a unique model selection criterion. Common
criteria such as the Bayesian information criterion (BIC;
Schwarz, 1978) or the Akaike information criterion (AIC;
Akaike, 1974) could not be used, since the dimensionality of
the dependent variable varied between models. For example,
the dimension of the dependent variable in an MI model

Table 1 Sensitivity analyses for attrition in longitudinal, multilevel settings

Missing-Data Model Individual- and Group-Specific
Random Effects

Selection Variables
Possible

Dependency on
Time Trajectory

Statistical Software
(Selected)

Missing at random

Full-information maximum
likelihood (FIML)

Botha yes, for computing the
model’s correlation
matrixb

overall Mplus, R (sem, lavaan,
openMx), Stata (sem)

Multivariate imputation by
chained equations (MI)

Either individual- or group-
specific random effect

yes, in imputation model overall Mplusc,
R (mice), Stata (ice)

Inverse probability
weighting (WE)

Both yes, in the response model
yielding the weights

overall Mplus,
Stata (mixed, gllamm)d

Missing not at random

Diggle–Kenward selection
model (DK)

No individual- or group-specific
effects in selection equation,
but both in the analysis model

yes, in the selection model past and present Mplus Stata (gllamm)e

Wu–Carroll selection
model (WC)

Individual-specific effect in
selection equation, both in
the analysis model

yes, in the selection model overall Mplus
Stata (gllamm)e

Pattern mixture model (PM) No individual- or group-specific
effects for assigning latent groups,
but both in the analysis model

no overall Mpluse,f

aMplus facilitates the modelling of individual and group-specific effects, whereas the related R and Stata functions only allow the modelling of
individual-specific effects. b Only Mplus implements this feature, but solely for 1-level models. cMplus offers multiple imputation analysis options as
well; however, the specification of the imputation model is hidden from the user. Thus, it is not possible to implement the chained regression approach as
in mice or ice. d So far, R does not explicitly allow inverse probability weights in random effects models. e R can also be used to implement this kind of
missing data models, however, this requires to write own estimation routines from scratch since (up to now) these models are not part of R’s officially
contributed packages. f Stata does not offer a single command for estimating this model, but the related routines may be implemented using Stata and its
programming language Mata
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equals the number of observed and unobserved cases, but in a
weightedmodel the dimension of Y corresponds to the number
of observed values. In our view, cross-validation and out-of-
sample-selection seem to be promising options. However, to
the knowledge of the authors, right now no appropriate meth-
odology exists that could be applied coherently to all missing-
data models. Because the design and implementation of such a
methodology is beyond the scope of this article, we limited
our model comparisons to the estimated model parameters of
the analysis model.

Statistical software and analyses syntax

Multiple imputations were conducted with mice version 2.30
(Van Buuren & Groothuis-Oudshoorn, 2011). The LWD and
MI models were estimated with lmer version 1.1–13 (Bates,
Maechler, Bolker, & Walker, 2015). Sampling weights were
derived and the weighted growth curve model was estimated
by Stata version SE 13.0. Finally, we used Mplus version 8
(Muthén & Muthén, 1998–2017) to estimate the FIML, DC,
WC, and PMmodels. The code for our analyses is available at
https://github.com/bieneSchwarze/PaperModelingSelectionBias.

Results

The pairwise bivariate correlations between all measures are
summarized in Table 2. As expected, mathematical compe-
tence showed moderate stability over three years (r = .70, p
< .001). Moreover, mathematical self-concept and reasoning
exhibited longitudinal associations with the second measure-
ment of mathematical competence (both r = .41, p < .001).
However, a fundamental problem with these (and similar)

analyses is the pronounced nonresponse at the second mea-
surement point, since about 61% of the initial sample did not
participate in the second wave. More seriously, those who
dropped out had significantly lower competencies in grade 9
than did the participants with responses at both measurement
occasions (see Fig. 3). Thus, data were missing not completely
at random.

