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Abstract

Environmental DNA (eDNA) analysis is a novel approach for biomonitoring and has been

mostly used in clear water. It is difficult to detect eDNA in turbid water as filter clogging

occurs, and environmental samples contain various substances that inhibit the polymerase

chain reaction (PCR) and affect the accuracy of eDNA analysis. Therefore, we applied a

pre-filtration method to better detect the fish species (particularly pale chub, Opsariichthys

platypus) present in a water body by measuring eDNA in environmental samples containing

PCR inhibitors. Upon conducting 12S rRNA metabarcoding analysis (MiFish), we found that

pre-filtration did not affect the number or identities of fish species detected in our samples,

but pre-filtration through pore sizes resulted in significantly reduced variance among repli-

cate samples. Additionally, PCR amplification was improved by the pre-filtration of environ-

mental samples containing PCR inhibitors such as humic substances. Although this study

may appear to be a conservative and ancillary experiment, pre-filtration is a simple tech-

nique that can not only improve the physical properties of water, such as turbidity, but also

the quality of eDNA biomonitoring.

Introduction

Environmental DNA (eDNA) analysis is a novel approach to investigating the species distribu-

tion for environmental monitoring and conservation [1–3], which allows species to be detected

without observation or direct capture. Thus, this approach is an environmentally friendly and

cost-effective tool for early monitoring systems [4–6]. eDNA methods were developed for

detecting specific species based on the real-time polymerase chain reaction (PCR) [1] and,

more recently, quantitative PCR (qPCR) [2, 3], and they are still widely used in species distri-

bution analysis. Based on high-throughput sequencing (HTS), eDNA metabarcoding has since

been widely used as a method of rapid biodiversity assessment [7–9]. However, both eDNA
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approaches require optimisation to increase the likelihood of detection, particularly when ana-

lysing water with varying eDNA conditions [10, 11].

There are multiple methods of capturing (concentrating), purifying (extracting), and ampli-

fying eDNA [12–14]. Most eDNA studies that use a filtration approach have been conducted

in marine or freshwater systems, where water appears to be non-turbid at the time of collection

[15–18]. This is owing to the unique set of challenges that turbid water poses when detecting

eDNA, such as the clogging of filters and the presence of PCR inhibitors [19–21]. Previous

studies have utilised extraction kits—which come with anti-inhibitory washes—various pore

sizes, membrane types, and pre-filtration steps to prevent filter clogging [22–25]. In this study,

we focused on the effect of pre-filtration techniques on removal of inhibitors and effective

detection of target organisms’ eDNA.

Humic substances, such as humic and fulvic acid, are common in aquatic, soil, and sedi-

mentary environments [26], and play important roles in freshwater treatment by interacting

with toxic heavy metals and trihalomethanes [27]. On the other hand, a previous study

reported that trace amounts of humic substances can inhibit the PCR and cause false-negative

results [28–30]. Therefore, to achieve optimal eDNA analysis results, humic substances must

be removed from the studied water samples. However, whether pre-filtration affects the pres-

ence of PCR inhibitors in water samples is unclear.

Therefore, in this study, we investigated whether pre-filtration removed humic acid, a PCR

inhibitor, and improved the species detection of the eDNA approach following two methods:

1) eDNA metabarcoding with amplicon sequencing to investigate the impact of pre-filtration

on the detection of fish communities, and 2) species-specific eDNA detection by qPCR to

investigate the impact of pre-filtration on the detection of a fish species and evaluate the inhibi-

tion of the PCR.

Methods

Study site

The site considered in this study is the Sagami River, which is the largest river in Kanagawa

Prefecture, Japan, and a popular place for recreational activities, such as fishing. To protect

and sustain these recreational activities, Kanagawa Prefecture continuously monitors the

aquatic communities of the Sagami River, and particularly the fish communities. As the fish

communities of the Sagami River are well-studied, it is a suitable site for validating the results

of this study. The Sagami River is also the closest water body to our laboratory, which mini-

mised the time required for transporting water samples between the river and the lab. There-

fore, we analysed water samples collected from the Sagami River in the tests conducted in this

work.

