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Molecularly imprinted polymers (MIPs) are a type of tailor-made materials that have ability to selectively recognize the target
compound/s. MIPs have gained significant research interest in solid-phase extraction, catalysis, and sensor applications due to their
unique properties such as low cost, robustness, and high selectivity. In addition, MIPs can be prepared as composite nanomaterials
using nanoparticles, multiwalled carbon nanotubes (MWCNTs), nanorods, quantum dots (QDs), graphene, and clays. This review
paper aims to demonstrate and highlight the recent progress of the applications of imprinted nanocompositematerials in analytical
chemistry.

1. Introduction

Molecularly imprinted polymers (MIPs) are highly cross-
linked robust materials which display excellent affinity
towards target compound. For the preparation of MIPs,
appropriate functional monomers and a cross-linker
agent are polymerized around the target compound
(template). The schematic demonstration of the molecular
imprinting technique is shown in Figure 1. Due to their
high affinity and selectivity for the desired compound,
MIPs can be efficiently used in different application
areas such as separation, catalysis, and sensor platforms
[1–18]. In addition to specific molecular recognition
abilities towards their target compound, MIPs can be
prepared as composite nanomaterials using nanoparticles,
multiwalled carbon nanotubes (MWCNTs), nanorods,
quantum dots (QDs), graphene, clays in nanoscale,
etc.

This paper provides the recent progress of the applications
of imprinted nanocomposite materials in analytical chem-
istry.

2. MIPs in SPE Applications

Solid-phase extraction (SPE) is an efficient sample prepa-
ration technique which is one of the most widely applied
approach in analytical chemistry. SPE has been first applied
in 1940s [19]. Then, the progress for the current analytical
applications was initiated in the 1970s. Different conven-
tional materials such as silica based [20, 21], carbon based
[22, 23], and clay based [24] resins were widely used in
various applications of SPE. Although it is a popular sample
preparation technique for the enrichment or extraction
of the desired molecules from the complex matrices, the
conventional SPE materials used in analytical applications
exhibit lower selectivity towards the target molecules that
lead to binding of other potentially interfering molecules
existing in the sample matrices. This issue is very important
especially for the complex biological samples such as urine
and blood. MIP-based SPE materials that display great
selectivity and binding affinity towards the target molecule/s
can overcome the drawbacks of the conventional resins.
In addition, MIPs preserve their stability under extreme
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Figure 1: Molecular imprinting process (reproduced with permission from [25]).

Figure 2: Schematic representation of SPE process (reproduced with permission from [26]).

conditions (e.g., high pressure, high temperature, and lower
and higher pH).

MIP-based SPE process composed of 4 steps is schemati-
cally demonstrated in Figure 2.

Sellergren published the first SPE application of MIPs
[29]. In the reported study, robust MIPs were developed
for the selective extraction of drug compound pentami-
dine. After this successful application, many MIP-based SPE
applications of various compounds in different areas were
conducted and reported in the literature [30–41].

In a reported study, Su et al. developed magnetic MIP
nanoparticles for the separation of bovine hemoglobin
(Bhb) [114]. In their study, firstly, the preparation of mag-
netic Fe3O4@SiO2-acrylic acid (AA) nanoparticles were

performed. In the second step, the preparation of BHb
imprinted magnetic nanoparticles was carried out by using
methacrylic acid (MAA), itaconic acid (IA), and N’,N-
methylenebisacrylamide as functional monomers and cross-
linker, respectively. The BHb imprinted magnetic nanoparti-
cles were efficiently used for the extraction of BHb with high
binding capacity (169.29 mgg-1).

Viveiros et al. developed a green strategy for the prepa-
ration of selective MIPs for acetamide which is a potentially
genotoxic impurity in active pharmaceutical ingredients
(API) [115]. In their study, silica beads were first functional-
ized with 3-(Trimethoxysilyl)propyl methacrylate and then
MIP layer was synthesized on the modified-silica beads
using supercritical CO2 as the green solvent. The prepared
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Figure 3: Schematic demonstration of the preparation ofMIP-basedmagnetic graphene oxide composite towards BPA and extraction process
(reproduced with permission from [27]).

acetamide imprinted polymers were successfully used for the
extraction of acetamide from beclomethasone dipropionate
which is the model API. The results showed that 100% of
acetamide was removed by using selective MIPs with only
very little loss of API (0.37%).

In another important study, Zhang and colleagues devel-
oped magnetic MIP-based-MWCNTs composite materials
for the removal of Bisphenol A (BPA) from water matrices
[116]. For this purpose, MAA was chosen as the functional
monomer.The results from rebinding experiments for BPA in
batch mode confirmed that the magnetic MIP-based MWC-
NTs have excellent affinity towards BPA and the obtained
maximum binding capacity was 49.26 𝜇molg-1.