Selectivity analyses

We suspected that students did not drop out randomly over
time. Therefore, predictors of nonresponse at the second mea-
surement occasion were identified by regressing dropout (cod-
ed 0 = no dropout, 1 = dropout) on the variables in our analysis
model (see Eq. 3) as well as on various individual and context
variables that were assumed to influence the propensity to
participate (see Table 3). First and foremost, school-leavers
who were about to be tested individually at home were signif-
icantly more likely to refuse further participation than were
students who remained in their original schools (B = 5.04, p <
.001). Moreover, proportionally more dropout was observed
for students with lower mathematical competence (B = – 0.14,
p < .005) and self-concept (B = – 0.08, p < .05) in grade 9.
Finally, girls and students attending upper secondary schools
had a significantly higher reparticipation propensity than did
boys or students visiting other school types. In contrast, stu-
dents’ age or migration background showed no relevant ef-
fects. Consequently, at least partially, the nonresponse at the
second competence measurement was driven by a MAR pro-
cess. Therefore, the variables driving the selection process
were included in various missing-data models (i.e., WE, MI,
DK, and WC) for the estimation of the growth curve in Eq. 3.

Table 2 Means, standard deviations, and bivariate correlations between study variables

M SD 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

1. Mathematical competence at t = 1 (MATH1) 0.037 1.281

2. Mathematical competence at t = 2 (MATH2) 1.081 1.111 .702

3. Self-concept (SC) 2.522 0.921 .347 .405

4. Reasoning (REAS) 8.654 2.457 .494 .408 .222

5. Sex a 0.497 0.500 – .159 – .245 – .263 – .024

6. Migration b 0.256 0.436 – .188 – .160 – .037 – .144 .015

7. Age (in years) 14.92 0.625 – .255 – .221 – .053 – .213 – .094 .154

8. Assessment mode c 0.687 0.464 – .490 – .361 – .087 – .328 – .071 .097 .273

9. Basic secondary school d 0.238 0.426 – .368 – .253 .005 – .355 – .069 .174 .256 .377

10. Intermediate secondary school d 0.213 0.409 – .070 – .170 – .017 .033 – .004 – .029 .011 .351 – .290

11. Remaining school types d 0.200 0.400 – .192 – .169 – .032 – .093 – .005 – .012 .031 .132 – .279 – .260

All correlations are significant at p < .001. On the basis of pairwise complete observations. Basic secondary school = “Hauptschule,” Intermediate
secondary school = “Realschule.” a Coded as 0 = boys and 1 = girls; b Coded as 0 = no migration background and 1 = with migration background;
c Coded as 1 = tested in schools and 0 = tested individually at home; dDummy coded with upper secondary school (= “Gymnasium”) as reference
category
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Growth curve modeling under different missing-data
mechanisms

To analyze the effect of reasoning and self-concept on the
growth of mathematical competence across three years, we
estimated the growth curve model in Eq. 3 under different
missing-data schemes. Coefficient plots for all models, with
95% confidence intervals, are given in Figs. 4 and 5 (the
respective parameter estimates are available in the
supplement).

Growth parameters The growth of mathematical competence
over three years is represented by the mean intercept and the
linear time effect (γ0 and γ1 in Eq. 3), given in the upper
panels of Fig. 4. At a first glance, the overall pattern of results
does not indicate any single conclusion. However, differences
between the estimates can be explained by distinct model
assumptions. The intercept reflects students’mean mathemat-
ical competence in grade 9 (after controlling for the effects of
self-concept and reasoning). Particularly noticeable are the
strongly deviating estimates under LWD and WE. We have
previously shown that there is increased dropout among stu-
dents with lower competence scores in grade 9. Ignoring this
aspect in LWD leads to an overestimation of the overall mean
score.WE faces a similar problem, because the sameweight is
applied to each individual observation, irrespective of the time
point. However, weights compensate for the surplus of drop-
outs among underperforming students in grade 9 such that
these students are assigned larger weights. This also results
in an overestimated intercept. The higher mean intercept for
nondropouts in the PM (model PM1) results from the fact that
the students who participated at both waves had, on average,
higher competence scores than did dropouts (model PM0). In
contrast, FIML,MI, and the two selectionmodels converge on
similar estimates of the intercept.

