
ORIGINAL RESEARCH
published: 23 May 2022

doi: 10.3389/fninf.2022.877945

Frontiers in Neuroinformatics | www.frontiersin.org 1 May 2022 | Volume 16 | Article 877945

Edited by:

Thomas Nowotny,

University of Sussex, United Kingdom

Reviewed by:

Ankur Sinha,

University College London,

United Kingdom

Mantas Mikaitis,

The University of Manchester,

United Kingdom

*Correspondence:

Fred H. Hamker

fred.hamker@informatik.tu-chemnitz.de

Received: 17 February 2022

Accepted: 28 April 2022

Published: 23 May 2022

Citation:

Dinkelbach HÜ, Bouhlal B-E, Vitay J

and Hamker FH (2022) Auto-Selection

of an Optimal Sparse Matrix Format in

the Neuro-Simulator ANNarchy.

Front. Neuroinform. 16:877945.

doi: 10.3389/fninf.2022.877945

Auto-Selection of an Optimal Sparse
Matrix Format in the Neuro-Simulator
ANNarchy

Helge Ülo Dinkelbach, Badr-Eddine Bouhlal, Julien Vitay and Fred H. Hamker*

Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany

Modern neuro-simulators provide efficient implementations of simulation kernels on

various parallel hardware (multi-core CPUs, distributed CPUs, GPUs), thereby supporting

the simulation of increasingly large and complex biologically realistic networks. However,

the optimal configuration of the parallel hardware and computational kernels depends on

the exact structure of the network to be simulated. For example, the computation time

of rate-coded neural networks is generally limited by the available memory bandwidth,

and consequently, the organization of the data in memory will strongly influence the

performance for different connectivity matrices. We pinpoint the role of sparse matrix

formats implemented in the neuro-simulator ANNarchy with respect to computation

time. Rather than asking the user to identify the best data structures required for a

given network and platform, such a decision could also be carried out by the neuro-

simulator. However, it requires heuristics that need to be adapted over time for the

available hardware. The present study investigates how machine learning methods can

be used to identify appropriate implementations for a specific network. We employ an

artificial neural network to develop a predictive model to help the developer select the

optimal sparse matrix format. The model is first trained offline using a set of training

examples on a particular hardware platform. The learned model can then predict the

execution time of different matrix formats and decide on the best option for a specific

network. Our experimental results show that using up to 3,000 examples of random

network configurations (i.e., different population sizes as well as variable connectivity), our

approach effectively selects the appropriate configuration, providing over 93% accuracy

in predicting the suitable format on three different NVIDIA devices.

Keywords: neural simulator, rate-coded networks, auto-tuning, code generation, CUDA

1. INTRODUCTION

Models in computational neuroscience are implemented with different degrees of biological
detail. Particularly at the systems-level, a significant subset of models incorporate dynamic
rate-coded neurons to explain emergent functions of such networks and link them to
experimental data. In such networks, neurons are connected to other neurons by axons
and synapses, whose joint effect is captured by so-called weights wij and describes in

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.877945
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.877945&domain=pdf&date_stamp=2022-05-23
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:fred.hamker@informatik.tu-chemnitz.de
https://doi.org/10.3389/fninf.2022.877945
https://www.frontiersin.org/articles/10.3389/fninf.2022.877945/full

Dinkelbach et al. Auto-Selection of the Matrix Format in ANNarchy

how far the firing rate xi of a presynaptic neuron i affects the
firing of a post-synaptic neuron j. As outlined by Dinkelbach
et al. (2012), the sum of weighted inputs wij · xi, required to be
computed at each time step, is the dominating operation in large-
scale rate-coded neural networks, well before other operations
such as the numerical integration of ordinary differential
equations (ODE). It was shown using a simplified network model
that the choice of either a multi-core CPU or a GPU (Graphical
Processing Unit) as the computing backend depends on the
network’s structure. GPU implementations were more efficient
on mid- and large-scale networks in comparison to a multi-
core CPU implementation. Dinkelbach et al. (2019) observed for
a linear rate-coded model that the network had to consist of
thousands of neurons in order to utilize a GPU effectively.

When applied on populations of neurons, the weighted sum
of synaptic inputs can be computed by a sparse matrix-vector
multiplication (SpMV) between a (sparse) matrixW and a dense
vector Ex which results in a dense vector Ey:

Ey = W× Ex. (1)

The SpMV operation, which is a central kernel in many scientific
applications, is considered to be memory-bound and is impaired
by irregular access patterns to the dense vector Ex (e.g., Temam
and Jalby, 1992; Goumas et al., 2008; Williams et al., 2009;
Greathouse and Daga, 2014; Langr and Tvrdik, 2016; Filippone
et al., 2017). While each non-zero element of W is only accessed
once in the SpMV operation, there is frequent access to Ex at
different positions (e.g., Williams et al., 2009). Depending on
the distribution of the non-zeros within a row of the matrix,
this can lead to cache misses or re-loads, leading to noticeable
performance decreases on CPUs and especially on GPUs (e.g.,
shown in Dinkelbach et al., 2012). For optimal performance,
the number of these scattered accesses should be reduced,
for example through a reuse, efficient caching (CPU-oriented
architectures) or pre-loading into shared memory (GPU) of
the dense vector (e.g., Goumas et al., 2008; Williams et al.,
2009; Greathouse and Daga, 2014). To overcome this issue,
many different formats were proposed to perform the SpMV
operation efficiently on single-core, multi-core CPUs or GPUs
(see Langr and Tvrdik, 2016; Filippone et al., 2017 for more
details). Nevertheless, understanding the efficiency of applied
optimizations can be difficult as the interaction of optimizations
with each other or the underlying hardware is hard to predict
(see Goumas et al., 2008; Balaprakash et al., 2018 for a detailed
discussion). The efficiency of a single optimization may depend
on the matrix as well as on the specific platform as demonstrated
in the work of Williams et al. (2009). However, the efficiency
of an implementation can also change by advancements made
by compilers and hardware as pointed out by Steinberger et al.
(2016).

Due to the generally unknown sparsity of a matrix, choosing
an efficient parallel implementation of the SpMV operation for a
given matrix is therefore an important and hard problem (e.g.,
Liu and Vinter, 2015b; Lehnert et al., 2016; Hou et al., 2017).
However, there exists some knowledge about which given format

is more suitable for a given matrix. For example, Vázquez et al.
(2011) and Sedaghati et al. (2015) suggest that the density of
a matrix is a guiding factor for the selection of a particular
data structure. Furthermore, as shown by Vázquez et al. (2011),
the variability of row lengths can be a relevant criterion in the
selection of data formats.

Machine learning methods received increasing attention for
the tuning of implementations at various levels, including the
selection of code variants, parallelization strategies, or even
complete algorithms (see Balaprakash et al., 2018 for a recent
review). Modern multi-core CPUs and GPUs in combination
with compilers offer a rich possibility for programmers to adapt
their code to increase performance. Therefore, the possible
search space even for relatively simple operations can reach
millions of configurations (e.g., as shown by Datta et al., 2008;
Ganapathi et al., 2009 for the stencil operation). Auto-tuning
methods considering the SpMV operation were investigated
for single-thread, multi-core as well as GPU configurations
either using hand-tuning (e.g., Choi et al., 2010), heuristics
(e.g., Whaley et al., 2001; Sedaghati et al., 2015), or machine
learning methods (e.g., Ganapathi et al., 2009; Benatia et al.,
2018; Pichel and Pateiro-Lopez, 2018; Chen et al., 2019). As
hardware and algorithms steadily evolve, it is important to
integrate auto-tuning principles inside the specific application.
Such an integration allows to adjust the build process considering
the target platform (Balaprakash et al., 2018).

The present article shows that implementing different sparse
matrix formats in a neural simulator can improve the overall
performance of rate-coded neural networks. We present a two-
stage heuristic already embedded in our neural simulation
framework ANNarchy (Artificial Neural Networks architect,
Vitay et al., 2015). We also demonstrate that the performance
can be improved by integrating machine learning methods. This
should help developers of neural network models selecting a
suitable data structure representation for their specific network.