Yan and colleagues demonstrated the application of
MIP/silica nanocomposites for the recognition of nitrocel-
lulose [117]. The surface of the SiO2 particles was firstly
conjugated with –OH groups and 3-(Trimethoxysilyl)propyl
methacrylate (MPS) was used for the functionalization of
the surface with an acrylyl groups. Then, nitrocellulose
(NC) imprinted shell was synthesized on the modified-SiO2
particles using the functional monomer MAA and cross-
linkee ethylene glycol dimethacrylate (EGDMA). The results
indicated that MIP/silica nanocomposites exhibited high
recognition ability towards NC with a maximum capacity of
1.7 mgmg-1.

In another interesting study reported by Wang and
coworkers, selective extraction of BPA was successfully
performed by using MIP-based magnetic graphene oxide
composites [27]. For this purpose, they firstly prepared
magnetic graphene oxide by using coprecipitation approach.
Then,MAA (functional monomer) and BPA (template, target

compound) were used for the preparation BPA imprinted
magnetic graphene oxide composite. The schematic demon-
stration of the preparation of MIP-based magnetic graphene
oxide composite towards BPA and extraction process is
shown in Figure 3. The results confirmed that the prepared
MIP-based magnetic graphene oxide composite displayed
high selectivity towards BPA in the presence of other com-
peting compounds such as phenol and 2,4-dichlorophenol.

Shea and his colleagues prepared imprinted hollow
beads for the extraction of 𝛽-estradiol from tap water
[118]. For this purpose, SiO2 nanoparticles were used as
the sacrificial support. After surface modification with 3-
(Trimethoxysilyl)propyl methacrylate, selective MIP shell
towards 𝛽-estradiol was synthesized on the surface of the
SiO2 nanoparticles using the functional monomer MAA and
cross-linker EGDMA.The highest binding of 𝛽-estradiol was
obtained within a very short time (15 min) with a maximum
binding capacity of 44.5 𝜇molg-1.

In another important study reported by Shen and col-
leagues [28], SiO2 particles having MIP shell were developed
for the SPE of tetrabromobisphenol A (TBBPA) from river
water. For this purpose, tetrachlorobisphenol A (TCBPA)was
chosen as the dummy template for the preparation of MIP
towards TBBPA (Figure 4). The prepared imprinted SiO2
particles showed fast binding kinetics (20 min) and high
binding capacity (230 𝜇molg-1) towards the target compound
TBBPA.

Guo et al. reported that magnetic graphene-based
MIP composite was prepared for selective recognition of
bovine hemoglobin (BHb) [119]. For this purpose, magnetic
graphene was prepared in the first step. Then, MIP layer
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Figure 4: Preparation of MIP/SiO2 composite for TBBPA (reproduced with permission from [28]).

selective to BHbwas prepared using the functional monomer
acrylamide (AAm) which has high affinity towards BHb
and cross-linker methylene bisacrylamide (MBA).Maximum
binding capacity of the magnetic graphene-based MIP com-
posite for BHb was found to be as 186.73 mgg-1.

Luo et al. developed magnetic graphene-based MIP com-
posite for the removal of 4-nitrophenol (4-NP) from aqueous
solutions [120]. Fe3O4 nanoparticles were immobilized on
surface of graphene sheet and magnetic graphene (MGR)
was prepared in the first step. Then, MGR/MIPs composite
was prepared by polymerization of phenyltriethoxysilane and
tetramethoxysilane in the presence of 4-NP. The preparation
of the MGR/MIPs composite is demonstrated in Figure 5.
The results indicated that the prepared MGR/MIP composite
displayed a great binding behavior for 4-NPwith an excellent
binding capacity (142 mgg-1).

In another research by Yang et al., core-shell magnetic
MIPs were prepared for selective removal of indole from
fuel oil [121]. In their research, magnetic Fe3O4 nanoparticles
were synthesized by using coprecipitation technique. Then,
surface of the prepared nanoparticles was coated with SiO2
using 3-(Trimethoxysilyl)propyl methacrylate. In the final
step, the functional monomer MAA and EGDMA (cross-
linker) were polymerized on the surface of the modified
magnetic nanoparticles for the preparation of selective MIP
shell towards indole. The results confirmed that the prepared

magnetic MIP composite displayed excellent recognition
ability towards the target compound indole. The binding
capacity of the composite for indole was obtained as 50.25
mgg-1.

In another interesting study [122], Cao et al. prepared
MIP-based-MWCNTs for the SPE of perfluorooctanoic acid
from aqueous matrices. In their study, they used the func-
tional monomer AAm for the preparation of MIP. After
characterization studies, the prepared MIP-based-MWCNTs
as composite SPE materials were successfully used for the
selective removal of perfluorooctanoic acid from aqueous
matrices. The obtained results confirmed that the binding
equilibrium was obtained in 80min.The determined binding
capacity was 12.4 mgg-1.

