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ABSTRACT: Glutathione peroxidase 4 (GPX4) reduces lipid hydroperoxides in lipid
membranes, effectively inhibiting iron-dependent cell death or ferroptosis. The upregulation
of the enzyme by the mutations at residues D21 and D23 has been suggested to be associated
with higher protein activity, which confers more protection against neurodegenerative
diseases such as Alzheimer’s, Parkinson’s, and Huntington’s diseases. Therefore, it has
become an attractive target for treating and preventing neurodegenerative diseases. However,
identifying means of mimicking the beneficial effects of these mutations distant from the
active site constitutes a formidable challenge in moving toward therapeutics. In this study, we
explore using molecular dynamics simulations to computationally map the conformational
and energetic landscape of the wild-type GPX4 protein and three mutant variants to identify
the allosteric networks of the enzyme. We present the conformational dynamic profile
providing the desired signature behavior of the enzyme. We also discuss the implications of
these findings for drug design efforts.

■ INTRODUCTION
A protein's allosteric behavior is characterized by the
modulation of its binding affinity to its ligand as the result of
its interaction with a third molecule known as the allosteric
effector1−4 or perturbations to the protein introduced by a point
mutation. Allosteric regulation pervades biology as one of the
most prominent and significant regulatory mechanisms,5−7

playing an essential role in the regulation of such diverse
functions as transcription activation,8−10 DNA repair,11−14

metabolism,15−19 signal transduction with G-protein coupled
receptors,20−24 neurological function,25−28 protein kinase
regulation,29−33 regulatory domains of proteins,34,35 and many
more. An allosteric effector may increase or decrease binding
affinity for the ligand, making it an allosteric activator or
repressor, respectively.36,37

The considerable distance between the allosteric effector and
the protein active sites raised the question of how the allosteric
signal traverses the protein to affect the active site,5,34,38,39 and
several ideas have been put forth.5,8,21 Many early thoughts on
the problem involved a domino effect pathway-like approach in
which one residue interacts with the next across a molecule.
While this simplistic approach is a helpful zeroth-order model,
experimental evidence quickly became too difficult to interpret.
A comprehensive description of the allosteric effect may call for
characterization of the dynamic interchange of substates.2,4,40

Such a view has proven difficult to observe in the experiment
because capturing it in action requires a time resolved
description at the residue level. Ideas of multiple pathways,
contributions from evolution, and many other theories have
been explored. Cooper and Dryden brought forth the concept of

allostery through energetic pathways on a theoretical basis.41

However, analysis dominated by examining differences in
structures has primarily been unsuitable for assessing the
validity of these ideas.
With the observation of allosteric effects without significant

conformational changes,42 the idea has become increasingly
revitalized. However, asserting a concrete test to determine
whether the pathway is correct or not has proven difficult in the
absence of a clear observable to measure the allosteric signal
propagation. Recently, research efforts have been focusing on
combining the power of machine learning and data from
molecular dynamics (MD) simulations as a method of studying
allosteric effects.43−45 In addition, network theory is also used to
identify the hidden patterns in complex biological systems.46

Given that the approaches mentioned above provide valuable
insights elusive to experiments into the allostery phenomenon,
our work aims to describe the dynamics of allostery using
network theory and mathematical modeling based on MD
simulations.
We selected the glutathione peroxidase 4 (GPX4) system for

our inquiries into allostery. It is an enzyme encoded by the
human GPX4 gene, and it is known to reduce lipid hydro-