2. RELATED WORK

2.1. Sparse Matrix Formats for SpMV
As outlined in the introduction, the SpMV operation has been
thoroughly investigated and several sparse matrix formats have
been proposed. The following collection of formats is just a short
overview and by no means exhaustive. For more details, refer
to the reviews of Langr and Tvrdik (2016) and Filippone et al.
(2017).

Probably the most common and well-known format is the
compressed sparse row (or Yale) format (CSR). The non-zeros
of each row are stored in two arrays (one for the column indices
and the other one for the values). The start and stop indices of a
row are stored in a row pointer array. The ELLPACK/ITPACK
format (Kincaid et al., 1989) was intended to be efficient for
vector processors. This format decomposes the non-zeros into
two dense matrices whose dimensions are number of rows times
the maximum number of non-zeros within a row, one matrix
representing the column indices, the other the values. If the
matrix has heterogeneous row lengths, non-existing entries need
to be marked by a neutral element, which likely creates a large

Frontiers in Neuroinformatics | www.frontiersin.org 2 May 2022 | Volume 16 | Article 877945

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dinkelbach et al. Auto-Selection of the Matrix Format in ANNarchy

FIGURE 1 | Schematic representation of the compressed sparse row (CSR), ELLPACK, and ELLPACK-R formats derived from a dense matrix. The CSR format

comprises three dense vectors: a row_ptr array where the begin and end of subsequent rows are encoded. These indices are needed to select the correct values

from the column index and value array. Contrary to CSR, in ELLPACK/ELLPACK-R the column indices and the values are encoded in dense matrices. The

ELLPACK-R has an additional row-length (rl) array to encode the row lengths to spare the index checking.

memory overhead. This format is considered as GPU-friendly
if the dense matrices are stored in column-major1 order (Bell
and Garland, 2009; Vázquez et al., 2011). Vázquez et al. (2011)
proposed an extended version, ELLPACK-R, which introduces
an additional row-length array to encode varying row lengths
instead of checking each matrix entry with an if-clause. An
overview of the different sparse matrix formats is depicted
in Figure 1.

2.2. ANNarchy
The ANNarchy neural simulator is written in Python and
intended for the simulation of biologically detailed neural
networks. The equation-based interface of ANNarchy allows
a flexible and easy definition of the neuron and synapse
models (Vitay et al., 2015). Using an automatic code generation
approach, the model description is transformed into C++ code
allowing the use of parallel programming frameworks such as
OpenMP for multi-core CPUs or CUDA for GPUs for the

1This means that the data of a column is stored continuously in memory instead
of storing a row continuously (which is referred to as row-major).

efficient implementation of rate-coded and spikingmodels (Vitay
et al., 2015; Dinkelbach et al., 2019).

The current version 4.7.1.1 of ANNarchy provides several
sparse matrix formats for the computation of rate-coded neural
network models. In addition to the already existing list-in-
list/compressed sparse row implementation (as described in
Dinkelbach et al., 2012), an ELLPACK/ITPACK (Kincaid et al.,
1989; Vázquez et al., 2011) and a dense matrix format have been
added, which will be evaluated in Section 4. ANNarchy also
implements a Hybrid format as described by Bell and Garland
(2009) and a blocked sparse row (BSR) format as described by
Verschoor and Jalba (2012) and Eberhardt andHoemmen (2016),
but preliminary tests have shown that those formats are not
performing well in comparison to the others on the dataset used
in this work, so they are omitted for the present article. We
hypothesize that the structure of the matrices in our dataset, i.e.,
a relatively homogeneous row length (for Hybrid) and a high
scattering across the matrix (for BSR), are limiting factors for
these data formats.
Further, we extended our code generation approach to allow
auto-vectorization (using compiler hints e.g., #pragma simd)
for the continuous neural and synaptic state updates by

Frontiers in Neuroinformatics | www.frontiersin.org 3 May 2022 | Volume 16 | Article 877945

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dinkelbach et al. Auto-Selection of the Matrix Format in ANNarchy

reordering the code to reduce the number of branches. We
introduce for continuous transmission an implementation using
AVX-512, AVX and SSE4.2 instructions2 to address most of the
currently available CPU architectures.

2.3. Auto-Tuning Methods
As outlined by Balaprakash et al. (2018), auto-tuning in high-
performance computing is utilized at various levels within an
application. Many of these works/ideas are conjuncted with
highly optimized libraries like ATLAS3 (Whaley et al., 2001),
SPARSITY (Im et al., 2004), or OSKI (Vuduc et al., 2005). These
frameworks are often not limited to the SpMV operation but
implement a set of operations from the basic linear algebra
(BLAS) routines. This is in contrast to optimized libraries such as
clSpMV (Su and Keutzer, 2012) or SMAT (Li et al., 2013) which
only focus on the SpMV operation. From our perspective, there
are two types of approaches that are of special interest.

First, hand-tuning of a specific format is probably the most
common approach, where data structures are adapted to the
algorithm or processed data. Some examples are the CSR-like
(Hou et al., 2017), ELLR-T (Vázquez et al., 2012), BCSR (Choi
et al., 2010), BELLPACK (Choi et al., 2010), and sliced ELLPACK
Kreutzer et al. (2014) data structures. Especially for GPUs arise
the question of load balancing, i.e., how many threads should
be used and how many blocks should be used for computation
at the same time. The effect of the block size can already vary
noticeably on a single example as demonstrated by Eberhardt
and Hoemmen (2016). The performance was most consistent on
a Sandy Bridge CPU in comparison to a GPU and a Xeon Phi.
Guo andWang (2010) proposed amodel-driven approach for the
fine-tuning of the blocked CSR and blocked ELLPACK format to
tackle this issue.

The second class of approaches is the selection of a suitable
format for a given matrix, as investigated by Li et al. (2013),
Greathouse and Daga (2014), Sedaghati et al. (2015), or Benatia
et al. (2018). The main idea is to derive the decision based on
a set of features. The mapping of features into a decision can
be based on either heuristics or machine learning methods. For
instance, Lehnert et al. (2016) have shown that performance
prediction using machine learning methods can outperform
explicit performance models. The predicted computation time is
then used to derive the matrix format decision. In the present
manuscript we will follow the second class of approaches, more
precisely the work of Lehnert et al. (2016) and Benatia et al.
(2018), using regression techniques to predict the performance
of a sparse matrix format applied on a given matrix.

3. METHODS

Our focus is to develop an efficient tool that can predict
with high accuracy the suitable format for each connectivity
matrix of a specific neural network. In the following, we

2We use SIMD intrinsics which should not be confused with actual inline assembly
(for more details, see: https://www.intel.com/content/www/us/en/docs/intrinsics-
guide/index.html).
3Project homepage: http://math-atlas.sourceforge.net/.

propose two methods for matrix format selection: The first
is based on a simple heuristic (Section 3.1) and the second
uses a machine learning model (Section 3.2) for predicting the
appropriate format.

3.1. Two-Stage Heuristic for Format
Selection on GPUs
We followed the idea of Sedaghati et al. (2015), who analyzed the
obtained GFLOPS (floating operations per second, see Section
4 for a more detailed description) on several matrices for
potential correlations. In their work, they showed that a quite
good heuristic can be based on the fraction of non-zeros. We
are going to compare three available implementations: the CSR
format using an updated version of the algorithm presented in
Dinkelbach et al. (2012), the ELLPACK-R presented in Vázquez
et al. (2011) as well as a dense matrix representation.

There are several factors influencing the performance
achieved with a given implementation on GPUs. One crucial
fact is to ensure coalesced memory access toward accessed data
(e.g., Bell and Garland, 2009; Dinkelbach et al., 2012; Yavuz
et al., 2016). A memory access is considered as coalesced if
all threads within a half-warp4 can use the data loaded from
a 32-, 64-, or 128-byte segment (Bell and Garland, 2009). One
key difference between the implementations of the SpMV using
CSR and ELLPACK-R is that they are parallelized over different
dimensions: while our CSR implementation computes one row
per warp, a warp in ELLPACK-R computes a set of rows at the
same time.