Table 1 shows the recent examples of the SPE applications
of nanostructured MIP-based composites.

3. MIPs in Sensor Applications

MIP-based sensors can be categorized into 3 basic groups:
electrochemical, spectroscopic, and piezoelectric sensors. In
the following sections, recent examples of MIP-based sensors
are briefly explained.

3.1. MIP-Based Electrochemical Sensors. In electrochemical
detection, the reaction generally leads to a change of current
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Figure 5: Magnetic graphene-based MIP composite towards 4-NP (reproduced with permission from [120]).

Figure 6: Preparation of MIP-based electrochemical sensor towards MNZ (reproduced from Li et al. (2015) [under the Creative Commons
Attribution License/public domain]).

(amperometric), potential (potentiometric), or conductivity
(conductometric) [129]. Selectivity and sensitivity are crucial
parameter for electrochemical sensors. Surface modification
of electrodes in electrochemical sensors by immobilization
of recognition components is an efficient approach to obtain
a high binding of target compound with good selectivity
and good response. The surface modification of electrodes
in the design and preparation of electrochemical sensors
has firstly been reported by Itaya and Bard in 1978 [130].
Since then, many studies on the design and development of
electrochemical sensors in different application areas have
been reported.

In a reported study [131], an electrochemical sensor
having MIP film for the theophylline recognition was

prepared by Kan and colleagues. In their study, the func-
tional monomer o-phenyldiamine was used as the functional
monomer for the preparation of MIP film. After MIP film
preparation on the glassy carbon electrode surface, gold
nanoparticles were immobilized ontoMIP film.Theprepared
MIP-based electrochemical sensor was characterized by SEM
and binding behavior towards theophylline was tested using
CV, differential pulse voltammetry, and EIS. The detection
limit for theophylline was found to be as 1.0×10−7molL-1.

Li and colleagues developed an electrochemical sensor
composed of nanoporous gold leaf (NPGL) electrode having
selective MIP layer for the detection ofmetronidazole (MNZ)
[132]. The preparation of the MIP-based electrochemical
sensor towards MNZ is schematically shown in Figure 6.The
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Table 1: Recent examples of nanostructuredMIP-based composites in SPE applications.

Reference Nanocomposite composition Analyte Sample
Applications to environmental samples

[42] Magnetic nanoparticles coated with MIP having the
functional monomer 4-vinyl pyridine (4-VP) Cr6+ Water

[43] Silica-MIP composite prepared by grafting method [UO2]
2+ Water

[44] Magnetic nanoparticles coated with MIP having –NH
groups Co2+ Water

[45] Chitosan-MIP magnetic nanocomposite Ni2+ Water
[46] Silica-MIP monolithic composite column 𝛼-cypermethrin Soil
[47] Cu(II)-mediated silica fiber-MIP composite Thiabendazole Soil

[48] Magnetic nanoparticles coated with MIP having MAA
and 4-VP as functional monomers Methyl parathion Soil

[49] Magnetic nanoparticles coated with MIP prepared by
using the functional monomer gelatin 17𝛽-estradiol Water

Applications to clinical samples

[50] Magnetic SiO2 nanoparticles havingMIP shell prepared
by using the functional monomer MAA Amitriptyline Human plasma and

urine
[51] Magnetic SiO2//MIP/chitosan biocomposite Baclofen Human urine

[52] Magnetic nanoparticles having MIP shell prepared by
using the functional monomer MAA Rizatriptan Human urine

[53] Magnetic nanoparticles having MIP shell prepared by
using the functional monomer MAA Paracetamol Human plasma

[54] Optical fiber coated with MIP prepared by sol-gel
method Caffeine Human serum

[55] Magnetic nanoparticles having MIP shell prepared by
using the functional monomer AAm Protoberberine alkaloids Rat plasma

[56] Magnetic CNTs coated with MIP having carboxyl
groups Catecholamines Human plasma

[57] Magnetic nanoparticles having MIP shell prepared by
using the functional monomer MAA Tizanidine Human urine

[58]
Magnetic nanoparticles coated with MIP having

aminoimide as the functional monomer Codeine Human urine

[59] Silica-MIP composite having AAm, MAA and 4-VP as
functional monomers Baicalin Rat tissues

Applications to food and beverage samples

[60] Carbon QDs-doped MIP monolithic column bearing
the functional monomer MAA Aflatoxin B1 Peanut

[61] Magnetic nanoparticles having MIP shell bearing the
functional monomer MAAm Dimethoate Olive oil

[62] Magnetic MWCNTs having MIP bearing the functional
monomer MAA Melamine Milk

[63] Magnetic nanoparticles having MIP shell prepared by
using ethyl paraoxon as the dummy template

organophosphorus
pesticide Red wine

[64] Magnetic nanoparticles coated with MIP having AA as
the functional monomer Imidacloprid Honey and eggplant

[65]
Magnetic nanoparticles coated with MIP having

MAAm and N-3,5-bis(trifluoromethyl)
phenyl-N’-4-vinylphenyl urea as functional monomers

Citrinin Rice

[66] Magnetic nanoparticles having MIP shell prepared by
using the functional monomer MAA Malachite green Fish

[67] Magnetic nanoparticles coated with MIP having oleic
acid Oxytetracycline Honey, Egg

[68] Carbon dots coated with MIP prepared by sol–gel
method Sterigmatocystin Grain
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Table 1: Continued.