Environmental water sampling

Environmental water samples were collected from the Sagami River system in Kanagawa Pre-

fecture, Japan [latitude: 35.318725–35.58872222; longitude: 139.2714528–139.3789833], using

disposable plastic bottles and immediately pooled into a plastic tank on site (Fig 1) [31]. Water

samples were collected independently on four sampling dates: June 9, 2018 (MiSeq sequenc-

ing); September 16, 2018 (IPC-targeted qPCR assay, and species-specific qPCR assay); Decem-

ber 22, 2018 (MiSeq sequencing); and February 3, 2020 (IPC-targeted qPCR with coffee filter).

Additionally, 2 mL of Osban S (Takeda Pharmachemical Co. Ltd., Japan) containing 10 w/v%

benzalkonium chloride was added to the tank to preserve the eDNA [32] in the pooled water.

The pooled water was immediately transported to the laboratory for filtration. All equipment
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Fig 1. Overview of the pre-filtration technique used in the experiment.

https://doi.org/10.1371/journal.pone.0250162.g001
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was cleaned using 0.6% hypochlorous acid and washed with DNA-free distilled water. No per-

mits were required for the collection and analysis of the samples.

Pre-filtration of environmental water

We prepared four types of polypropylene filters with pore sizes of 840, 200, 50, and 10 μm for

pre-filtration. The filters with a pore size of 840 μm were purchased from Dio Chemicals, Ltd.

(Tokyo, Japan), and the other three were purchased from 3M Japan Ltd. (Tokyo, Japan). The

pre-filters were cut into circles with a diameter of 47 mm and then placed in a disposable filter

funnel (Nihon Pall Ltd., Tokyo, Japan) after removing the originally attached funnel mem-

brane. The prepared pre-filters were set on a portable in-line pump (Nihon Pall Ltd., Japan),

and 2 L of the pooled water was passed through each filter (Fig 1). The pre-filtered water sam-

ples were then divided into 500 mL subsamples, with three samples per treatment (e.g., four

pre-filtration pore sizes and no pre-filtration), and filtered through a 47 mm glass microfiber

filter, Grade GF/F (normal pore size of 0.7 μm; Whatman, Maidstone, UK), as shown in Fig 1.

Each filter was wrapped in aluminium foil and stored at −20˚C before DNA extraction.

eDNA extraction

The eDNA was extracted from each filter using a DNeasy Blood and Tissue Kit (Qiagen, Hil-

den, Germany) and a commercial spin column following the protocol reported by Miya et al.
[7]. The extracted DNA was then purified using the DNeasy Blood and Tissue Kit following

the manufacturer’s protocol.

Paired-end library preparation and MiSeq sequencing

A two-step tailed PCR approach was followed for library preparation using paired-end

sequencing on the MiSeq platform (Illumina, CA, U.S.A). Prior to library preparation, the

workspace and equipment were sterilised, and filtered pipette tips were used. One PCR blank

was included per set of reactions during library preparation to monitor contamination. In the

first PCR, a target region of the mitochondrial 12S rRNA gene was amplified using the

MiFish-U-F and MiFish-U-R primers (forward: 50-ACACTCTTTCCCTACACGACGCTCTTC
CGATCTNNNNNNGTCGGTAAAACTCGTGCCAGC-30; reverse: 50-GTGACTGGAGTTCAGACG
TGTGCTCTTCCGATCTNNNNNNCATAGTGGGGTATCTAATCCCAGTTTG-30). The italicised

and non-italicised letters represent the MiSeq sequencing primers and MiFish-U primers,

respectively. Additionally, six random bases (N) were used to enhance cluster separation in the

MiSeq flow cells during the initial base-call calibrations on the MiSeq platform. The experi-

ment was conducted with a reaction volume of 13 μL, including 6.0 μL of 2 × KAPA HiFi Hot

Start ReadyMix (KAPA Biosystems, Wilmington, MA), 0.7 μL of each primer (5 μm), 2.6 μL of

sterile distilled water, and 2.0 μL of the extracted DNA as a template. The thermal cycle profile

was as follows: initial denaturation at 95˚C for 3 min, followed by 28 cycles of denaturation at