Received: March 3, 2022
Accepted: July 22, 2022
Published: August 16, 2022

Articlehttp://pubs.acs.org/journal/acsodf

© 2022 The Authors. Published by
American Chemical Society

29587
https://doi.org/10.1021/acsomega.2c01289

ACS Omega 2022, 7, 29587−29597

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Chunyue+Ma"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Daniel+J.+Chung"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Dylan+Abramson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="David+R.+Langley"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kelly+M.+Thayer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.2c01289&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01289?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01289?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01289?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01289?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/7/34?ref=pdf
https://pubs.acs.org/toc/acsodf/7/34?ref=pdf
https://pubs.acs.org/toc/acsodf/7/34?ref=pdf
https://pubs.acs.org/toc/acsodf/7/34?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.2c01289?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


peroxides in lipid membranes, effectively inhibiting iron-
dependent cell death or ferroptosis.47−49 It (GPX4) serves as
an antioxidant enzyme that reduces the hydroperoxide species,
restoring the membrane’s integrity. We study the allosteric effect
in the GPX4 protein as it illustrates the phenomenon of
modulated binding affinity by point mutations. It also serves as a
timely target from a human health perspective. Two single-point
mutations at residue D21 (GPX4 A) and residue D23 (GPX4 B)
as well as a double mutation at both residues (GPX4AB) are all
known to activate the GPX4 activity. Specifically, GPX4 A and
AB both significantly enhance the protein activity, whereas
GPX4 B shows less significant activation.47 The mutation site
residues (green sticks) and active site residues (pink sticks) are
shown in Figure 1 (PDB ID: 2OBI).50

In this study, we used MD simulations to map the
conformational and energetic landscape of the wild-type protein
and three mutant variants to identify the allosteric network of
the enzyme. We first attempted to explain the hyperactivity of
GPX4 mutant variants through changes in their conformations.
In addition to root-mean-square deviation (RMSD) and root-
mean-square fluctuation (RMSF) analysis, we leveraged
conformational dynamics analysis from MD Markov state
models (MD-MSMs)51 when treating the point mutations as
allosteric activators. Our research indicated structural differ-
ences of a single mutant (GPX4 A) but did not provide sufficient
understanding of the particularly strong activating effect of the
double mutant (GPX4 AB). We then adopted the energetic
approach by comparing the respective energetic networks of
various GPX4 mutants. Mapping the network analysis onto the
molecule structures, we successfully theorized the dynamic
profile associated with hyperactivity of GPX4 that provided the
desired signature behavior of the enzyme. Overall, our research
demonstrated an exciting possibility that allosteric effects can be
considered a superposition of conformational and energetic
system changes. We discuss how our insights may be used to
develop molecular activators for GPX4 and the prospects for a

broader application of this approach for developing therapeutic
activators.

■ RESULTS
RMSD Results. To ensure the convergence of the systems of

the simulation, we computed the root-mean square deviation
(RMSD) of the backbone atoms of the four constructs
concerning their energy-minimized and equilibrated starting
structure. We monitored the RMSD as a function of time over
the simulation to assess the global stability of the trajectory. An
unmodified crystal starting structure will typically deviate about
2 Å from the crystal, and values slightly higher can be expected
for engineered systems. We saw that our simulations exhibit an
expected amount of dynamic fluctuation on the global scale,
with most conformations within about 1.0 Å of their reference
when converging over 1 microsecond, as seen in Figure 2.

It is worth mentioning that the RMSD plot from Figure 2
represents only the 5th to the 165th residues of the constructs.
This decision was made to remove the tail effect of the first four
residues, which caused irregular RMSD behavior and thus
affected convergence analysis. In summary, all four systems
converged well over the course of the simulation. With the
stability of the simulations and apparent convergence of global
dynamic properties, we turned our attention to sequence-
specific analysis and the detailed characterization of the
differences in their dynamic behavior.

RMSF Results. To assess the differences in dynamics by
residue, we computed the RMSF of the alpha carbons with the
average structure of each simulation as their reference
coordinates (Figure 3). GPX4 A experienced larger variations
at the residue level with respect to the wild-type structure. Its
RMSF plot diverged from the RMSF plot of the wild-type
mutant (GPX4 WT) at multiple residues. This indicates
structural differences between GPX4 A and GPX4 WT.
Another equally important observation is that the residue

mobility for GPX4 B and GPX4 AB, unlike GPX4 A, very closely
followed that of GPX4 WT outside the regions of mutation site
residues. This lack of structural difference among the three
constructs promoted our further investigation into the energetic
characteristics of the GPX4 mutations.