Reference Nanocomposite composition Analyte Sample

[69] Magnetic nanoparticles coated with MIP having
dopamine as the functional monomer Gallic acid Grape, Apple, Peach and

Orange juices

[70] Magnetic nanoparticles coated with MIP having vinyl
groups Ni(II)

Cucumber, Cantaloupe,
Apple, Nectarine, Green
beans, Fenugreek, Dill,

Tuna fish

[71] Silica nanoparticles having MIP shell bearing the
functional monomer MAA Ofloxacin Milk

[72] Magnetic nanoparticles having MIP shell bearing the
functional monomer dopamine Diethylstilbestrol Milk

[73] Magnetic nanoparticles having MIP shell bearing the
functional monomer AAm 𝛽-agonists Pork

[74] Magnetic nanoparticles having MIP shell bearing the
functional monomer MAA Chloramphenicol Honey

experimental results confirmed that the developed electro-
chemical sensor has excellent binding affinity towards MNZ
in fish tissue samples. The detection limit was obtained as
1.8×10−11molL-1.

In a study reported by Gupta and Goyal, a new
graphene/MIP composite sensor for the determination of
melatonin in biological samples was prepared [133]. For
this purpose, MIP layer was prepared on the glassy carbon
electrode (GCE) surface by copolymerization of 4-amino-
3-hydroxy-1-naphthalenesulfonic acid and melamine around
the template melatonin. The optimization studies for MIP
layer formation were carried out changing the parameters
such as monomer/template ratio and time. After character-
ization of the prepared composite electrochemical sensor
for melatonin by SEM and EIS, the binding performance
of the sensor towards target melatonin was carried out by
using square wave voltammetry and cyclic voltammetry.
The obtained results showed that efficient recognition of
melatonin in plasma samples was successfully achieved. The
determined detection limit was 0.006 𝜇M.

Cui et al. prepared graphene-Prussian blue (GR-
PB)/MIP-based composite electrochemical sensor for
selective detection of butylated hydroxyanisole (BHA)
in food samples [123]. In this study, MIP film was
synthesized on the surface of GCE having GR-PB by
electropolymerization of the functional monomer pyrrole
and the template BHA (Figure 7). The prepared composite
sensor was characterized by SEM, cyclic voltammetry
(CV), electrochemical impedance spectroscopy (EIS),
and chronoamperometry. The results obtained from the
experiments for the sensor performance showed that
immobilization of GR and PB onto the GCE increased the
sensor sensitivity and the response towards target BHA. The
prepared composite electrochemical sensor showed a linear
response towards BHA (9 x 10-8 M to 7 x 10-5 M) and the
detection limit was calculated as 7.63 x 10-8 M.

In an interesting study published by Prasad and col-
leagues, a composite electrochemical sensor composed of
MIP film and MWCNTs was prepared for the detection of L-
histidine [134].MIP film selective to L-histidine was prepared

Figure 7: GR-PB/MIP-based composite electrochemical sensor
towards BHA (reproduced with permission from [123]).

by polymerization of 2-acryl amidoethyl dihydrogen phos-
phate (functional monomer) and EGDMA (cross-linker).
In the first step, the functional monomer was interacted
with Cu (II). Then, polymerization was performed in the
presence of Cu (II)-functional monomer-template complex.
The prepared MIP-based electrochemical sensor showed
enantioselectivity towards L-histidine and the detection limit
was found to be as 1.980 ngmL-1. However, cross-reactivity
studies of the prepared sensor for potentially interfering com-
pounds in the sample such as L-phenylalanine, D- histidine,
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L- and D-tryptophan, L-tyrosine, L-methionine, L-alanine,
L-glycine, L-proline, urea, dopamine, creatinine, uric acid,
L-glutamic acid, and L-ascorbic acid were also performed.
The results confirmed that the prepared composite electro-
chemical sensor exhibited very low response towards these
interfering compounds.