Considering these different computation patterns and the fact
that a dense matrix is efficient for densely packed matrices, one
can obtain a simple decision tree as depicted in Figure 2. The
decision is two-fold: first we decide based on the matrix density,
i.e., the ratio of nonzeros to the total number of elements in
the matrix, whether the density is greater than a threshold. The
matrix is considered as dense in this case. Otherwise the average
number of non-zeros in a row (avgnzr) is considered. If this
value is lower or equal to 128, the ELLPACK-R format is selected,
otherwise CSR is chosen. The threshold for the first decision
stage is derived from observations made on the experiments
shown in Section 4.1. However, these observations should be
verified if they generalize, therefore we also analyzed the 3,000
data points generated for the machine learning model (as shown
in Supplementary Material, Section 3) and confirmed that the
threshold of 60% is appropriate for this decision stage. The
threshold for the second decision stage is based on theoretical
knowledge about the computation patterns. The threshold should
be chosen as a multiple of the warp size to ensure a full utilization
of the computation blocks. We analyzed the performance as
a function of the average number of non-zeros in a row (see
Supplementary Material, Section 3) and derived the value of
128 as suitable decision threshold for our dataset. However, the
analysis also suggests that this threshold could be fine-tuned to

4A warp is a group of 32 CUDA threads which process a given set of instructions
at the same time. Even though they can proceed in the code concurrently, the
efficiency rises if their execution does not diverge (Bell and Garland, 2009).

Frontiers in Neuroinformatics | www.frontiersin.org 4 May 2022 | Volume 16 | Article 877945

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
http://math-atlas.sourceforge.net/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dinkelbach et al. Auto-Selection of the Matrix Format in ANNarchy

FIGURE 2 | Two-stage heuristic for the matrix format selection on GPUs. The threshold values for both decision points were selected based on the analysis of our

datasets (see Supplementary Material, Section 3 for more details).

a specific CUDA device to achieve an optimal performance of
the heuristic.

3.2. Format Selection Using Machine
Learning
The heuristic approach is limited, as it is difficult to identify
differences arising from the execution of a given implementation
on different devices (see Section 4.2). To be efficient on diverse
devices, one would need to fine-tune the decision parameters for
each device. Therefore, it would be useful to have an automatic
selection which can be adapted through machine learning to data
obtained from each device.

The implementation of the prediction model requires three
general steps. The first step is made offline and consists in
generating the dataset necessary for the training and testing of the
model. The second step is also offline and consists in training the
model and testing it. The last one is online and consists of using
the model and performing predictions that help in selecting the
most suitable format.

3.2.1. Creation of the Dataset
For our benchmark, we follow a scheme similar to Dinkelbach
et al. (2012). We create two populations in ANNarchy. The
population sizes were randomly chosen from a fixed set of
sizes within the range of 1,000–20,000 neurons. We create
a projection between those two populations, which will be
referred to as the connectivity matrix in this section. For the
creation of this matrix, we either use a random probability (in
the range of 1–100%) or a fixed number of entries per row
(ranging from 128–4,096 entries). Using this scheme, we create
3,000 different network configurations. Each network is then
generated, compiled and simulated for 1,000 steps using each
data structure (in this case the CSR, ELLPACK-R and dense
matrix formats). At the end of this procedure, we obtained
3,000 data points which consist of a list of features (described

in the next section), the achieved computational time for each
of the three formats and the format which would be chosen by
the heuristic.

3.2.2. Feature Selection
The computation time of a rate-coded network heavily depends
on the number of connections between the different populations.
Since these various connections are structured in the format of
sparse matrices, we focus on the properties of this particular
type of matrix to define the relevant input features to the auto-
tuning network. We derive for the matrices the features depicted
in Table 1.

This set of features is a subset of features which are typically
used in the SpMV auto-tuning literature (e.g., Li et al., 2013;
Lehnert et al., 2016; Benatia et al., 2018; Chen et al., 2019).
In particular, the work of Lehnert et al. (2016) and Benatia
et al. (2018) suggests that the set of features used to detect
a format depends on the format itself. For instance, we left
out the difference between the maximum number of nonzeros
(MAXNZR) and the average nonzeros per row (AVGNZR)
as our preliminary experiments indicated that this feature is
not helpful on our dataset. Considering the work of Vázquez
et al. (2011) and Benatia et al. (2018), we believe this feature
is a helpful indicator for the Hybrid format which is not
used in the present work (see Section 5 for more details) and
thus we omit this criterion. Li et al. (2013) proposed two
additional values to characterize diagonals in matrices which
might indicate the usage of diagonal formats. It is worth
noting that not all approaches use such features. Pichel and
Pateiro-Lopez (2018) use for example, an image-like tensor
to represent the features of the connectivity matrix which is
scaled down to be used as input to a convolutional neural
network (AlexNet, Krizhevsky et al., 2012) to derive the optimal
matrix format.

Frontiers in Neuroinformatics | www.frontiersin.org 5 May 2022 | Volume 16 | Article 877945

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dinkelbach et al. Auto-Selection of the Matrix Format in ANNarchy

TABLE 1 | A set of features used to characterize the sparse matrices.

Features Description

N Number of rows in the matrix

M Number of columns in the matrix

NNZ Number of nonzeros in the matrix

DES Density of the matrix

AVGNZR Average number of nonzeros per row

MINNZR Minimum number of nonzeros per row

MAXNZR Maximum number of nonzeros per row

TABLE 2 | Best network configurations found by the Optuna library within 150

trials for each dataset.

NVIDIA K20m NVIDIA RTX 2060 NVIDIA RTX 3080

Normalization 7 7 7

Dense 119 124 155

Dense 187 195 86

Dense 199 105 85

Dense 96 127 150

Dense / / 66

Output 3 3 3

3.2.3. Machine Learning Model
The machine learning model is implemented using the
TensorFlow (Abadi et al., 2016) library version 2.6.25. The fully-
connected feedforward neural network consists of an input layer
with seven neurons representing the features (as discussed in
Section 3.2.2), a feature normalization layer, a number of hidden
layers and one output layer with three neurons. Each of these
neurons represents a possible data structure: CSR, ELLPACK-
R, and dense. The output of these neurons, i.e., the predicted
performance for a given network in GFLOPs, is then read out to
determine the fastest configuration. The hidden layers consist of
rectified linear units (ReLu) and the number of layers as well as
the number of units in each layer is determined byOptuna (Akiba
et al., 2019), a Bayesian optimization library for hyper-parameter
optimization used in many machine learning workflows. The
search space is here the set of possible configurations, in our
case the number of layers from 2 to 5 (motivated by the work
of Benatia et al. (2018) who identified four layers as optimal
for ELLPACK and five as optimal for CSR on their dataset),
the number of neurons in each layer (64–256) and the learning
rate (1e-7 to 1e-2). The objective function provided to Optuna
is the test accuracy, an average resulting from a 5-fold cross-
validation (see Section 4.4.1 for more details) without repetitions.
We configured Optuna to perform 150 trials for each of the three
datasets (i.e., the three CUDA devices considered in this work)
and the obtained best configurations are depicted in Table 2.

The optimizer is Adam with the default parameters and the
learning rate is determined by Optuna. The loss function is the
mean squared error (mse), as this is a regression problem.