MD-MSM Analysis. We applied Molecular Dynamics
Markov State Model analysis (MD-MSM)51,52 to our

Figure 1. GPX4 protein system: GPX4 structure and engineered
mutants used in this study. The wild-type structure (PDB ID: 2OBI)
illustrates critical features of the enzyme. The catalytic triad residues
collocate three loops to form the active site (pink sticks). Residues D21
and D23 mark the locations of the allosteric active mutations (green
sticks).

Figure 2. RMSD plot: this plot shows the RMSD deviation, a measure
of the average distance between atoms in a molecular structure
compared to the energy minimized structure. A snapshot of the protein
is taken every 200 ps. This is a 10-point moving average of the RMSD
values taken of the backbone C, N, and O atoms in the 160-amino acid
system. RMSD values show the similarity between the structures across
the course of the simulation.
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trajectories to gain more insights into overall dynamic
differences. The trajectories of the MD simulations were
stripped of ions, water molecules, and side chains to only
include the protein backbone atoms. These trajectories were
then concatenated into a single long trajectory clustered using a
k-means method based on pairwise RMSD values. The
categorization of simulation frames into discrete probabilistic
states indicates the protein’s innate predisposition to adopt
specific conformations in the presence or absence of the
mutation.
Since the number of clusters was unknown beforehand, the

clustering procedure was carried out for two to five clusters.
With the increased number of centroids, the distance between
snapshots and their respective centroid decreased, as is expected
with any parameter fitting calculation. An optimal number of
centroids, corresponding to states in theMSM, reduces the error
function without overfitting. We chose K = 3 for the clustering,
confirming the RMSD frequency to centroids distributions.
Because we clustered protein structures from all trajectories

simultaneously rather than independently for each trajectory,
identified substates were guaranteed to be identical across
trajectories. We then assessed the populations in each cluster as
the states in the MSM, and the transitions were obtained from
the time evolution of the cluster visited by each trajectory. The
populations in each substate and the transitions can post priori
be associated with the trajectory from which they originated.
The MD-MSM provided information about the composition of
each cluster by the protein system and frequency of transitions
from one substate to the next. To compare the populations in
each conformation substate, we showed the frequencies in
clusters normalized by simulation as shown in Figure 4.
In Figure 4, we observed that 30.1% of the GPX4 A mutants

populated a single substate exclusively in cluster 3, indicating the
presence of a distinct conformational state of GPX4 A during the
process of simulation. GPX4 WT and GPX4 AB structures
populated clusters 1 and 2 with roughly equal proportions.
About 54.4% of frames of the GPX WT and 53.1% of frames of
the GPX4 AB mutant populated cluster 1, and 45.6% of frames
of the GPXWTmutant and 46.8% of the frames of the GPX4AB
mutant inhabited cluster 2. The GPX4 B mutant had an inverse
distribution compared to GPX4 AB and GPX4 WT, with 42.6%
of the frames in cluster 1 and 56.4% in cluster 2. A small portion
of the frames (1.1%) fell into cluster 3. Therefore, GPX4 B had
similar but also different conformational states than those of
GPX4 AB and GPX4 WT. This hints at a potential explanation
for GPX4 B’s marginal effect on the protein activity compared to
GPX4 AB.

A more careful look at the clustering of GPX4 A revealed that
once GPX4 A adopted a certain conformation in a cluster, it
tended to preserve the conformation, as seen from a very high
frequency (>70%) of self-transitions (Figure 5). In cluster 3,
GPX4 A had a very high self-transition frequency of 96.9%,
indicating that it was a very energetically stable structure.