98˚C for 20 s, annealing at 65˚C for 15 s, and elongation at 72˚C for 15 s, followed by final

elongation at the same temperature for 5 min. The first PCR was replicated eight times per

sample, and the eight replicated samples were either not pooled (the environmental water col-

lected on June 9, 2018) or pooled (the environmental water collected on December 22, 2018)

and purified using an Agencourt AMPure XP kit (Beckman Coulter, CA, U.S.A.). Though the

first PCR replicates are usually pooled in the MiFish metabarcoding method, some of the sam-

ples in this study were not pooled in order to monitor the increase in species in relation to an

increase in replicates. The purified first PCR products were used as templates for the second

PCR, which was amplified using primers containing a dual-indexed sequence (octoX) to iden-

tify each sample and adapter sequences bound to the flow cell (forward: 50-AATGATACGGCG
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ACCACCGAGATCTACAXXXXXXXXACACTCTTTCCCTACACGACGCTCTTCCGATCT-30;
reverse: 50-CAAGCAGAAGACGGCATACGAGATXXXXXXXXGTGACTGGAGTTCAGACG
TGTGCTCTTCCGATCT-30). The italicised and non-italicised letters represent the MiSeq P5/

P7 adapter and sequencing primers, respectively. The eight "X"s in the bases represent the

dual-index sequences inserted to identify the different samples. The second PCR was con-

ducted with a 13 μL reaction volume containing 6.0 μL of 2 × KAPA HiFi HotStart ReadyMix,

0.7 μL of each primer (5 μm), 3.6 μL of sterile distilled water, and 1.0 μL of the template. The

thermal cycle profile was as follows: initial denaturation at 95˚C for 3 min, followed by eight

cycles of denaturation at 98˚C for 20 s, annealing and elongation at 72˚C for 15 s, and final

elongation at the same temperature for 5 min. Each product was purified using an Agencourt

AMPure XP kit. After quantifying the DNA using a Qubit fluorometer with a Qubit dsDNA

HS assay kit (Thermo Fisher Scientific, MA, U.S.A) and Agilent BioAnalyzer with high-sensi-

tivity DNA chips (Agilent Technologies, CA, U.S.A), the PCR products were pooled in equi-

molar proportions, and their volumes were adjusted following the protocol for Illumina MiSeq

platform sequencing. A 30% Phix spike-in control was added to the pooled library to improve

data quality. Sequencing was conducted using the MiSeq platform with V2 reagent to generate

2 × 250-bp paired-end reads. We conducted the aforementioned post-PCR steps, including

PCR and MiSeq sequencing, in separate DNA extraction and water filtration rooms to avoid

DNA contamination.

MiSeq sequencing data analysis

Fastq files (raw reads) of each sample were generated by demultiplexing using MiSeq Reporter

software version 1.3.17.0 (Illumina, CA, U.S.A). Data pre-processing and raw read analyses

were conducted with the following scripts and steps: (1) primer sequences were removed from

both the forward and reverse reads using fastx_barcode_splitter.pl and fastx_trimmer in the

FASTX Toolkit 0.0.14 (available from http://hannonlab.cshl.edu/fastx_toolkit); (2) to merge

the paired reads, the pre-processed reads were analysed using R version 3.5.1 and DADA2

library version 1.8.0 (available from http://benjjneb.github.io/dada2/), following DADA2 Pipe-

line Tutorial 1.12 (https://benjjneb.github.io/dada2/tutorial.html); (3) the pre-processed reads

from the aforementioned pipeline were dereplicated using the ’unique’ command of R, and

the number of identical reads was added to the header line of the FASTA formatted data file (a

table of the number of detected reads in each sample to unique sequences was created from

this data); (4) the processed reads were then subjected to local BLASTN searches against Mito-

Fish, and the top BLAST hit with an E-value threshold of 6−77 was applied for assigning the

species of each representative (unique) sequence.

IPC-targeted qPCR assay

To estimate the PCR sensitivity in the presence of PCR inhibitors under each pre-filtration

condition, we conducted qPCR after adding humic substances (Canadian humin HNC, pur-

chased from PIC-BIO, Inc., Tokyo, Japan) to the environmental water sample from the Sagami

river system (collected on September 16, 2018) [29, 33, 34]. We prepared water with a humin

content of 1 g L−1 for robust PCR inhibition according to a previous study [29]. However, as

filtration under some conditions failed owing to filter clogging, the concentration was set to

250 mg L−1 to enable filtration under all conditions. Humin-free water samples were prepared

for each pre-filtration condition to act as a control. The pre-filtered water samples were then

divided into 500 mL subsamples (repeated twice as biological replicates) and filtered through a

GF/F filter with a diameter of 47 mm.
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We also preliminary tested the suitability of using coffee filters to filter humic water. We

tested three different commercial coffee filter setups (purchased from Toyo Trading Co., LTD.