5https://doi.org/10.5281/zenodo.5645375

4. RESULTS

All the experiments were performed using the ANNarchy 4.7.1.1
release6. The measured computation times are recorded with
the Python time package. When we analyze the performance
in this section, we evaluate the execution of 1,000 steps within
the ANNarchy neural simulator. As the populations are not
defined by means of equations, the simulation time is almost
equal to the execution time of the SpMV. We use in this article
FLOPS (floating operations per second) as a metric to evaluate
the performance, which is used commonly across the SpMV
literature. This value is computed for a given data structure based
on the measured computation time t in seconds for the 1,000
iterations (as mentioned in Section 3.2.1) and the number of
nonzeros (nnz) in the matrix:

FLOPS =
2× 1,000× nnz

t
(2)

The factor 2 comes from the fact that the SpMV requires one
multiplication and one addition for each non-zero value. For
an easier handling of the values, we transform then FLOPs
to GFLOPs (giga-FLOPs). Langr and Tvrdik (2016) suggest to
choose compiler flags for performance comparisons in order
to achieve the best possible performance. The ANNarchy
framework was therefore configured to use the optimization
flags -march=native7 -O38 -ffast-math9 for the g++ compiler to
enable typical optimizations. The CUDA compiler is configured
without further compiler flags as -O3 is automatically enabled for
device codes10. For a more detailed discussion on the effect of
-ffast-math and the CUDA compiler counterpart –use_fast_math
we would like to refer to Supplementary Material, Section 4.
The following sections will compare the performance achieved
on three NVIDIA devices: a K20m, a RTX 2060, and a
RTX 3080. Some hardware characteristics are provided in the
Supplementary Material, Section 1.

4.1. Dense vs. Sparse Matrix Formats
Sparse matrix representations require a memory overhead to
index the elements of a matrix (e.g., row pointers). When
the matrix becomes denser, it may become inefficient to
use a sparse matrix representation instead of a dense one
(see Supplementary Material, Section 2 for more details). To
illustrate this, we define a 2,000 × 2,000 matrix with varying
sparsity levels ranging from 10% to fully-connected. We compare
the achieved throughput in GFLOPs averaged across 15 runs for a
single thread on a AMDRyzen 7 2700XCPU (Figure 3) and three
different NVIDIA devices (Figure 4). The CSR data structure
(blue), the dense format (orange) and a format selected by the
heuristic (green) are compared.

6https://doi.org/10.5281/zenodo.6417924
7The march flag let the compiler generate the code for a specific CPU architecture.
Providing native let the compiler determine the CPU automatically. For more
details, see https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html.
8Formore details, see https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html.
9For more details, see https://gcc.gnu.org/wiki/FloatingPointMath.
10https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#ptxas-
options-opt-level

Frontiers in Neuroinformatics | www.frontiersin.org 6 May 2022 | Volume 16 | Article 877945

https://doi.org/10.5281/zenodo.5645375
https://doi.org/10.5281/zenodo.6417924
https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/wiki/FloatingPointMath
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#ptxas-options-opt-level
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#ptxas-options-opt-level
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dinkelbach et al. Auto-Selection of the Matrix Format in ANNarchy

FIGURE 3 | Comparison between a dense matrix representation and the compressed sparse row format on a AMD Ryzen 7 2700X using a single thread. We depict

the achieved performance in GFLOPs as a function of matrix density (A). In this setup we compare a 2,000 × 2,000 matrix with varying density levels and compare a

CSR (blue) and dense (orange) implementation. We compared additionally the improvement by a hand-written AVX implementation (dashed line). The gained

improvement by this implementation is depicted in (B).

For the CPU (Figure 3A), we can see that the GFLOPs
are almost constant for the CSR format, i.e., the computation
time increases linearly with the number of non-zeros in the
matrix, while the contrary applies for the dense matrix as the
computation time is not dependent on the number of non-zeros:
the achieved GFLOPs are low for sparse matrices and increase
with the matrix density. As outlined in Section 2.2, we added also
hand-written vectorization using AVX on the AMDRyzen7 CPU.
The results for the vectorized implementations are depicted in
Figure 3A as dashed lines. The relative improvement provided by
the vectorization is also depicted as a bar graph in Figure 3B. We
can see that the improvement is below the theoretical maximum
which would be four for double precision on an AVX-capable
CPU. The reduced efficiency, especially for the dense matrix
format, should be linked to the fact that the SpMV is a memory-
bound problem. We also see that the improvement is almost the
same for a density around 20% while the improvement achieved
on the CSR depends on the density: for small densities, the
implementation benefits mostly for small row lengths and the
reduced memory consumption.

To evaluate the performance on GPUs we compare the
K20m (Figure 4A), the RTX 2060 (Figure 4B) and the RTX
3080 (Figure 4C). On all three devices, we can see that for
small densities the achieved throughput of the CSR (blue line)
implementation is lower than for higher densities. This is a
consequence of the implementation [as discussed in Section 3.1;
more details can be found in Dinkelbach et al. (2012) for our
version of the CSR and in Vázquez et al. (2011) for the ELLPACK-
R format] as the thread groups processes rows together: there
must be a sufficient number of elements in a row to achieve a
high throughput.

In both experiments, we can see that, for higher matrix
densities, the CSR format is outperformed by the dense matrix
format (orange line). This motivated the first stage of our
heuristic (green line). The value 60% was originally obtained
on the K20m GPU. A comparison to the newer devices
would suggest 70%. We have analyzed this for all examples
in our dataset and determined 60% as a suitable value (see
Supplementary Material, Section 3).

4.2. Different Sparse Matrix Formats
This section illustrates the necessity for different sparse matrix
formats. We investigate the performance improvement of an
ELLPACK-R and dense implementation against the CSR on
three GPUs which is a criterion suggested by Langr and Tvrdik
(2016). To compare the formats, we compute the ratio between
the GFLOPS required by CSR and the GFLOPS of the other
format. A more detailed analysis of these values is depicted in the
Supplementary Material, Section 3.

Figure 5 depicts the average performance on the 3,000 data
points in our dataset. The orange line represents the median of
the obtained values and the green triangle represents the mean.
The CSR format outperforms the other two formats in most cases
on the K20m (Figure 5A) and the RTX 3080 (Figure 5C), as the
average performance of ELLPACK-R and dense is lower than 1.0.
However, there is a noticeable number of values >1.0, indicating
that some matrices benefit from another format than CSR. We
also found that the results on the RTX 2060 (Figure 5B) are
different in the sense that the ELLPACK-R outperforms in many
cases the CSR format which is represented by the average >1.0.

Comparing the results obtained on the three investigated
CUDA devices supports the claim of Balaprakash et al.

Frontiers in Neuroinformatics | www.frontiersin.org 7 May 2022 | Volume 16 | Article 877945

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dinkelbach et al. Auto-Selection of the Matrix Format in ANNarchy

FIGURE 4 | Achieved performance in GFLOPs on three devices: a NVIDIA K20m (A), a NVIDIA RTX 2060 (B), and a NVIDIA RTX 3080 (C). As for the single thread

CPU (Figure 3) we compare a CSR (blue) and dense (orange) implementation on a 2,000 times 2,000 matrix with varying filling degree. In the range of 60–70% the

dense matrix representation outperforms the CSR which motivated the first stage of our heuristic.

(2018). The performance behavior of a given implementation
can drastically change with evolving hardware. The relative
performance of our ELLPACK-R and dense implementations
toward the CSR implementation indeed shrinks noticeably.

4.3. Automatic Format Selection
In this section, we report on the results of the two strategies
for automatic format selection: the heuristic and the predictive
machine learning approach. We compare the results on the
K20m (Figure 6A), the RTX 2060 (Figure 6B), and the RTX
3080 (Figure 6C). Considering the distribution of the selected
formats, we generally notice that there is no significant
difference between the K20m and the RTX 3080 but the results
of RTX 2060 appears to deviate. Furthermore, the machine
learning model delivers more accurate results than the heuristic,
especially on the RTX 2060. The heuristic tends to select
on all three devices the CSR (blue bars) in too many cases,
in particular on the RTX 2060. As noted earlier, this might
be improved by device-specific thresholds used in the second
stage of the heuristic. The machine learning model was able
to select in 95.67% (K20m), 93.0% (RTX 2060), and 94.83%
(RTX 3080) of the cases the correct format resulting in the
fastest computation time. The selection of the heuristic was
in 87.67% (K20m), 71.67% (RTX 2060), and 77.83% (RTX
3080) of the cases correct. We hypothesize that device-specific
decision thresholds could improve the performance achieved
on the RTX 2060 and RTX 3080, but it would be difficult to
derive these thresholds on all possible hardware. It might be
interesting to note that CSR format was in 63.83% (K20m),
44.67% (RTX 2060), and 60.17% (RTX 3080) of the cases the
correct format.