A carbon nanotube (CNT)/Graphene (GP)/MIP-based
composite electrochemical sensor for the detection of bovine
serum albumin (BSA) was developed by Chen and colleagues
[15]. For this purpose, carbon electrode (CE) was modified
with GP in the first step.Then, CNTwas prepared on the sur-
face ofmodified CEwith GP. In the final step,MIPmembrane
was synthesized on the CNT/GP/CE by electrodeposition of
aniline in the presence of template BSA.The prepared sensor
was successfully applied for sensitive recognition of BSA in
human serum with a detection limit of 6.2 x 10-11gmL-1.

Wang and coworkers reported the preparation of CdS
quantum dot/graphene/MIP-based electrochemical sensor
for selective recognition of 4-aminophenol in water samples
[135]. In their study, fluorine-doped tin oxide (FTO) elec-
trode was modified with CdS quantum dots and graphene
(GR). Then, a MIP film selective to target compound 4-
aminophenol was prepared by electropolymerization. The
results confirmed that the developed electrochemical sensor
specifically binds the target 4-aminophenol. The response
of the sensor towards 4-aminophenol was linear in the
concentration range of 5.0 x 10-8 M to 3.5 x 10-6 M and the
determined detection limit was 2.3 x 10−8M.

3.2. MIP-Based Spectroscopic Sensors. MIP-based spectro-
scopic sensors can be divided into 3 categories. These are
MIP-based-fluorescence sensors, MIP-based-chemilumines-
cence sensors, and MIP-based-SPR sensors. In the fluores-
cence based molecular recognition of the target compound,
fluorescence functional monomers are chosen for the fabrica-
tion of sensor platforms based onmolecular imprinting tech-
nique [136]. When the target compound binds to the sensor,
fluorescence intensity increases or decreases depending on
the sensor design.

In a significant research reported byZhang and colleagues
[137], CdSe/ZnS quantum dots (QDs) coated with MIP
film which shows fluorescence feature were synthesized for
the sensitive recognition of carbaryl in cabbage and rice
samples. For this purpose, MAA was used as the functional
monomer for the synthesis of MIP layer on the QDs surface
modified with the ionic liquid. The obtained results from
the fluorescence measurements showed that the fluorescence
sensor composed of QDS-MIP exhibited high recognition
ability towards carbaryl in the presence of metolcarb and
isorcarb which are analogues of carbaryl.

Mehrzad-Samarin et al. developed a novel graphene
QDs embedded silica MIP-based fluorescence sensor for the
selective recognition of metronidazole [138]. The prepared
sensor showed a linear response towardsmetronidazole in the
range between 0.2 𝜇M and 15𝜇M. The determined detection
limit was 0.15 𝜇M.

Li and coworkers developedmagnetic silica nanoparticles
having selective MIP shell for the recognition of Rhodamine
B from aqueous samples [139]. In this study, magnetic silica

nanoparticles were coated with MIP layer using nitroben-
zoxadiazole which is a fluorophore molecule. The obtained
results confirmed that the efficient detection of Rhodamine
B in aqueous samples was performed by using MIP-based
magnetic silica nanoparticles. The maximum binding of
Rhodamine B was obtained in 60 min with a high binding
capacity (29.64 mgg-1).

In another study reported by Jalili and Amjadi [140],
MIP/green emitting carbon dot composite was prepared
for the selective recognition of 3-nitrotyrosine which is a
biomarker for various diseases such as rheumatoid arthritis,
Alzheimer, atherosclerosis, osteoarthritis, and cardiovascular
diseases. The prepared MIP-based composite fluorescence
sensor was efficiently used for the selective recognition of 3-
nitrotyrosine in human serum samples in the concentration
range from 0.05 to 1.85 𝜇M and the detection limit was
obtained as 17 nM.

The research group ofHuwas developed aZnSQDs/MIP-
based fluorescence nanosensor for the sensitive detection of
sulfapyridine in tap water samples [124]. For this purpose,
Mn-doped ZnS QDs was used as the fluorescence core and
MIP shell was prepared on the surface of the QDs by using
the functional monomerMAA, cross-linker EDMA, initiator
AIBN, and template sulfapyridine (SPD). The schematic
demonstration of the preparation of ZnS QDs/MIP-based
fluorescence nanosensor towards sulfapyridine is shown in
Figure 8. The prepared ZnS QDs/MIP-based fluorescence
nanosensor exhibited high recognition ability towards SPD
with a detection limit of 0.5 𝜇M.

Chemiluminescence is another efficient approach that is
used for the investigation of the recognition performance of
MIP-based spectroscopic sensor systems. In this approach, a
chemiluminescence system is chosen and selective MIPs are
integrated to this system.When target compound binds to the
MIP-based sensor, chemiluminescence emission is generated.
The amount of the emission depends on the amount of bound
target compound to the sensor surface.