(Aichi, Japan). The environmental water collected from the Sagami River system on February

3, 2020 was divided into samples of 500 mL and filtered (the positive control was replicated

twice, and the pre-filtration conditions were replicated thrice as biological replicates). The

humic substance was added to the environmental water samples at a concentration of 250 mg

L−1 for pre-filtration, and the water filtration process and controls were the same as those in

the previous experiment.

An Internal Positive Control (IPC, 20 copies μL-1; Nippon Gene, Toyama, Japan) was used

to assess the PCR sensitivity. Twenty copies of the IPC were added to 5 μL of DNA extracted

from each filtered sample. The IPC8-50and IPC8-30primers (forward: 50-CCGAGCTTACAA
GGCAGGTT-30; reverse: 50-TGGCTCGTACACCAGCATACTAG-30) were used for amplifica-

tion, and the IPC was detected using an IPC1-Taq: 50-(FAM) TAG CTT CAA GCA TCT
GGC TGT CGG C (TAMRA)-3’ hydrolysis probe. The qPCR assay was conducted using a

Thermal Cycler Dice1 Real-Time System Lite (Takara, Shiga, Japan), and three PCR repli-

cates were prepared as technical replicates. A reaction volume of 20 μL consisted of 10 μL of

the THUNDERBIRD1 qPCR Mix (Toyobo, Osaka, Japan), 0.6 μL of each primer (10 μM),

0.4 μL of the probe, 2.4 μL of sterile distilled water, 1.0 μL IPC (20 copies), and 5 μL of

extracted DNA. The thermal cycle profile was as follows: initial denaturation at 95˚C for 30 s,

followed by 45 cycles of denaturation at 95˚C for 10 s, and annealing and elongation at 60˚C

for 30 s. The obtained data were analysed using Thermal Cycler Dice1 Real-Time System

Lite Software ver. 5.00 (Takara, Shiga, Japan). In parallel, we tested nuclease free water for neg-

ative control, and no negative controls were detected (data not shown).

Species-specific qPCR assay

To estimate the PCR specificity in the presence of PCR inhibitors under each pre-filtration

condition, we added 30 mg L−1 of humic substances to the environmental water samples to

recreate natural conditions [35, 36]. Humin-free water samples were prepared as controls.

Two-litre water samples were filtered through each pre-filter. The pre-filtered water was then

divided into 500 mL subsamples (repeated three times as biological replicates) and filtered

through a GF/F filter with a diameter of 47 mm.

Pale chub (O. platypus) was targeted in this study to estimate the species specificity. The

qPCR primers, probe, and thermal cycle conditions were consistent with those reported by Kita-

nishi et al. [37] (S3 Table). THUNDERBIRD1 qPCR Mix or TaqMan Environmental Master

Mix 2.0 (Thermo Fisher Scientific, MA, U.S.A) were used as the qPCR master mix in these

experiments. Three PCRs were prepared as technical replicates. The qPCR and data analysis

were conducted using the same equipment and process as those of the previous experiment. In

parallel, we tested water for negative control, and none were detected (data not shown).

Statistical analysis

All statistical analyses were conducted in R ver. 3.6.0 [38], and all significance levels were set to

α = 0.05. We conducted NMDS to visualise the dissimilarity of the communities based on inci-

dence-based Jaccard and abundance-based Bray-Curtis indices. The NMDS scores and stress

were calculated with 999 separate runs of real data. We evaluated the differences between the

community structures of the pre-filtration conditions by conducting permutational multivari-

ate analysis of variance (PERMANOVA) with the Jaccard similarity matrix and 999 permuta-

tions. We used the "metaMDS" and "adonis" functions of "vegan" ver. 2.5.6 for NMDS and

PERMANOVA, respectively.
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We tested the differences in the threshold cycle (Ct) values of the IPC and pale chub detec-

tion between the different pre-filter sizes and the presence/absence of humin by conducting a

two-way repeated-measure ANOVA with the interaction using the "aov" function. We con-

ducted a Tukey post-hoc test for the pre-filter conditions with the presence/absence of humin

separately using the "TukeyHSD" function because of the significant interaction (see Results).