In our specification, the time effect marks the average
linear change across three years. All models estimated sig-
nificant competence gains in mathematics over the three
years, ranging from .53 to .78 (see Fig. 4). The estimates
of the MAR models FIML and MI, as well as the estimates
of the MNAR models DK, WC, and PM, were rather sim-
ilar. Thus, it is unlikely that different MAR and MNAR
assumptions are the reason for the observed differences in
the estimated time effects. We found that WE gave a com-
parably high time effect estimate. Thus, apparently
weighting does not succeed in mimicking the growth levels
of the dropout cases appropriately. As compared to FIML,
DK, and PM, MI indicated a slightly lower time effect, and
WC a slightly higher one. These differences can be ex-
plained by the fact that among all of the models consid-
ered, only MI and WC acknowledged the multilevel struc-
ture of the missing-data model. Both models integrated an
individual-specific random effect in the dropout process.
WC assumed the same effect for both the analysis and
the selection model, whereas MI specified separate ones
for the imputation model and the analysis model.

Predictors of growth Students’ reasoning abilities and mathe-
matical self-concept had significant positive effects on math-
ematical competence (γ2 and γ3 in Eq. 3) in all considered
missing-data models (see the middle panels of Fig. 4). The
respective effects were somewhat larger for LWD and WE
than for other modeling strategies. Apparently, here issues
arise similar to those in the estimation of the intercept. The

Fig. 3 Distribution of mathematical competence in grade 9 by dropout
group

Table 3 Logit regression analysis for nonresponse at the second
measurement point

B 95% CI

Intercept – 1.941* [– 2.451, – 1.431]

Reasoning – 0.016 [– 0.096, 0.064]

Self-concept – 0.079* [– 0.151, – 0.006]

Sexa – 0.185* [– 0.322, – 0.049]

Migrationb 0.039 [– 0.120, 1.992]

Age – 0.159 [– 0.291, – 0.027]

Assessment modec 5.037* [ 4.738, 5.336]

Basic secondary schoold 0.750* [– 0.043, 1.544]

Intermediate secondary schoold 1.290* [ 0.314, 2.217]

Remaining school typesd 0.606* [– 0.207, 1.418]

Competence score – 0.137* [– 0.223, – 0.052]

Competence score squared – 0.002 [– 0.031, 0.027]

Random effect (SD) 2.890 [ 2.625, 3.182]

N = 13,417. Dependent variable is dropout (coded as 1 = dropout and 0 =
no dropout). a Coded as 0 = boys and 1 = girls. b Coded as 0 = no migra-
tion background and 1 = with migration background. c Coded as 0 =
tested in school and 1 = tested individually at home. d Dummy-coded
with upper secondary school (= “Gymnasium”) as reference category.
Reasoning and self-concept were z-standardized. * p < .05
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higher propensity to reparticipate among students with higher
self-concept leads to a small overestimation of effects using
LWD or WE. Beware of the special nature of the two classes
of the PMmodel. It is obvious that self-concept and reasoning
ability affect the competence level more strongly in the class
of repeated participants than in the class of students who
dropped out. When both classes are considered together, an
average effect can be observed similar to those for the other
model types (except LWD and WE). In contrast, FIML, MI,
and the two selection models converge on similar estimates
for the predictors of growth.

The change in mathematical competences over time was
larger for students with higher reasoning abilities (γ4 in Eq. 3).
This finding was rather consistent among all considered
models (see the lower right panel of Fig. 4). Only MI and
WC, which account for intra-individual variations when deal-
ing with attrition, estimated a smaller effect. In other words,
MI and WC facilitate modeling different degrees of heteroge-
neity among nonresponders and responders. However, as op-
posed to MI, WC specifies only one effect for both the selec-
tion model and the analysis model. Thus, individual heteroge-
neity concerning the dropout process and concerning
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Fig. 4 Estimated coefficients with 95% confidence intervals for the
analysis model. LWD = listwise deletion; FIML = full-information
maximum likelihood; MI = multivariate imputation via chained
equations; WE = inverse probability weighting; DK = Diggle–Kenward

selection model; WC =Wu–Carroll selection model; PM1/PM0 = pattern
mixture model with two latent classes for all-time participants/dropout
cases
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competence development might be intermingled. Hence, we
deem the estimated time effects of MI to be more reliable than
the effects estimated by the other models. In contrast, mathe-
matical self-concept had a negligible impact on changes in
mathematical competence (γ5 in Eq. 3), with all effects being
close to zero. Although some models (FIML, DK, WC) iden-
tified minor moderating effects, other models (LWD,MI,WE,
PM) found not significant effect at all. Thus, the predominant
evidence indicates no effects of students’ self-concept on their
change in mathematical competence over time.