In a study conducted by Wang and coworkers [125],
a magnetic graphene oxide (GO)/MWCNTs/MIP-based
chemiluminescence nanosensor was developed for the sen-
sitive detection of lysozyme in egg samples. Figure 9
shows the schematic demonstration of the construction
of the magnetic GO/MWCNTs/MIP-based chemilumines-
cence nanosensor towards lysozyme. The developed chemi-
luminescence nanosensor displayed high sensitivity towards
lysozyme. The obtained detection limit was 1.9 x 10-9 gmL-1.

SPR-based sensor platforms are also popular recognition
systems. SPR technique relies on the measurement of the
changes in refractive index of thin layer on the metal surface.
The recognition element on the surface of the sensor is usually
gold or silver coated with thin film. Therefore, uniform
film layer is synthesized on the surface of MIP-based-SPR
sensors.

Many studies were published on the development of
MIP-based SPR sensors and their applications. For example,
the group of Piletsky developed a molecularly imprinted
nanoparticle-based SPR sensor system for the sensitive detec-
tion of diclofenac in aqueous solutions [141]. For this purpose,
diclofenac imprinted nanoparticles were synthesized by using
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Figure 8:The preparation of ZnS QDs/MIP-based fluorescence nanosensor towards sulfapyridine (reproduced with permission from [124]).

Figure 9: Schematic depiction of the preparation of magnetic GO/MWCNTs/MIP-based chemiluminescence nanosensor towards lysozyme
(reproduced with permission from [125]).

styrene as the functional monomer, EGDMA and trimethy-
lolpropane trimethacrylate (TRIM) as cross-linkers, and
pentaerythritol tetrakis (3-mercaptopropionate) as the chain
transfer agent. Then, the surface of the SPR sensor was acti-
vated by using N-Hydroxysuccinimide (NHS) and 1-Ethyl-
3-(3-dimethylaminopropyl)-carbodiimide (EDC). After acti-
vation step, the prepared diclofenac imprinted nanoparticles

were immobilized onto the surface of the sensor.The sensitive
detection of diclofenac was successfully achieved in the con-
centration range from 1.24 to 80 ngmL-1.The selectivity of the
SPR sensor towards diclofenac in the presence of propranolol
and vancomycin was also studied. The experimental data
confirmed that the sensor exhibited high selectivity towards
diclofenac.
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Figure 10: MIP-based QCM sensor towards imidacloprid and thiacloprid (reproduced with permission from [126]).

In another interesting study [142], Ashley et al. prepared
a MIP-based SPR nanosensor for the sensitive detection
of 𝛼-casein cleaning in place (CIP) wastewater samples.
For this purpose, immobilization of the target protein 𝛼-
casein (template) on the surface of glass nanobeads was
carried out in the first step. Then, MIP nanoparticles
were prepared by usingN-(3-aminopropyl)-methacrylamide,
the functional monomer acrylic acid, and cross-linker
N,N󸀠-methylenebis(acrylamide). Finally, 𝛼-casein imprinted
nanoparticles were incorporated onto the SPR sensor surface.
The results confirmed that the developed MIP-based SPR
nanosensor showed excellent selectivity and affinity (KD ∼

10 x 10−9 M) towards target protein 𝛼-casein. The detection
limit was obtained as 127 ngmL-1.

3.3. MIP-Based Piezoelectric Sensors. Quartz crystal micro-
balance (QCM) is another popular an analytical technique
that displays high sensitivity to mass changes on the sensor
surface. Many examples on different applications of QCM
sensor systems have been reported in the literature and some
examples are briefly described in the following.

Eren et al. [143] developed a QCM sensor system
having MIP layer for the detection of lovastatin in red
yeast rice. MIP layer was prepared on the surface of allyl
mercaptan modified-gold electrode by the polymerization
of HEMA, MAAsp as the functional monomers, and cross-
linker EGDMA in the presence of template compound
lovastatin. The developed QCM sensor having MIP layer was
successfully applied for the sensitive recognition of lovastatin
in red yeast rice samples. The limit of detection of the
prepared QCM sensor towards lovastatin was found to be as
0.030 nM.

A QCM having MIP layer towards profenofos was devel-
oped byGao and coworkers [144]. For this purpose, they used
MAA as the functional monomer for the synthesis of pro-
fenofos imprinted MIP layer on the surface of gold electrode
modified with 11-mercaptoundecanoic acid. The developed
QCM sensor with MIP layer showed high sensitivity towards
the target compound profenofos in aqueous solutions with an
excellent detection limit of 2.0 x 10-7mgmL-1.

In another study [126], Bi and Yang prepared a QCM
sensor platform bearing MIP layer for the detection of
pesticide compounds imidacloprid and thiacloprid in celery
juice. For this purpose, the immobilization of the target
compounds on the surface of the gold chip was performed
in the first step. Then, self-assembly of alkanethiols around
the target compounds was carried out and the template
removal was performed by using EtOH. The demonstration
of the QCM sensor bearing MIP layer towards imidacloprid
and thiacloprid is shown in Figure 10. The developed sensor
system displayed good recognition behavior towards the
target compounds imidacloprid and thiacloprid. It has also
been noted that these sensor systems are promising and have
the potential to detect pesticide residues in aqueous solutions
and vegetables.