Energetic Network Analysis. We further investigated the
energetic differences of the GPX4 systems by comparing the
energetic networks constructed with MD simulation data.
Energetic networks are created with nodes representing the
molecules’ residues and edges representing the forces between
the pair of residues. Specifically, the edges between each pair of
residues are generated as the sum of all forces between pairs of
atoms in each residue. Overall, pairwise energetic networks
capture the energy profile of the molecule over the course of the
simulation, with edge weights representing how much two
residues energetically interact with each other.
We built separate energetic networks using both the

electrostatic forces and Van der Waals forces among the
residues. However, the results from Van der Waals energetic
networks among the structures did not produce noticeable

Figure 3. RMSF plot: this plot shows the RMSF of the alpha carbons
with the average structure of each simulation as their reference
coordinates. RMSF values show the similarity between the systems
across the course of the simulation on the residue level.

Figure 4. MD-MSM cluster of substates: this histogram shows the
contributions of the four GPX4 constructs in each of the three clusters
of the MD-MSM. Each of the three clusters (denoted 1−3) is
composed of different percentages from each of the four systems.

Figure 5. State transition frequency of GPX4 A: this histogram shows
the transition frequency of GPX4 A among three different clusters.
GPX4 A generally tended to a state within the same conformational
state. For cluster 3, GPX4 A had a very high self-transition frequency of
96.9%.
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differences among the structures. We hypothesized that this is
due to the short-range nature of such forces given the context of
the long-range allosteric effect. Therefore, we focused on
comparing the electrostatic energetic network in our study.
The energetic networks were visualized using Gephi

software.52 Since the network was constructed by considering
every residue with respect to every other residue, it was a fully
connected network. Therefore, to focus on energetically
important edges, we kept only 3−5% of the total edges based
on their weights. These threshold values were chosen because
below 3%, the networks became mostly disconnected. In
contrast, beyond 5%, the networks became too densely
connected. In both cases, the network was either too
disconnected or overconnected for us to record meaningful
observations.

Shortest Electrostatic Path Analysis. The shortest
electrostatic path (SEP) is a novel approach our lab proposed
to examine allosteric effects using an energetic network. We use
SEP(i,j) to denote the shortest path from residue i to another
residue j on the binarized version of the network.
In this project, we focused on the SEP starting from a

mutation site and ending at an active site residue. We
hypothesized that the SEPs could model how electrostatic
signals propagate from the mutation sites (allosteric sites) to the
active sites with minimum signal loss. Following this conjecture,
shorter SEPs potentially indicate a more robust electrostatic
signaling mechanism between the source and destination
residues.
Figures 6 and 7 show SEPs from residue 21 to all three active

sites of the protein molecule with 3.5% of total edges kept in the
network. As seen from the figures, SEP(21, 46) and SEP(21, 81)

were both shorter in GPX4 AB, and SEPs(21, 136) were
identical in both GPX4 AB and GPX4WT. Similar observations
persisted among all the SEPs we compared. We observed that all
the SEPs of GPX4 AB were shorter than or equal to the ones
identified in GPX4WT. In total, GPX4 AB had the same SEPs as
GPX4 WT roughly 70% of the time. In the other 30% of the
comparisons, GPX4 AB had shorter SEPs than GPX4 WT
(Figure 8).
We also observed that the SEPs of GPX4 AB tended to have

more variations than those of GPX4WT. Figures 9 and 10 show
SEPs from residue 23 to all three active sites of the protein
molecule with 3.5% of total edges kept in the network. For SEPs
starting from residue 23, three distinct paths were identified in
GPX4 AB, whereas only two distinct paths could be mapped in
GPX WT.
To verify the structural implications of the network analysis,

we mapped all the residues participating in the SEPs back onto
the molecules using PyMol.53 From Figures 11 and 12 below, we
observed that in GPX4 AB, the residues in the SEPs form three
main conduction pathways for electrostatic signals to propagate
from mutation sites to the active sites. However, in GPX4 WT,
we only identified two such conduction pathways.
The two conduction pathways on the left and right in both