4.4. Validation and Stability of the Machine
Learning Approach
The performance of the ML approach depends on the correct
selection of features and the size of the dataset dedicated to
training and testing. However, the choice of a basic cross-
validation method (random split of the data into 80% for
training and 20% for testing) is not sufficient to estimate the
appropriateness of the trained model, since it may have by
coincidence excellent results only on the part selected for testing
(20%). To avoid this issue, we have opted for the repetitive cross-
validation method (Section 4.4.1). To define the proper size of
the data required to obtain a stable model (a high accuracy
with the lowest standard deviation), we also perform tests (using
the repetitive cross-validation method) on different dataset sizes
(Section 4.4.2).

4.4.1. Cross-Validation
The five-fold cross-validation procedure divides the data set
into five non-overlapping folds. During each iteration of the
process, a fold is retained as a test set, while all others are used
for the training. In the end, a total of five models are fitted
and evaluated on the five retained test sets, and the average
performance accuracy is calculated. This procedure is repeated
ten times, and the mean performance across all folds and all
repetitions is reported.

Figure 7 shows the variation of the performance of the 10
repetitive five-fold cross-validations applied on the dataset of
the NVIDIA K20m. We can see that for the dataset with 3,000
data points, the optimal performance selection rate slightly varies
depending on the fraction of data selected as training set but
retains a high level of correctness over 93% and therefore still
outperforms the heuristic.

Frontiers in Neuroinformatics | www.frontiersin.org 8 May 2022 | Volume 16 | Article 877945

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dinkelbach et al. Auto-Selection of the Matrix Format in ANNarchy

FIGURE 5 | Relative performance of ELLPACK-R and dense matrices in comparison to a CSR averaged across the 3,000 matrices in our dataset. We compare the

results obtained on the NVIDIA K20m (A), the NVIDIA RTX 2060 (B), and the NVIDIA RTX 3080 (C). Although CSR is the fastest data structure in many cases, there is

a noticeable number of cases where the other formats appear to be superior. The performance differences between the matrix formats are higher on the Tesla K20m

(A) and the NVIDIA RTX 2060 (B) than on the RTX 3080 (C) especially for the ELLPACK-R matrix format. The orange line depicts the median, the green triangle the

mean and the circle denote outliers.

FIGURE 6 | The distribution of selected formats on three GPUs: NVIDIA K20m (A), NVIDIA RTX 2060 (B), and NVIDIA RTX 3080 (C). We compare the data (left), the

heuristic (middle), and the machine learning model (right) for each GPU. We can see that our heuristic tends to select the compressed sparse row (blue bars) in too

many cases, which leads to lower performance, in particular on the NVIDIA RTX 2060.

4.4.2. Influence of the Size of the Dataset
Generating the dataset can be quite time-consuming: the
generation of the 3,000 data points required 2–3 days in this
case. We therefore performed experiments (multiple repetitive
five-fold cross-validations with varying each time the size of the
dataset) to define the smallest dataset size enabling us to achieve

a good accuracy of the selection of the correct matrix format.
Bayesian optimization usingOptuna for 150 trials is used to select
the best architecture in each case.

Figure 8 shows the accuracy variation of the optimal format
selection with respect to the number of samples used for training.
As one would expect, the performance increases with the size

Frontiers in Neuroinformatics | www.frontiersin.org 9 May 2022 | Volume 16 | Article 877945

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dinkelbach et al. Auto-Selection of the Matrix Format in ANNarchy

FIGURE 7 | Ten repeated cross-validations on 3,000 data samples recorded on the NVIDIA Tesla K20m. The dataset is divided into five non-overlapping folds. During

each validation stage, four folds containing 2,400 samples are used for training, and the remaining fold with 600 units is used for testing the accuracy of the best

format selection. The middle (orange) line of the box is the median, the green triangle the mean and the circles denote outliers.

of the dataset. However, already with one-third of the dataset
we could achieve an accuracy of 92.94% for the selection of the
optimal format.

5. DISCUSSION

Continuous transmission is a dominating computation kernel
for rate-coded neural networks (Dinkelbach et al., 2012) that
corresponds to the sparse matrix vector multiplication, a
well-investigated topic by many researchers over decades on
various hardware platforms. In this article, we investigated the
application of the ELLPACK-R and dense format derived from
the literature and study their performance within the neural
simulation framework ANNarchy.

As stated in the literature, there is no “one-size-fits-all”
solution, although the CSR format achieves a good performance
in many cases, which was also shown, e.g., by Benatia et al. (2018)
or Chen et al. (2019). Using a larger set of connection matrices,
we have shown that the usage of different matrix formats can
help to improve the performance on CPUs as well as GPUs by
distinguishing between sparse and dense matrices (Section 4.1).
For GPUs, we further studied the ELLPACK-R format proposed
by Vázquez et al. (2011) in addition to our CSR implementation
(Dinkelbach et al., 2012). In Section 4.2, we have shown that CSR
is in many cases the best format, but it can be outperformed
by a noticeable factor by the ELLPACK-R and the dense matrix

format. In summary, the availability of different sparse matrix
formats can be used to improve the performance but the selection
is not trivial, as expected from the literature (e.g., Liu and Vinter,
2015a).

In the case of heavy simulations, a user-friendly simulation
environment should measure and select the right sparse matrix
format for a specific network. We presented a first automatic
selection based on some simple rules which we derived from
experiments and which is implemented in ANNarchy 4.7.1.1.
We have also shown that this heuristic-based selection can be
improved by the help of machine learning techniques. Our
approach using machine learning techniques is comparable to
the work of Lehnert et al. (2016) and Benatia et al. (2018).
Based on a set of features, we build up a neural network which
predicts the performance of the format. Lehnert et al. (2016)
used computational time for the performance evaluation while
we used GFLOPs as a metric. Both our work and that of Lehnert
et al. (2016) uses regression for the prediction of the performance
of the data format. Contrary to the previously discussed works,
we do not use a fixed network but use the hyperparameter
optimization framework Optuna to find a suitable network
configuration for a given dataset. There is an important caveat:
Comparing matrix formats using FLOPS as a metric generates a
hardware dependency (Langr and Tvrdik, 2016), which we also
observed in our recorded data (see Section 4.2). This means that
the users need to generate the dataset on their own machine,
which requires several hours up to a few days for the data

Frontiers in Neuroinformatics | www.frontiersin.org 10 May 2022 | Volume 16 | Article 877945

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dinkelbach et al. Auto-Selection of the Matrix Format in ANNarchy

FIGURE 8 | Variation of the accuracy of the optimal format selection with respect to the number of samples used for training (NVIDIA Tesla K20m). Each measurement

and its corresponding standard deviation represents the average of 10 repeated cross-validations.

generation, although the results in Section 4.4.2 suggest that the
number of required data points can be reduced.

The present work demonstrates the performance
improvements that can be reached by using the ELLPACK-
R format in ANNarchy. However, the ELLPACK/ELLPACK-R
formats require more memory caused by padding zeros for
strongly varying row lengths and therefore, Bell and Garland
(2009) proposed a Hybrid format, which combines an ELLPACK
format for most entries, and those elements which are in the
long rows are stored in a separate coordinate format. This was
not the case in our dataset, and its not clear to us how relevant
this is for neurocomputational models, as this would mean that
the number of synapses per neuron vary strongly within one
projection. The present CSR implementation could be further
optimized for short rows using the CSR-stream implementation
proposed by Greathouse and Daga (2014), although this
introduces another hyper parameter: the number of nonzeros
processed by one warp. The CSR5 storage format (Liu and
Vinter, 2015a) introduces additional two hyperparameters but
should be efficient for SIMD-capable CPUs, GPUs, or other
accelerators like the Xeon Phi, while introducing a memory
overhead around 2% of the original CSR (Liu and Vinter, 2015b).