Random effects With regard to the random effects (u and v in
Eq. 3), we found surprisingly few differences between the
models (see Fig. 5). Variability in mathematical competence
between different schools was consistently estimated to be
larger than within-subjects variability across time. However,
the latter variance was particularly large for WE and compa-
rably small for WC, whereas the reverse was true for the
estimated residual variances. That is, WE assigned more var-
iation to the individual level than to the level of competence
measurements because the two competence scores of an indi-
vidual were weighted equally. WC, in contrast, assumes that
the same random (latent) factor affects both competence de-
velopment and the attrition process. Therefore, in the analysis

model, less variance is assigned to the individual level and
more unexplained variance remains at the residual level.

Discussion

The presence of selection bias due to nonresponse makes the
modeling of competence development a pivotal challenge in
longitudinal educational surveys. In our data example, we
observed dropout of nearly 60% at the second measurement
occasion, which is not uncommon for many voluntary longi-
tudinal surveys such as the NEPS. Statistical analyses need to
acknowledge the process governing these missing responses
in order to derive unbiased estimates of the longitudinal ef-
fects (Enders, 2011; Muthén et al., 2011). We studied the
growth of mathematical competence among German adoles-
cents over three years, as well as the effects of reasoning
ability and mathematical self-concept thereon. The problem
of missing information was addressed by conducting sensitiv-
ity analyses with regard to the assumed missing-data model.
We estimated different models under MCAR, MAR, and
MNAR assumptions to evaluate the robustness of the focal
effects of interest. Because each missing-data model makes
various (frequently untestable) assumptions concerning the
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Fig. 5 Estimated variance components, with 95% confidence intervals.
LWD = listwise deletion; FIML = full-information maximum likelihood;
MI = multivariate imputation via chained equations; WE = inverse
probability weighting; DK = Diggle–Kenward selection model; WC =

Wu–Carroll selection model; PM1/PM0 = pattern mixture model with
two latent classes for all-time participants/dropout cases (for
identification purposes, the variances are assumed to be equal for PM1
and PM0)
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underlying missing-data mechanism or the distributions of
unobserved factors, different missing-data models may result
in rather different outcomes, a fact that is frequently ignored in
the social sciences. For example, assuming a MAR scheme
instead of a MNAR mechanism may lead to biased estimates
if the dropout pattern (at least partly) depends on the studied
outcome (e.g., Example 1 in Little & Wang, 1996; Simulation
1 in Galimard, Chevret, Protopopescu, & Resche-Rigon,
2016). In our data example, we adopted three MAR schemes
(i.e., FIML,MI,WE) and threeMNARmodels (i.e., WC, DK,
PM). These models were contrasted with the standard ap-
proach for MCAR commonly used in the social sciences,
which involves complete case analyses (LD).

Overall, all approaches pointed to similar results concerning
the impact of mathematical self-concept and reasoning ability
on the change of mathematical competence over three years.
Depending on the missing-data model, the effect of mathemat-
ical self-concept was very small to nonexistent. Thus, if only a
single missing-data model had been estimated (e.g., FIML) one
might have concluded that mathematical competence would
increase more strongly for students with higher self-concept.
However, the comparative results from different missing-data
models did not support a robust effect in this regard. Rather, the
sensitivity analysis suggested that mathematical self-concept
has no pronounced effect on the development of mathematical
competence. In contrast, the different models converged on
similar conclusions regarding the effects of reasoning:
Mathematical competences increased more strongly for stu-
dents with lower reasoning abilities.