For the coffee filter experiment and number of fish species, we tested the differences between

the pre-filter sizes by conducting a repeated-measure ANOVA using the "aov" function and

performed a Tukey post-hoc test as previously described. For all ANOVA tests, we preliminary

tested the normality of the data by performing the Shapiro-Wilk test using the R function “sha-

piro.test” and verified the normality of all datasets (W> 0.846, p< 0.0001).

Results

Reproducibility of fish communities under each pre-filtration condition

We evaluated the reproducibility of fish communities by 12S rRNA amplicon analysis

(MiFish) of the water samples obtained from the eight sites on June 9, 2018, using MiSeq. We

identified 57 species in 120 PCR amplifications (no pre-filtration [NoPre] condition, and four

pre-filtration conditions; 840 μm [Pre840μm], 200 μm [Pre200μm], 50 μm [Pre50μm], and

10 μm [Pre10μm], with three filtration replicates and eight PCR replicates) from the eDNA

samples (S1 Table). Additionally, the number of detected species increased when increasing

the number of PCR replicates under all conditions (S1 Fig). The total numbers of species

detected from the three water sample replicates were not significantly different between the

pre-filtration conditions (ANOVA, F = 0.123, p = 0.971; Fig 2B; NoPre: 42 spp., Pre840μm: 41

spp., Pre200μm: 40 spp., Pre50μm: 42 spp., and Pre10μm: 42 spp., total species).

We evaluated the reproducibility of fish communities for each pre-filtration condition

using a non-metric multidimensional scaling (NMDS) ordination by incidence-based Jaccard

indices (S3A Fig; NMDS stress = 0.21) and abundance-based Bray-Curtis indices (S3B Fig;

NMDS stress = 0.032), and observed significant differences between the fish communities

identified when testing different pre-filtration pore sizes (PERMANOVA, F = 2.34, p = 0.03),

indicating that the variety of the fish communities converged as the pre-filtration pore sizes

reduced. We also employed the NMDS by abundance-based Bray-Curtis index, and achieved

similar results (S4B Fig, PERMANOVA, F = 2.34, p = 0.03). Furthermore, most of the 30 spe-

cies detected under all conditions were included in the major group of fish communities (S1

Table). The same test was conducted using water samples collected on December 22, 2018,

and similar tendencies were observed (S4A Fig; NMDS stress = 0.192, S4B Fig; NMDS

stress = 0.067 and S2 Table, PERMANOVA, F = 2.49, p = 0.017).

PCR sensitivity in the presence of inhibitors under each pre-filtration

condition

We tested whether PCR sensitivity in samples containing humin was improved by pre-filtra-

tion (Fig 3). In the presence of humin, the IPC amplifications failed for all replicates of the

NoPre condition (Fig 3B). However, for each pre-filtration condition, the amplifications of all

replicates were successful. The threshold cycle (Ct) values significantly differed depending on

the pre-filtration pore sizes, presence of humin, and the interaction (two-way ANOVA,

F = 113.3, 150.4, 146.9, respectively, p< 0.001 for all), indicating that pre-filtration reduced

PCR inhibition due to the presence of humin. Additionally, the differences between the PCR

of the samples pre-filtrated with different pore sizes in the absence of humin were not
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significant (Tukey, p> 0.125), while the difference between the 840 μm-filtered samples and

those filtered through the other sizes was (200, 50, and 10 μm, Tukey, p < 0.0001).

We also conducted tests for the three conditions in the presence of humin using commer-

cial coffee filters (Fig 4A) for pre-filtration with a lower cost than that incurred when using

membrane filters. We observed significant differences in the Ct depending on the number of

coffee filters [ANOVA, F = 12.6 (p< 0.0001)], indicating that the use of coffee filters could

improve species-specific detection. Furthermore, we observed significantly greater inhibitor

effects on No_pre compared with both CF2 and CF3, as well as on CF1 compared with both

CF2 and CF3 (Tukey, p < 0.0143, Fig 4B).