Other works focus on the grouping of rows into computation
blocks, i.e., by slicing the matrix into pieces, as done for the
CSR (e.g., Oberhuber et al., 2011) or the ELLPACK format (e.g.,
Monakov et al., 2010; Kreutzer et al., 2014). Kreutzer et al.
(2014) highlight that their modified sliced ELLPACK format is

applicable to GPUs as well as SIMD-capable CPUs. Another class
of formats proposed in the literature are blocked formats such
as the blocked compressed sparse row (BSR or BCSR, e.g., Choi
et al., 2010; Verschoor and Jalba, 2012; Eberhardt and Hoemmen,
2016; Benatia et al., 2018) or the blocked ELLPACK format (Choi
et al., 2010). The idea is thatmatrix is split into several small dense
matrices. As these sub-matrices are dense, a coalesced and fully
cacheable access to the dense vector is possible, which is desirable
for performance (Temam and Jalby, 1992; Im and Yelick, 2001;
Im et al., 2004; Goumas et al., 2008; Williams et al., 2009). These
formats appear to be efficient if the nonzeros in a matrix are
clustered, although the selection of the correct block size can
be challenging (Im and Yelick, 2001). For matrices where the
nonzeros are widely spread, the memory overhead will be too
large and no performance benefit can be expected in comparison
to other formats.

The present work focuses on the performance prediction
for sparse matrix formats on GPUs. Nonetheless, the same
procedure can be applied for CPUs. Preliminary tests with the
current ANNarchy 4.7.1 release has shown that the performance
differences between formats are small in comparison to
the differences observed on GPU. This hardens the correct
performance prediction and opens the question of whether the
approach is necessary at all. It is important to note that the
recent implementations of our CPU formats are not comparable
to highly optimized libraries like OSKI, SPARSITY, or ATLAS,
as low-level optimization like padding, local store blocking or

Frontiers in Neuroinformatics | www.frontiersin.org 11 May 2022 | Volume 16 | Article 877945

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dinkelbach et al. Auto-Selection of the Matrix Format in ANNarchy

register blocking (e.g., presented in Im and Yelick, 2001; Im
et al., 2004; Williams et al., 2009) are still missing. We started
to apply such optimizations, e.g., hand-written SpMV which
improve the performance (see Section 4.1), but this increases the
complexity of the code generation noticeably. Nonetheless, we
have implemented in the ANNarchy 4.7.1.1 the heuristic selection
of dense matrices instead of sparse matrices.

Brian2 (Stimberg et al., 2019), GeNN (Yavuz et al., 2016) as
well as ANNarchy do not switch the floating precision from
double to single precision automatically. As highlighted by
Hopkins et al. (2020), this could lead to numerical errors whose
importance need to be evaluated by the modeler. However,
the performance improvement on GPUs and CPUs (especially
using SIMD extension) could be noticeable. The reduction of
precision can improve the performance of the SpMV, e.g., shown
by Bell and Garland (2009) or Greathouse and Daga (2014) and
is therefore beneficial for the simulation of rate-coded models
(Dinkelbach et al., 2012). Yavuz et al. (2016) have shown that
the choice of single precision in context of two spiking models
at different scales can improve the performance.

The presented findings may also be of interest for the
implementation of spiking networks. The currently available
spiking simulators use either CSR-like (e.g., Brian2, GeNN,
coreNeuron; Kumbhar et al., 2019), dense (e.g., GeNN) or
object-oriented (NEST) representation of synapses, while also
using code generation approaches (see Blundell et al., 2018
for a recent review). At the very least, the differentiation
between sparse and dense matrices could be helpful for some
models as shown by Yavuz et al. (2016), as the usage of
dense matrices does not break coalescence as CSR does (e.g.,
Dinkelbach et al., 2012; Yavuz et al., 2016). The computational
load induced by the spike propagation can be quite low in
comparison to the update of neural equations (Plesser and
Diesmann, 2009), so there is a chance that the overhead
induced by the sparse matrix format can have a negative impact
on performance.

Ongoing work will target the application of other sparse
matrix formats for the simulation of rate-coded and spiking
models in ANNarchy. For rate-coded models, this could be
formats which use structural properties, such as the diagonal
format. Some neuro-computational models developed in our
lab (e.g., Jamalian et al., 2017) contain matrices which have
a banded matrix structure. A promising direction may be the
implementation of sliced matrix formats (e.g., Kreutzer et al.,
2014). For spiking models, the compressed sparse blocks format
(CSB, Buluç et al., 2009, 2011) could be beneficial for the

implementation of spiking models with plasticity rules. The CSB
format is proposed to be suitable for the SpMV as well as the
transposed SpMV, an uncommon property for SpMV formats
(Buluç et al., 2009; Steinberger et al., 2016). With respect to
the machine learning model, reducing the number of required
data points is critical, as users will likely not be patient enough
to gather the necessary data. Active learning methods (Cohn
et al., 1996) may be used to allow the ML network to ask for
additional samples where its uncertainty is maximal, focusing
data generation to the most interesting regions.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found at: Neural simulator
ANNarchy: https://github.com/ANNarchy/ANNarchy
(zenodo doi: 10.5281/zenodo.6417924); Scripts for
simulation/analysis: https://github.com/hamkerlab/
Dinkelbach2022_ANNarchyAutoTuning (zenodo doi: 10.
5281/zenodo.6534573).

AUTHOR CONTRIBUTIONS

HD and B-EB designed and performed the research,
programming, and data analysis. JV and FH guided the
research. FH acquired the funding. HD writing first draft.
HD, B-EB, JV, and FH writing, reviewing, and editing.
All authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported by the Deutsche
Forschungsgemeinschaft (DFG) with the project Auto-tuning
for neural simulations on different parallel hardware (DFG
HA2630/9-1). The publication of this article was funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) project number 491193532 and the Chemnitz
University of Technology.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2022.877945/full#supplementary-material

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016).
“Tensorflow: a system for large-scale machine learning,” in Proceedings of the

12th USENIX Conference on Operating Systems Design and Implementation,

OSDI’16 (Savanna, GA: USENIX Association), 265–283.
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019).

“Optuna: a next-generation hyperparameter optimization framework,”
in Proceedings of the ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (Anchorage, AL: ACM),
2623–2631. doi: 10.1145/3292500.3330701

Balaprakash, P., Dongarra, J., Gamblin, T., Hall, M., Hollingsworth, J. K., Norris,
B., et al. (2018). Autotuning in high-performance computing applications. Proc.
IEEE 106, 2068–2083. doi: 10.1109/JPROC.2018.2841200

Bell, N., and Garland, M. (2009). “Implementing sparse matrix-vector
multiplication on throughput-oriented processors,” in Proceedings of the

Conference on High Performance Computing Networking, Storage and Analysis

- SC ’09 (New York, NY: ACM Press). doi: 10.1145/1654059.1654078

Frontiers in Neuroinformatics | www.frontiersin.org 12 May 2022 | Volume 16 | Article 877945

https://doi.org/10.5281/zenodo.6417924
https://github.com/hamkerlab/Dinkelbach2022_ANNarchyAutoTuning
https://github.com/hamkerlab/Dinkelbach2022_ANNarchyAutoTuning
https://doi.org/10.5281/zenodo.6534573
https://www.frontiersin.org/articles/10.3389/fninf.2022.877945/full#supplementary-material
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1109/JPROC.2018.2841200
https://doi.org/10.1145/1654059.1654078
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dinkelbach et al. Auto-Selection of the Matrix Format in ANNarchy

Benatia, A., Ji, W., Wang, Y., and Shi, F. (2018). BestSF: a sparse meta-format
for optimizing SpMV on GPU. ACM Trans. Architect. Code Optim. 15, 1–27.
doi: 10.1145/3226228

Blundell, I., Brette, R., Cleland, T. A., Close, T. G., Coca, D., Davison, A. P., et al.
(2018). Code generation in computational neuroscience: a review of tools and
techniques. Front. Neuroinform. 12, 68. doi: 10.3389/fninf.2018.00068

Buluç, A., Fineman, J. T., Frigo, M., Gilbert, J. R., and Leiserson, C. E. (2009).
“Parallel sparse matrix-vector and matrix-transpose-vector multiplication
using compressed sparse blocks,” in Proceedings of the Twenty-First Annual