In another interesting study [145], the detection of metol-
carb in food and beverage samples such as cabbage, pear,
and apple juice was carried out by using MIP-based QCM
sensor. The results indicated that the developed QCM sensor
displayed a linear response towards metolcarb in the range
between 5 and 70 𝜇gL-1. The detection limit was obtained as
2.309 𝜇gL-1.

Table 2 shows the recent examples of nanostructured
MIP-based composites in sensor applications.
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Surfactant

Surfactant TSA

TEOS

Functionalized silane

Figure 11: Preparation on MIP-based silica nanoparticles (reproduced with permission from [127]).

Figure 12: TiO2/WO3/MIP-based composite nanocatalyst towards 2-nitrophenol and 4-nitrophenol (reproduced with permission from
[128]).

4. MIPs in Catalytic Applications

Enzyme-like catalysts are also popular application of
imprinted nanomaterials in biomimetic catalysis. For the
preparation of enzyme-like catalysts based on molecular
imprinting approach, appropriate functional monomers
are chosen and incorporated in the polymeric network
by choosing the substrate of enzyme (as the template
compound) or the transition state analogue (TSA) of the
target reaction. After removal of the template from the
polymeric network, the obtained imprinted nanomaterial
behaves as enzyme-like catalyst towards the desired chemical
or biochemical reaction. Some examples reported in the
literature are briefly discussed in the following.

Markowitz and coworkers developed MIP-based silica
nanocomposites for the selective hydrolysis of substrates of
chymotrypsin and trypsin [127]. For this purpose, a TSA of
𝛼-chymotrypsin was used as the template compound for the
preparation of 𝛼-chymotrypsin-like nanocatalyst (Figure 11).
The silane groups conjugated with the amino acids which
exist in the catalytic center of the 𝛼-chymotrypsin were used

for the preparation of silica nanoparticles. The activity of the
prepared MIP-based silica nanocomposites was performed
by monitoring the hydrolysis of the substrates succinyl-
Ala-Ala-Pro-Phe-p-nitroanilide and benzoyl-DL-arginine-p-
nitroanilide. The developed imprinted nanocatalyst showed
great enantioselective hydrolytic activity towards the sub-
strate compounds.

Luo et al. developed a TiO2/WO3/MIP-based composite
nanocatalyst for the efficient degradation of 2-nitrophenol
and 4-nitrophenol [128]. One-step sol-gel method was
applied for the preparation of composite nanocatalyst by
using tetrabutyl orthotitanate which was chosen as the
functional monomer precursor and titanium source. The
schematic representation of the prepared composite nanocat-
alyst is shown Figure 12.

The obtained results indicated that the photocatalytic
activity of the prepared TiO2/WO3/MIP-based composite
nanocatalyst towards the target compounds is 2 times higher
than its corresponding nonimprinted catalyst.

In a study reported by Bonomi et al. [146], cat-
alytic imprinted nanogels were synthesized for the Kemp
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Table 2: Recent examples of nanostructuredMIP-based composites in sensor applications.

Reference Nanocomposite composition Analyte Sample
Electrochemical sensors

[75] Pencil graphite electrode coated with molecularly
imprinted polypyrrole Methylimidazole Serum

[76] Glassy carbon electrode modified with graphene/ Au
nanoparticles/MIP composite Colchicine Serum and

pharmaceuticals

[77] Glassy carbon electrode modified with graphene/Ag
nanoparticles/MIP composite Creatinine Saliva and serum

[78] Glassy carbon electrode coated with CNT/MIP
composite Tramadol Urine

[79] Carbon paste electrode coated with MIP Zn2+ River water, urine and
blood

[80] Graphite electrode coated with MIP Azithromycin Drug

[16] Glassy carbon electrode coated with graphene/
CNT/MIP composite Propyl gallate Vegetable oil

[81] Carbon paste electrode coated with CNT/MIP
nanoparticle composite Meloxicam Plasma

[82] Glassy carbon electrode coated with MIP/Pd
nanoparticles composite Norepinephrine Urine

[83] Carbon paste electrode coated with MIP Famciclovir Drug

[84] Glassy carbon electrode coated with graphene/MIP
membrane composite Artemisinin Plant extract

[85] Glassy carbon electrode coated with MIP/Au
nanoparticles composite Estradiol Milk

[86] Interdigitated electrode coated with CNT/MIP
composite Cotinine Organic solutions

[87] Glassy carbon electrode coated with CNT/MIP/Pt
nanoparticles composite Tartrazine Beverages