GPX4 AB and GPX WT correspond to almost the same set of
residues, which reflects the 70% of the SEPs of equal length in
both systems shown in Figure 7. However, the middle
conduction pathway is unique to GPX4 AB, and it is mapped
to the 30% of the SEPs found shorter in GPX4 AB. These
residues also only participate in the GPX4 AB network’s SEPs.
From the energetic point of view, we hypothesize that GPX4 AB

Figure 6. SEPs fromD21 of theGPX4WTnetwork: The SEP betweenD21 (yellow) and the three active site residues (green) are [21-20-22-86-84-83-
81], [21-20-22-86-84-82-45-46], [21-102-72-40-73-41-139-136] respectively. This network shows the top 3.5% of most essential edges.
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has more conduction pathways with a wider variety of residues
involved in its propagation networks.

■ DISCUSSION
Structural Analysis. The RMSDs were calculated for all the

frames in the simulations against their respective energy
minimized structure where all four systems converged at roughly

1 Å (Figure 2). Compared to the RMSD plot of the wild-type
GPX4 (GPX4 WT), GPX4 A experienced the most significant
variation, implying specific structural differences in its molecule
structures. On the other hand, GPX4 AB consistently showed
higher RMSD values, suggesting higher dispersion of its
structure during the simulation. This foreshadows our further

Figure 7. SEPs fromD21A of the GPX4 AB network: the SEPs between D21A (yellow) and the three active site residues (green) are [21-104-106-75-
82-45-46]/[21-104-106-75-81]/[21-102-72-40-73-41-139-136], respectively. This network shows the top 3.5% of most essential edges. Note that the
first two SEPs identified in the GPX4 AB network were shorter than the corresponding SEPs from GPX4 WT, and the third SEP in the GPX4 AB
network had the same length as that in the GPC4 WT network.

Figure 8. SEP comparisons between GPXWT and GPX4 AB: in all cases, the SEP is either shorter for GPX AB or the same length for both GPX4 AB
and GPX4 WT. We did not observe any case when GPX4 WT had a shorter SEP than that of GPX4 AB.
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investigation of the energetic differences between GPX4 AB and
GPX4 WT.
The RMSFs represent the positional differences by residues

between the structures over time. It calculates the square root of
the sum of the Euclidean distance between each residue in the
current snapshot with respect to a reference state taken as the
energy-minimized conformation. From the RMSF plot of the
four systems, we can see the differences in residue flexibility
between GPX4 and the other three GPX4 systems (Figure 3).
This suggests that GPX4 A is structurally different from GPX
WT and further supports the possibility that GPX4A has a better
conformational state, which corresponds to higher protein
activity. However, it must be noted that GPX4 B, GPX4 AB, and
GPX4WT all have the RMSF plots closely following each other,
indicating a lack of significant structural differences.
Another strategy adopted to examine the structural differ-

entiation between GPX4 systems was MD-MSM analysis. It
studies the shift in frequency of the conformational substates of
the four GPX4 systems throughout the simulation. A three-
cluster model was chosen, with each snapshot of the simulation
categorized by its likeness to one of the three centroids. By
comparing the snapshot composition of each cluster to empirical
activation studies determined in the previous mutagenesis
experiment, we characterized cluster 3 as an activated conforma-
tional state for GPX4 A. We interpreted that the cluster, which
contained about 30% of the total frames of GPX4 A simulation,
corresponded to the binding competent conformation of GPX4
A. In addition, the low probability of state transitions from
cluster 3 to other clusters and high self-transitioning rate lend
further support to the argument that the conformation in cluster
3 was energetically favorable. This analysis shows that the MD-