Symposium on Parallelism in Algorithms and Architectures - SPAA ’09 (Calgary,
AB), 233. doi: 10.1145/1583991.1584053

Buluç, A., Williams, S., Oliker, L., and Demmel, J. (2011). “Reduced-bandwidth
multithreaded algorithms for sparse matrix-vector multiplication,”
in Proceedings - 25th IEEE International Parallel and Distributed

Processing Symposium, IPDPS 2011 (Anchorage, AL: IEEE), 721–733.
doi: 10.1109/IPDPS.2011.73

Chen, S., Fang, J., Chen, D., Xu, C., and Wang, Z. (2019). “Adaptive optimization
of sparse matrix-vector multiplication on emerging many-core architectures,”
in Proceedings - 20th International Conference on High Performance Computing

and Communications, 16th International Conference on Smart City and 4th

International Conference on Data Science and Systems, HPCC/SmartCity/DSS

2018 (Exeter), 649–658. doi: 10.1109/HPCC/SmartCity/DSS.2018.00116
Choi, J. W., Singh, A., and Vuduc, R. W. (2010). Model-driven autotuning

of sparse matrix-vector multiply on GPUs. ACM Sigplan Not. 45, 115.
doi: 10.1145/1837853.1693471

Cohn, D. A., Ghahramani, Z., and Jordan, M. I. (1996). Active learning with
statistical models. J. Artif. Intell. Res. 4, 129–145. doi: 10.1613/jair.295

Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., et al.
(2008). “Stencil computation optimization and auto-tuning on state-of-the-
art multicore architectures,” in 2008 SC - International Conference for High

Performance Computing, Networking, Storage and Analysis, SC 2008 (Austin,
TX). doi: 10.1109/SC.2008.5222004

Dinkelbach, H. Ü., Vitay, J., Beuth, F., and Hamker, F. H. (2012). Comparison
of GPU-and CPU-implementations of mean-firing rate neural networks
on parallel hardware. Network 23, 212–236. doi: 10.3109/0954898X.2012.
739292

Dinkelbach, H. Ü., Vitay, J., and Hamker, F. H. (2019). “Scalable simulation
of rate-coded and spiking neural networks on shared memory systems,” in
2019 Conference on Cognitive Computational Neuroscience (Berlin), 526–529.
doi: 10.32470/CCN.2019.1109-0

Eberhardt, R., and Hoemmen, M. (2016). “Optimization of block sparse matrix-
vector multiplication on shared-memory parallel architectures,” in Proceedings

- 2016 IEEE 30th International Parallel and Distributed Processing Symposium,

IPDPS 2016 (Chicago, IL: IEEE), 663–672. doi: 10.1109/IPDPSW.2016.42
Filippone, S., Cardellini, V., Barbieri, D., and Fanfarillo, A. (2017). Sparse

matrix-vector multiplication on GPGPUs. ACM Trans. Math. Softw. 43, 1–49.
doi: 10.1145/3017994

Ganapathi, A., Datta, K., Fox, A., and Patterson, D. (2009). “A case for machine
learning to optimize multicore performance,” in 1st USENIX Workshop on Hot

Topics in Parallelism, HotPar 2009 2009 (Berkeley, CA).
Goumas, G., Kourtis, K., Anastopoulos, N., Karakasis, V., and Koziris, N. (2008).

“Understanding the performance of sparse matrix-vector multiplication,”
in 16th Euromicro Conference on Parallel, Distributed and Network-Based

Processing, 2008 (Toulouse), 283–292. doi: 10.1109/PDP.2008.41
Greathouse, J. L., and Daga, M. (2014). “Efficient sparse matrix-vector

multiplication on gpus using the CSR storage format,” in International

Conference for High Performance Computing, Networking, Storage and Analysis,

SC (New Orleans, LA), 769–780. doi: 10.1109/SC.2014.68
Guo, P., and Wang, L. (2010). “Auto-tuning CUDA parameters for sparse

matrix-vector multiplication on GPUs,” in Proceedings - 2010 International

Conference on Computational and Information Sciences, ICCIS 2010 (Chengdu),
1154–1157. doi: 10.1109/ICCIS.2010.285

Hopkins, M., Mikaitis, M., Lester, D. R., and Furber, S. (2020).
Stochastic rounding and reduced-precision fixed-point arithmetic
for solving neural ordinary differential equations. Philos.

Trans. R. Soc. A 378, 20190052. doi: 10.1098/rsta.2019.
0052

Hou, K., Feng, W. C., and Che, S. (2017). “Auto-tuning strategies for
parallelizing sparse matrix-vector (spmv) multiplication on multi- and many-
core processors,” in Proceedings - 2017 IEEE 31st International Parallel

and Distributed Processing Symposium Workshops, IPDPSW 2017, 713–722.
doi: 10.1109/IPDPSW.2017.155

Im, E.-J., and Yelick, K. (2001). Optimizing sparse matrix computations for
register reuse in Sparsity. Lect. Notes Comput. Sci. 2073/2001, 127–136.
doi: 10.1007/3-540-45545-0_22

Im, E. J., Yelick, K., and Vuduc, R. (2004). Sparsity: Optimization framework
for sparse matrix kernels. Int. J. High Perf. Comput. Appl. 18, 135–158.
doi: 10.1177/1094342004041296

Jamalian, A., Bergelt, J., Dinkelbach, H. Ü., and Hamker, F. H. (2017).
“Spatial attention improves object localization: a biologically plausible neuro-
computational model for use in virtual reality,” in 2017 IEEE International

Conference on Computer Vision Workshops (ICCVW) (Venice), Vol. 2018,
2724–2729. doi: 10.1109/ICCVW.2017.320

Kincaid, D. R., Oppe, T. C., and Young, D. M. (1989). Itpackv 2d User’s Guide,

Technical Report CNA-232. Technical report, Center for Numerical Analysis.
University of Texas at Austin.

Kreutzer, M., Hager, G., Wellein, G., Fehske, H., and Bishop, A. R. (2014). A
unified sparse matrix data format for efficient general sparse matrix-vector
multiplication on modern processors with wide SIMD units. SIAM J. Sci.

Comput. 36, C401–C423. doi: 10.1137/130930352
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “ImageNet classification

with deep convolutional neural networks,” in Proceedings of the 25th

International Conference on Neural Information Processing Systems (Lake
Tahoe, NV), 1097–1105.

Kumbhar, P., Hines, M., Fouriaux, J., Ovcharenko, A., King, J., Delalondre, F., et al.
(2019). Coreneuron: an optimized compute engine for the neuron simulator.
Front. Neuroinform. 13, 63. doi: 10.3389/fninf.2019.00063

Langr, D., and Tvrdik, P. (2016). Evaluation criteria for sparse matrix
storage formats. IEEE Trans. Parallel Distrib. Syst. 27, 428–440.
doi: 10.1109/TPDS.2015.2401575

Lehnert, C., Berrendorf, R., Ecker, J. P., and Mannuss, F. (2016). “Performance
prediction and ranking of SpMV kernels on GPU architectures,” in Proceedings

of the 22nd International Conference on Euro-Par 2016: Parallel Processing,
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) (Grenoble), 9833.
doi: 10.1007/978-3-319-43659-3_7

Li, J., Tan, G., Chen, M., and Sun, N. (2013). “SMAT: an input adaptive auto-
tuner for sparse matrix-vector multiplication,” in Proceedings of the ACM

SIGPLAN Conference on Programming Language Design and Implementation

(PLDI) (Seattle, WA: ACM), 117–126. doi: 10.1145/2491956.2462181
Liu, W., and Vinter, B. (2015a). “CSR5: an efficient storage format for cross-

platform sparse matrix-vector multiplication,” in Proceedings of the 29th

ACM on International Conference on Supercomputing (New York, NY: ACM),
339–350. doi: 10.1145/2751205.2751209