As expected, more pronounced differences between the
missing-data models were observed with respect to the mean
competence score (i.e., the intercept). Here, listwise deletion
and weighting failed, because LWD simply ignored the
missing-data problem and WE compensated for the outcome-
dependent dropout in a way that distorted the estimated mean
competence level. More specifically, in inverse probability
weighting, higher weights were assigned to individuals with
lower competence scores to compensate for their dropout at
the second measurement point. However, this compensation
operated at the first measurement point, too, yielding an over-
estimation of the mean competence score in grade 9.

However, our analyses showed that the consideration of the
multilevel structure in a missing-data model can make a dif-
ference. Although all estimated time effects indicated a strong
increase of competence over time, models that incorporated a
multilevel structure in the missing-data model (MI, WC) esti-
mated slightly different effects than did models that
disregarded the nested data structure when modeling the drop-
out process. This effect was also mirrored in the moderating
influence of reasoning on the change in mathematical compe-
tence. A smaller absolute effect was observed when an
individual-specific random effect was specified in the dropout
model. The reason for this result might be that for the dropout

cases a significant part of the variation in competence growth
is explained by individual heterogeneity in the dropout pro-
cess, and not by pure growth, as would otherwise be assumed.
In summary, these analyses demonstrated that the type of
missing-data model assumed may lead to research arriving at
different conclusions. Applied researchers are, therefore,
strongly encouraged to demonstrate the robustness of their
results regarding the missing-data model they have adopted.

Recommendations for longitudinal studies
with missing data

Nonresponse is unavoidable in most longitudinal studies that
rely on volunteer samples for repeated participation across
multiple measurement occasions. In our opinion, several strat-
egies can help improve the validity of inferences drawn from
incomplete data:

First and foremost, researchers need to keep in mind the
purpose of inference tests: Statistical tests allow for inferences
about an unobserved target population from an observed sam-
ple. This requires observed samples to be close representa-
tions of the target population. However, nonresponse can se-
riously undermine the validity of population inferences. For
example, in case of nonrandom dropout processes and com-
plete case analyses, it is unknown to what degree the observed
data still adequately represents the population of interest.
Unfortunately, it is still rather uncommon in psychology
(and related disciplines) to clearly describe the target popula-
tion and identify the generalizability of identified effects.Most
often results derived from convenient sample—most notably,
WEIRD (Western, educated, industrialized, rich, and democratic;
Henrich, Heine, &Norenzayan, 2010) samples—are treated as if
they could be generalized to anybody around the world.
Therefore, we support recent calls for more explicit consider-
ation of the generalizability of research results (Simons, Shoda,
& Lindsay, 2017).

Second, the factors driving nonresponse processes need to
be scrutinized. Selectivity analyses can help identify variables
that explain the participation propensity. This requires taking
into account relevant background information on the respon-
dents, such as socioeconomic characteristics, and the survey
context, such as the survey mode. Information on the survey
experience, such as survey enjoyment or intention to drop out,
has been shown to be useful as well (e.g., Leon, Demirtas, &
Hedeker, 2007; Rogelberg, Fisher, Maynard, Hakel, &
Horvath, 2001).

Third, nonresponse biases are best reduced by including
relevant auxiliary variables in the statistical model (Graham,
2009). These can easily be handled with contemporary MAR
approaches such as MI or FIML but also in more complex
MNAR models (e.g., Diggle & Kenward, 1994; Wu &
Carroll, 1988). Good auxiliary variables should predict the
missing values, rather than the probability of missingness
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itself (Little, 1995). Importantly, the model structure for the
auxiliary variables should mimic the structure of the analysis
model. For example, if a two-level model is the focus of the
analyses the two levels of nesting should also be acknowl-
edged in the imputation model. A problem is that higher or-
ders of nesting in missing-data models are frequently not im-
plemented in common software. In this case, it is recommend-
ed to focus on the level explaining more variance and ignore
less important levels.