MSM can capture the effect of these “allosteric mutations” on
the conformational landscape of GPX4. The self-transition
probabilities provide thermodynamic information on the
stability of each of the substates. In contrast, the substate
transitions allow for the relative comparisons of the activation
barriers across these states. Overall, the structural analysis on the
mutant systems suggests that GPX4 A increased the protein
activity by adopting a more favorable conformation that tends to
be preserved.
Given that changes in mutated enzyme activity reported from

the experiments were relatively small (e.g., from 100 to 126% for
GPX4 A), we also considered the level of resolution of the MD-
MSMs approach. In our pilot study of PDZ,51 we enjoyed good
quantitative agreement with NMR data, suggesting a level of
resolution appropriate for the applications herein. Our ability to
achieve qualitative agreement with the experimental observa-
tions validates qualitative interpretation, which allowed us to
gain key structural insight into the constructs and conformations
for the informed generation of experimentally testable
hypotheses. We expect this to be valuable in the iterative
process of drug development toward the goal of modulating the
GPX4 activity as well.
However, little evidence emerged to construct a coherent

argument for the empirical results that show that GPX4 AB had
themost substantial activating effect. As we can observe from the
similar RMSF plot for both GPX4 AB and GPX4 WT and the
almost identical clustering of these two systems in theMD-MSM
analysis, GPX4 AB had a very similar conformation with that of
the GPX4 WT. To explain the activation of protein without
noticeable structural changes, we turned to the energetic
network analysis of the systems.

Figure 9. SEPs from D23 of the GPX4WT network: the SEP between D21 (yellow) and the three active site residues (green). Two distinct paths can
be found. SEP(23, 46) and SEP(23, 81) have significant parts of their pathways overlapped with each other.
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Energetic Network Analysis.Our research tried to identify
the differences between mutant AB and the wild-type structure
at the energetic level through energetic network analysis.
Energetic networks are a relevant new concept connecting
biological science with computational science. It has recently
been more widely applied to study specific problems of
biological interest due to its ability to represent the dynamics
of the molecule structures.46 We constructed the energetics
networks of the GPX4 systems to reflect the electrostatic forces
of interactions between residues. Given our interest in allosteric

signaling, such networks are beneficial as they potentially
highlight the conduction pathways on which allosteric signals
can propagate.
The most important observation from the electrostatic

networks analysis is the improved SEPs in the mutant AB
compared to those in the wild-type structure. Holding other
variables constant, about one-third of the SEPs we examined
were shorter in mutant AB than in the wild-type structure. It is

Figure 10. SEPs fromD23A of the GPX4 AB network: the SEP between D21 (yellow) and the three active site residues (green). Three, instead of two,
distinct paths can be found.

Figure 11. Conduction pathways of GPX4 WT: this graph shows the
surface representation of residues participating in the SEPs. In total, the
residues identified form two distinct conduction pathways from D21
and D23 to the active sites of the protein molecule.

Figure 12. Conduction pathways of GPX4 AB and GPX4 WT: this
graph shows the surface representation of residues participating in the
SEPs. In total, the residues identified form distinct three conduction
pathways from D21A and D23A to the active sites of the protein
molecule.
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important to reiterate that shorter SEPs indicate faster
conduction and less loss of electrostatic signals.
Since we normalized each edge based on its degree, we had

what is known as a transition matrix T such that T(i,j) gives the
probability that a random walker starting at node iwill transition
to node j. Therefore, after thresholding the graph, we only kept
the most statistically likely transitions between nodes i and j in a
random walk process. Since a random walk process is related to
the vibrational dynamics of a network,54 we believe that the
shorter paths could potentially correspond to an improved
ability for a perturbation from themutation site residues to affect
the binding site residue activity.
Bearing this in mind, our results provide insights into the

seemingly contradictory results between lack of structural
differences and empirical evidence of improved protein activity
of mutant AB. Despite the lack of positional changes in mutant
AB, it can potentially enhance the protein activity by having a
better communication channel for the long-range allosteric
interactions that can be detected at the energetic level.