[88] Carbon electrode coated with graphene/MIP/Ni
nanoparticles composite Tetrabromo bisphenol A Tap water, rain and

lake water

[89] Carbon electrode coated with graphene/MIP/Ag
nanoparticles composite Bisphenol A Plastic samples and

soil samples

[90] Carbon paste electrode coated with MIP Trinitrotoluene Tap water and sea
water

Spectroscopic sensors

[91] CdTe QDs embedded-SiO2 particles coated with MIP
layer Neomycin

Pork, swine liver,
swine kidney, fish
meat, fish liver,

chicken meat, chicken
kidney and milk

[92] CdSe/ZnS QDs having MIP shell Trichlorfon Spinach and rape
samples

[93] Luminescent magnetic MIP nanoparticles having
LaVO4:Eu

3+ nanocrystals Diazinon Aqueous solutions

[94] Chemiluminescent Fe3O4@SiO2 magnetic
nanoparticles coated with MIP layer Sulfadiazine Urine

[95] SPR sensor having MIP layer bearing the functional
monomer MAA Clenbuterol Aqueous solutions

[96] SPR sensor having MIP layer bearing the functional
monomer MAA Ametryn Soybean and rice

[97] ZnS QDs doped with Mn/MIP composite Domoic acid Shellfish

[98] ZnO nanorods coated with molecularly imprinted
poly(ethylene-co-vinylalcohol) Melatonin Urine

[99] Magnetic nanoparticles having MIP layer bearing the
functional monomer MAA Mefenamic acid Aqueous solutions

[100] SPR sensor surface having MIP layer bearing the
functional monomer MAA L-nicotine Aqueous solutions



International Journal of Analytical Chemistry 13

Table 2: Continued.

Reference Nanocomposite composition Analyte Sample
[101] Graphene QDs coated with MIP layer Dopamine Serum and Urine

Piezoelectric sensors

[102] QCM sensor surface coated with
1,3,5-pentanetricarboxylic acid imprinted film Domoic acid Mussel extracts

[103] QCM sensor surface coated with MIP film having
styrene/DVB copolymer Terpenes Herbs

[104] QCM sensor surface coated with MIP film having 1,3,5
trisacrylamide 2,4,6 triazine as the functional monomer Folic acid Aqueous solutions

[105] QCM sensor having MIP layer bearing the functional
monomer MAA Ni2+ and Cu2+ Aqueous solutions

[106] QCM sensor surface coated with polythiophene MIP
film Pinacolyl methyl phosphonate Aqueous solutions

[107] QCM sensor surface having MIP/Au nanoparticles/
poly(o-aminothiophenol) membrane Ractopamine Swine feed

[108] QCM sensor having MIP layer bearing the functional
monomer AA Glucose Aqueous solutions

[109] QCM sensor having MIP layer bearing the functional
monomer MAA Microcystin Lake water

[110] QCM sensor having MIP layer bearing the functional
monomer 1-Vinyl-2-pyrrolidone Heparin Plasma

[111] QCM sensor having MIP layer bearing the functional
monomer MAA Methimazole Urine

[112] QCM sensor having MIP layer bearing zinc acrylate as
the functional monomer Human serum albumin Human serum

[113]
QCM sensor having MIP layer bearing

3-aminopropyltriethoxysilane as the functional
monomer

Enrofloxacin Milk, egg, chicken
muscle and pork

elimination reactions. The functional monomer 4-VP and
template compound 5-nitro indole were used for the syn-
thesis of imprinted nanogels. The results showed that the
prepared 5-nitro indole imprinted nanogels exhibited high
catalytic activity towards the substrate 1,2-benzisoxazole.
Substrate selectivity of the prepared catalytic nanogels was
also investigated using 5-Cl-benzisoxazole which is a sub-
strate analogue. The catalytic nanogels displayed lower affin-
ity towards 5-Cl-benzisoxazole compared to the substrate 1,2-
benzisoxazole.

In another interesting study, Zhou and colleagues
prepared a molecularly imprinted TiO2 photocatalyst
having thiol groups for the efficient removal of 2,4-
dinitrophenol from wastewater [147]. MIP-based TiO2
photocatalyst was prepared in water as a green solvent using
o-phenylenediamine as the functional monomer. The results
confirmed that the prepared MIP-based green photocatalyst
displayed excellent selectivity and degradation activity
towards 2,4-DNP in wastewater.

5. Conclusions

The growing number of published researches in which
nanostructured composite MIPs have been used for different
applications showed that these are promising materials for

the selective extraction, sensing, and catalysis. The reported
studies described in this review highlight the recent progress
in SPE, sensors, and catalytic systems using nanostructured
composite MIPs over the past years. Composite MIPs in
nanoscale as promising materials provide a new approach
for the selective SPE and sensors towards target molecules
in complex matrices. On the other hand, these materials
offer new routes to control aspects that determine the stereo-
chemical outcome of a catalysis reaction.
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