Species-specific analysis under each pre-filtration condition

We considered that pre-filtration may prevent species-specific detection through the prema-

ture removal of the eDNA source, as eDNA source collection failed when using filters with

pore sizes larger than 1 μm in a previous study [39]. To confirm the species specificity of each

pre-filtration condition, we conducted a pale chub (Opsariichthys platypus)-specific qPCR

assay, as it is the most common fish in the Sagami River system, following a previously

reported qPCR-based genotyping method [40]. The amplifications were successful under all

conditions (Fig 5A and 5B). Furthermore, the Ct values were significantly different depending

on the pre-filtration pore sizes, presence of humin, and the interaction [two-way ANOVA,

F = 4.28 (p = 0.0033), F = 40.2 (p< 0.0001), and F = 2.58 (p = 0.0423), respectively], indicating

that pre-filtration improved species-specific detection. Furthermore, there was a non-signifi-

cant difference in the Ct values of the samples pre-filtered with different pore sizes in the

absence of humin (Tukey, p > 0.305), and a significant difference between No_pre and the

other sizes (840, 50, and 10 μm, Tukey, p< 0.028), excluding 200 μm (p = 0.224). In eDNA

studies employing qPCR, the Environmental Master Mix 2.0 (Thermo Fisher Scientific, MA,

U.S.A) is widely used for its tolerance to PCR inhibitors; therefore, we also conducted qPCR

using this reagent and eDNA sample (Fig 5A and 5B). There were non-significant differences

between the Ct values of the samples pre-filtered with different pore sizes and in the presence/

absence of humin [two-way ANOVA, F = 2.48 (p = 0.051), F = 3.33 (p = 0.072), and F = 1.28

(p = 0.286), respectively], indicating that the reactivity was stable in both the presence and

absence of humin.

Discussion

In this study, we investigated whether pre-filtration affects the analysis of fish communities

using eDNA methods and whether it can effectively remove PCR-inhibiting substances. By

conducting experiments using samples from a natural river system, we confirmed that pre-fil-

tration significantly affected the detection of species by qPCR using species-specific primers,

and by metabarcoding using MiFish universal amplification. In the qPCR conducted using the

species-specific primer, the performance of the< 200 μm mesh size was significantly better

than that of the No_pre and 840 μm mesh size. In MiFish metabarcoding, the fish community

converged as the pre-filter pore size decreased. Therefore, we demonstrated that pre-filtration

Fig 2. Reproducibility of the fish communities by 12S rRNA amplicon analysis (MiFish) under each pre-filtration condition. (A) Map

showing the sampling points in closed circles on 9 June, 2018. This map was created using QGIS version 2.14 based on the map tile in the

Geospatial Information Authority of Japan (https://maps.gsi.go.jp/development/ichiran.html). [Data source of the map tiles] Landsat8 image

(GSI, TSIC and GEO Grid/AIST), Landsat8 image (courtesy of the U.S. Geological Survey), Submarine topography (GEBCO). (B) Venn

diagram showing the number of shared species between each pre-filtration condition.

https://doi.org/10.1371/journal.pone.0250162.g002
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Fig 3. IPC detection assay (Threshold cycle, Ct) under each pre-filtration condition by qPCR. (A) In the absence of

humin; (B) in the presence of humin (IPC amplification failed for all replicates on NoPre and are denoted as “Not

detected”).

https://doi.org/10.1371/journal.pone.0250162.g003
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increased the performance of eDNA surveys in the presence of inhibitory humic compounds,

and pre-filtration with small pore-sizes (e.g., 200 μm) appeared to improve performance.