Structural Implications of Energetic Networks. The
observations from energetic networks can also be corroborated
by examining the structural implications. Without any prior
assumption of the structures, we could nicely map the SEPs onto
structurally plausible conduction pathways for allosteric signals
to propagate from the mutation sites to the active sites of GPX4
protein through the medium of electrostatic forces of
interaction.
We only identified two conduction pathways from residues

D21 and D23 to all the three active site residues in the wild-type
structure. In the case of the double-mutant GPX4 AB, we
discovered another communication channel. The left and right
channels in mutant AB were identical to those of the wild-type
structures. However, the middle conduction pathway was
unique to mutant AB and corresponded to the residues
participating in one-third of the shorter SEPs identified for
mutant AB. Hence, this supports our hypothesis that mutant AB
improves the protein activity by transmitting electrostatic signals
better, faster, and with less loss of information. It also suggests
that allosteric signaling in molecules can occur in multiple ways.
Overall, the results indicated that the combined effect of both

positional and energetic pathways contribute to the overall
allosteric development of the proteins. These combined effects
could mean that spatially related allosteric mechanisms can exist
alongside energetic pathways, thus providing redundancy in the
signaling. Alternatively, alternative means could be accentuated
or dampened with specific triggers.
Exploring these ideas is only just beginning, and the

approaches from this paper suggest a potential pathway forward
to gaining deeper insights into both the coordinate-based and
energetics-based allosteric signaling. This may provide needed
insights into understanding how allosteric therapeutics may
operate. In the absence of a theoretical framework for the
operation of allosteric molecules, the design of allosteric
therapeutics has mainly been limited and mostly occurred
through serendipitous discoveries. Having tools to guide the
allosteric design of drugs will open the possibility of designing a
new class of drugs, opening the possibility of treating previously
undruggable targets.

■ MATERIALS AND METHODS
Simulation Specifications and Trajectory Analysis.

GPX4 starting configurations of the wild-type systems were
obtained from the human GPX4 U41C mutant (PDBID#

2OBI).50 Three activated systems were generated from this
crystal structure: two single mutants (D21A and D23A) and one
double mutant combining both mutations, all of which are
known to enhance the GPX4 activity.47 Standard lab procedures
were adopted to conduct the MD simulations. Energy
minimization with decreasing constraints on the protein solute
was followed by heating to 300 K, and the temperature was
maintained using the Berendsen algorithm. Using explicit
counterions and the TIP3P water model, an all-atom 1000 ns
(1 ms)MD simulation was executed for each equilibrated GPX4
mutant system in AMBER 1643,44,55,56 and the CUDA versions
of the pmemd routine running on NVIDIA GPUs were
parallelized.45,57 The parm99SB force field55 was used for
proteins and peptides, while the TIP3P potential58 was used for
water. To achieve electroneutrality, minimal salt was added to
each simulation cell to electroneutrality. Stability and con-
vergence of the MD were monitored by a standard protocol,
such as RMSD. The trajectories were analyzed with AMBER
utility CPPTRAJ59 and the molecular visualization programs
PyMol53 and visual MD.60,61 The zinc coordination parameter-
ization was achieved using the zinc AMBER force field. The
simulation system was treated under particle mesh Ewald
periodic boundary conditions with a 10 Å Lennard-Jones cutoff
in a truncated octahedral box. Na+ counterions were added to
the system for electroneutrality, and SHAKE was applied for
hydrogen bond motions.

MD Markov State Models. The MD-MSM study of GPX4
is a statistically driven illustration of the difference among the
GPX4 mutant activities due to changes at the structural level. It
is based on the shift in frequency of the conformational substates
of the four GPX4 systems throughout the simulation. The MD-
MSM procedure has been described in detail. In summary, the
trajectories of the MD simulations were stripped of ions, water
molecules, and side chains to only include the protein backbone
atoms. These trajectories were then concatenated into a single
long trajectory clustered using a K-means clustering method62

based on pairwise RMSD values implemented in CPPTRAJ.
The categorization of simulation frames into discrete proba-
bilistic states indicates the protein’s innate predisposition to
adopt specific conformations in the presence or absence of the
mutation. After the k-means clustering, we identified the
substates of the GPX4 mutants and then compared them to
analyze the extent to which the wild type differs structurally from
the other allosterically liganded protein systems with more
active protein activities. MSMs were constructed in terms of the
nodes and links of a complex network, with the nodes obtained
by clustering the microstates using the K-means clustering
algorithm. The links were defined from the Chapman−
Kolmogorov-compliant63 frequency of direct transitions be-
tween nodes. In all calculations, atom-based quantities obtained
from MD were merged to present results by each residue.