Finally, each missing-data model hinges on a number of
assumptions—for example, regarding unobserved distribu-
tions. Because these assumptions cannot be empirically tested,
it is important to evaluate how these assumptions affect the
parameter estimates, and consequently the research conclu-
sions. Therefore, we advocate the routine use of sensitivity
analyses to estimate different missing-data models, in order
to gauge the robustness of the results. We recommend using at
least one MAR model, such as MI or FIML, and one MNAR
model. These results can be compared to a complete case
analysis to evaluate the impact of systematic dropout process-
es on the results. Our call for systematic sensitivity analyses in
longitudinal research with incomplete data echoes similar
views put forward for psychological research in general:
Any empirical finding should be evaluated with regard to its
robustness against flexibilities in data-analytic decisions using,
for example, specification-curve analyses (Simonsohn,
Simmons, & Nelson, 2015; see Rohrer, Egloff, & Schmukle,
2017, for an application) or multiverse analyses (Steegen,
Tuerlinckx, Gelman, & Vanpaemel, 2016). Common to these
suggestions and our position on sensitivity analyses in longi-
tudinal research is the notion that researchers should make the
assumptions in their statistical models explicit and compare
empirical findings across a range of defensible alternative
model specifications.

Open challenges in modeling longitudinal
nonresponse

Although methodological research on missing data has sub-
stantial increased in recent decades (cf. Carpenter &Kenward,
2012; Enders, 2011; Little et al., 2012; Molenberghs et al.,
2008; Muthén et al., 2011), a number of unresolved issues
remain that make the acknowledgment of selection bias in
longitudinal research challenging. For one, no unique model
selection criteria exist that would allow for decisions on which
model fits data best. Some of the approaches considered in this
article differ structurally to such an extent that standard
methods for model comparison (e.g., information criteria or
cross-validation) cannot be applied. It is possible to compare,
at least approximately, selection models and pattern mixture
models using the BIC or AIC. However, FIML and MI differ
to such an extent in their likelihood specifications and the
numbers of observations used for model estimation that BIC

or AIC cannot be applied (see also the discussion in Enders &
Mansolf, 2016, on model fit indices in MI). Furthermore, to
our knowledge no coherent cross-validation approach current-
ly exists for comparing distinct missing-data models. Thus, at
least for the moment, a combination of logical reasoning with
comparing estimated effects serves as the onlymeans to assess
which of the fitted approaches explains the data properly.
Clearly, this strategy becomes inapplicable if the results are
very heterogeneous and no logical reason can be found to
explain these differences. This is certainly an unsolved prob-
lem for which no straightforward solution currently exists.

Another obstacle when dealing with missing-data problems
such as the one described in this article is the availability of
statistical software to estimate the different missing-data
models. We focused on R (R Core Team, 2017), Stata, and
Mplus, which are common in the social sciences. All of these
packages offer comprehensive functionality for single-level
MAR and MNAR problems. However, their functionality
with regard to multilevel data structures is somewhat limited.
For example, in a single-level setting, the FIML function in
Mplus allows for the consideration of auxiliary variables for
coping with MAR problems. However, when dealing with
three- or higher-level data structures, this functionality is not
yet implemented, although Graham’s (2003) saturated-
correlates approach should theoretically also be suitable for
multilevel structures. Likewise, the mice package in R allows
for multiple imputation for two-level data problems, but when
it comes to higher levels, no appropriate imputation functions
exist (see also Grund et al., 2016). Only recently did Enders,
Keller, and Levy (2017) develop a new software program that
allows for three-level imputation of the kind needed in educa-
tional research. Future research will need to evaluate the im-
plemented imputation algorithm in more detail and compare
its accuracy to that of other imputation schemes. Therefore,
applied researchers need to be aware of these limitations when
adopting the missing-data routines in common statistical
software.

Conclusions

Missing data is a pervasive problem in longitudinal education-
al research that can bias estimated effects. Because there is no
unique and proper way of handling missing data, sensitivity
analyses are mandatory in order to reach robust conclusions.
This is especially true if an MNAR mechanism is assumed to
produce the nonresponse data at hand. Here, sensitivity anal-
yses helped us assess the plausibility of various missing-data
mechanisms and evaluate the robustness of their results. For
applied researchers, we offer the analysis syntax of our data
example in an online repository. We hope that these files can
serve as templates for future longitudinal research and help
spur the adoption of sensitivity analyses in practice.
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