Liu, W., and Vinter, B. (2015b). Speculative segmented sum for sparse matrix-
vector multiplication on heterogeneous processors. Parallel Comput. 49,
179–193. doi: 10.1016/j.parco.2015.04.004

Monakov, A., Lokhmotov, A., and Avetisyan, A. (2010). “Automatically tuning
sparse matrix-vector multiplication for GPU architectures,” in International

Conference on High-Performance Embedded Architectures and Compilers,
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) (Pisa), 5952.
doi: 10.1007/978-3-642-11515-8_10

Oberhuber, T., Suzuki, A., and Vacata, J. (2011). New row-grouped CSR format
for storing sparse matrices on gpu with implementation in CUDA. Acta
Techn. CSAV 56, 447–466. Available online at: http://journal.it.cas.cz/56(11)4-
Contents/56(11)4c.pdf

Pichel, J. C., and Pateiro-Lopez, B. (2018). “A new approach for sparse matrix
classification based on deep learning techniques,” in Proceedings - IEEE

International Conference on Cluster Computing, ICCC (Belfast: IEEE), 46–54.
doi: 10.1109/CLUSTER.2018.00017

Plesser, H. E., and Diesmann, M. (2009). Simplicity and efficiency
of integrate-and-fire neuron models. Neural Comput. 21, 353–359.
doi: 10.1162/neco.2008.03-08-731

Frontiers in Neuroinformatics | www.frontiersin.org 13 May 2022 | Volume 16 | Article 877945

https://doi.org/10.1145/3226228
https://doi.org/10.3389/fninf.2018.00068
https://doi.org/10.1145/1583991.1584053
https://doi.org/10.1109/IPDPS.2011.73
https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00116
https://doi.org/10.1145/1837853.1693471
https://doi.org/10.1613/jair.295
https://doi.org/10.1109/SC.2008.5222004
https://doi.org/10.3109/0954898X.2012.739292
https://doi.org/10.32470/CCN.2019.1109-0
https://doi.org/10.1109/IPDPSW.2016.42
https://doi.org/10.1145/3017994
https://doi.org/10.1109/PDP.2008.41
https://doi.org/10.1109/SC.2014.68
https://doi.org/10.1109/ICCIS.2010.285
https://doi.org/10.1098/rsta.2019.0052
https://doi.org/10.1109/IPDPSW.2017.155
https://doi.org/10.1007/3-540-45545-0_22
https://doi.org/10.1177/1094342004041296
https://doi.org/10.1109/ICCVW.2017.320
https://doi.org/10.1137/130930352
https://doi.org/10.3389/fninf.2019.00063
https://doi.org/10.1109/TPDS.2015.2401575
https://doi.org/10.1007/978-3-319-43659-3_7
https://doi.org/10.1145/2491956.2462181
https://doi.org/10.1145/2751205.2751209
https://doi.org/10.1016/j.parco.2015.04.004
https://doi.org/10.1007/978-3-642-11515-8_10
http://journal.it.cas.cz/56(11)4-Contents/56(11)4c.pdf
http://journal.it.cas.cz/56(11)4-Contents/56(11)4c.pdf
https://doi.org/10.1109/CLUSTER.2018.00017
https://doi.org/10.1162/neco.2008.03-08-731
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dinkelbach et al. Auto-Selection of the Matrix Format in ANNarchy

Sedaghati, N., Ashari, A., Pouchet, L.-N., Parthasarathy, S., and Sadayappan,
P. (2015). “Characterizing dataset dependence for sparse matrix-vector
multiplication on GPUs,” in Proceedings of the 2nd Workshop on Parallel

Programming for Analytics Applications - PPAA 2015 (San Francisco, CA),
17–24. doi: 10.1145/2726935.2726941

Steinberger, M., Derlery, A., Zayer, R., and Seidel, H. P. (2016). “How naive is
naive SPMV on the GPU?,” in 2016 IEEEHigh Performance Extreme Computing

Conference, HPEC 2016 (Waltham, MA). doi: 10.1109/HPEC.2016.7761634
Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an intuitive and

efficient neural simulator. eLife 8, e47314. doi: 10.7554/eLife.47314.028
Su, B.-Y., and Keutzer, K. (2012). “clSpMV: A cross-platform openCL

SpMV framework on GPUs,” in Proceedings of the 26th ACM

international conference on Supercomputing - ICS ’12 (Venice: ACM),
353. doi: 10.1145/2304576.2304624

Temam, O., and Jalby, W. (1992). “Characterizing the behavior of sparse
algorithms on caches,” in Proceedings Supercomputing ’92 (Minneapolis, MN),
578–587. doi: 10.1109/SUPERC.1992.236646

Vázquez, F., Fernández, J. J., and Garzón, E. M. (2011). A new approach for sparse
matrix vector product on NVIDIA GPUs. Concurr. Comput. 23, 815–826.
doi: 10.1002/cpe.1658

Vázquez, F., Fernández, J. J., and Garzón, E. M. (2012). Automatic tuning
of the sparse matrix vector product on GPUs based on the ELLR-
T approach. Parallel Comput. 38, 408–420. doi: 10.1016/j.parco.2011.
08.003

Verschoor, M., and Jalba, A. C. (2012). Analysis and performance estimation of the
conjugate gradient method on multiple GPUs. Parallel Comput. 38, 552–575.
doi: 10.1016/j.parco.2012.07.002

Vitay, J., Dinkelbach, H. Ü., and Hamker, F. H. (2015). Annarchy: a code
generation approach to neural simulations on parallel hardware. Front.

Neuroinformatics 9, 19. doi: 10.3389/fninf.2015.00019

Vuduc, R., Demmel, J. W., and Yelick, K. A. (2005). OSKI: a library
of automatically tuned sparse matrix kernels. J. Phys. 16, 521–530.
doi: 10.1088/1742-6596/16/1/071

Whaley, R. C., Petitet, A., and Dongarra, J. J. (2001). Automated emperical
optimization of software and the atlas project. Parallel Comput. 27, 3–35.
doi: 10.1016/S0167-8191(00)00087-9

Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., and Demmel, J. (2009).
Optimization of sparse matrix-vector multiplication on emerging multicore
platforms. Parallel Comput. 35, 178–194. doi: 10.1016/j.parco.2008.12.006

Yavuz, E., Turner, J., and Nowotny, T. (2016). Genn: a code generation framework
for accelerated brain simulations. Sci. Rep. 6, 18854. doi: 10.1038/srep18854

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Dinkelbach, Bouhlal, Vitay and Hamker. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 14 May 2022 | Volume 16 | Article 877945

https://doi.org/10.1145/2726935.2726941
https://doi.org/10.1109/HPEC.2016.7761634
https://doi.org/10.7554/eLife.47314.028
https://doi.org/10.1145/2304576.2304624
https://doi.org/10.1109/SUPERC.1992.236646
https://doi.org/10.1002/cpe.1658
https://doi.org/10.1016/j.parco.2011.08.003
https://doi.org/10.1016/j.parco.2012.07.002
https://doi.org/10.3389/fninf.2015.00019
https://doi.org/10.1088/1742-6596/16/1/071
https://doi.org/10.1016/S0167-8191(00)00087-9
https://doi.org/10.1016/j.parco.2008.12.006
https://doi.org/10.1038/srep18854
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	Auto-Selection of an Optimal Sparse Matrix Format in the Neuro-Simulator ANNarchy
	1. Introduction
	2. Related Work
	2.1. Sparse Matrix Formats for SpMV
	2.2. ANNarchy
	2.3. Auto-Tuning Methods

	3. Methods
	3.1. Two-Stage Heuristic for Format Selection on GPUs
	3.2. Format Selection Using Machine Learning
	3.2.1. Creation of the Dataset
	3.2.2. Feature Selection
	3.2.3. Machine Learning Model

	4. Results
	4.1. Dense vs. Sparse Matrix Formats
	4.2. Different Sparse Matrix Formats
	4.3. Automatic Format Selection
	4.4. Validation and Stability of the Machine Learning Approach
	4.4.1. Cross-Validation
	4.4.2. Influence of the Size of the Dataset

	5. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