Pairwise Interaction Energy Network. The pairwise
interaction energy network is a method adopted to create
representations of protein systems at the energetic level. Such
networks have nodes representing the residues of the molecules
and edges representing the electrostatic/Van der Waals forces
between the pair of residues. Every node in the network will have
the node degree equal to n − 1, where n denotes the number of
residues in the molecule. The edges between each pair of
residues represent the sum of all electrostatic potentials between
pairs of atoms in each residue. We took the absolute value of
each of these interactions. Depending on the strength of the
force computed, different edges will have varying edge weights,

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c01289
ACS Omega 2022, 7, 29587−29597

29594

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c01289?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


with higher edge weights representing a higher degree of
energetic interactions between residues.
Since computing the pairwise interaction energy for every

frame in the trajectory is computationally intensive, we only
added pairwise energies for a selected subset of frames from each
trajectory. For each 1 ms-long trajectory with 5000 frames, we
extracted one frame out of every ten frames starting from the first
frame with a regular interval. Collected samples were then
concatenated into a new trajectory that serves as the ’trajectory’s
lightweight representation. We then fed the trajectories through
the energy analysis protocol from CPPTRAJ. We computed the
energy for every 165 residues and chose two combinations of
residue pairs by using a bash script that performed the CPPTRAJ
energy command with each pair of residues. Subsequently,
Python scripts were written to parse the CPPTRAJ outputs into
tensors of shape (N, X,D,D) whereNwas the number of frames
in the trajectory, X is the number of types of energy being
studied, and D is the residue number. To compute a
representative energy network of the systems, we simply
summed over each energy per energy channel. Finally, the
network edges were assigned thresholds by normalizing the edge
weights on a per-node basis and picking all nodes above that
threshold.
Using the open-source program Gephi, we created visual-

izations of all four networks for electrostatics and van der Waals
forces. We focused on examining the visualization of the
electrostatic energy network due to its long-range nature that is
more closely associated with the allosteric effect happening over
a longer distance in the GPX4 protein system. Since the network
created is wholly connected, we first filtered the edges in the
network based on edge weight to prepare the network for
visualization. This step allowed us to only look at energetically
essential edges in the system. To further understand the
importance of residues, we also denoted the nodes with an
average weighted degree. In the images, as shown in Figures 6
and 7, the more prominent nodes are associated with residues
that are more energetically important, and more opaque edges
represent higher weight.
In general, the drawing of a graph will have no relation to the

underlying dynamics of the system as there is no notion of
distance on structured chart data. However, these images were
generated using the ForceAtlas2 layout algorithm in Gephi, in
which nodes are represented as entities repulsing like-charged
particles while edges attract their nodes like springs. Therefore,
these images highlight some of the essential dynamics in
allosteric signaling and thus can offer us good intuition regarding
the types of properties on which future experiments may focus.

Shortest Electrostatic Pathways. The SEP is a novel
approach our lab proposed to examine allosteric effects in the
context of an energetic network. It refers to the shortest path
from the mutation site residues to the active site residues on a
given network. We examined six SEPs in total at every network
snapshot, from twomutation site nodes (allosteric site nodes) to
three active site nodes. We selected network snapshots with 2−
5% of the edges kept and compared the SEPs between mutated
and non-mutated system networks. We hypothesized that the
SEPs potentially reflected the most efficient pathways that
electrostatic signals propagate from the mutation sites (allosteric
sites) to the active sites with minimum signal loss. In the context
of the allosteric effect, this would provide clues on how allosteric
products work through electrostatic signaling.
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