Using eDNA metabarcoding with pre-filters, we detected common Japanese fish species,

such as Tribolodon hakonensis, Zacco platypus, and Nipponocypris temminckii, irrespective

of the pre-filter pore size (S1 Table). Additionally, the data also confirmed the presence of

Hemibarbusbarbus sp. and Rhynchocypris lagowskii, which are endemic to Japan, and Squa-
lidus sp., which are rare freshwater fish species in the Kanagawa area [40]. Hence, the

results indicate that pre-filtration did not affect the detection of the species richness and

community compositions. Invasive alien species (IAS) are a major threat to the biodiversity

of native species [41, 42]. Micropterus salmoides and Lepomis macrochirus are two major

IAS in Japan and popular recreational river-fishing targets and were also detected in this

work. Therefore, our eDNA analysis approach involving pre-filtration can be applied in

conservation and monitoring, as previously reported [22]. Following pre-filtration, the

selection of appropriate filters, including pore size and filter material, may also signifi-

cantly impact eDNA retention [43].

Pre-filtration is expected to increase the amount of water filtered and eDNA yield by pre-

venting filter clogging by turbid water. Current water preparation methods have lower eDNA

yields per filter owing to filter clogging, particularly in wetlands and turbid ponds [44]. Our

study site has turbid water and is one of the 500 important wetlands in Japan, designated by

the Ministry of the Environment, Japan, as it is inhabited by rare species (http://www.env.go.

jp/nature/important_wetland/index.html, in Japanese, Accessed on 3 June 2020). It is impor-

tant to apply eDNA for the species inhabiting wetland habitats; however, there are few exam-

ples of such application [44]. Therefore, our pre-filtration method may benefit the application

of eDNA methods to turbid water, particularly wetlands although still remain several concerns

particularly about contamination and time.

We suggest that pre-filtration is an effective method of preventing filter clogging and

contributes to increased eDNA yield, high sensitivity, and high reproducibility; however

this method may result in loss of DNA from the solution and an increase in costs. Several

approaches for removing PCR inhibitors have been reported [45–47]. After eDNA

extraction, eDNA re-purification by column [45, 48–50] can remove PCR inhibitors;

however, this method results in low eDNA yield and has a high cost. In this study, we pre-

liminarily evaluated the use of coffee filters for humic water and found that they could be

useful for pre-filtering humic water. Fortunately, filtration can be conducted in parallel

with pre-filtration, as such low-cost methods have also been found to reduce the inhibi-

tory effect of humic water on PCR. Pre-filtration not only eases filtration and improves

eDNA yields but also appears to reduce the levels of co-extracted PCR inhibitors, such as

humic acids.

Here, we found that pre-filtration is a useful technique for removing PCR inhibitors, such

as humic acid, in wetland habitats for both eDNA metabarcoding and species-specific detec-

tion by qPCR. Based on our results, we recommend using a mesh size of< 200 μm to obtain

eDNA from the aquatic environment with lower PCR inhibition. This approach could also be

applied in other habitats with turbid waters to optimise the filtration process.

Fig 4. Tests for the three conditions in the presence of humin using commercial coffee filters for pre-filtration. (A) Model of the

coffee and GF/F filters after filtration under each condition. (B) DNA detection assay (Threshold cycle, Ct) results for pale chub for each

coffee pre-filtration by qPCR. Control, NoCF, CF1, CF2, and CF3 refer to the conditions with humin-free water samples, no coffee filter,

and single, double, and triple coffee filters for humin-containing water samples, respectively.

https://doi.org/10.1371/journal.pone.0250162.g004
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Fig 5. DNA detection assay (Threshold cycle, Ct) results for pale chub under each pre-filtration condition by

qPCR. (A) In the absence of humin; B) in the presence of humin. Closed circles and daggers indicate the results

detected by the THUNDERBIRD1 qPCR Mix and Environmental Master Mix 2.0, respectively.

https://doi.org/10.1371/journal.pone.0250162.g005
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Supporting information

S1 Fig. Boxplots showing the relationship between the number of detected species and the

number of PCR replicates under each pre-filter condition.

(TIF)

S2 Fig. Reproducibility of fish communities by 12S rRNA amplicon analysis (MiFish)

under each pre-filter condition. (A) Map showing the sampling points on 22 December 2018

as closed circles. This map was created using QGIS version 2.14 based on the map tile in the

Geospatial Information Authority of Japan (https://maps.gsi.go.jp/development/ichiran.html).

[Data source of the map tiles] Landsat8 image (GSI, TSIC, and GEO Grid/AIST), Landsat8

image (courtesy of the U.S. Geological Survey), and Submarine topography (GEBCO). (B)

Venn diagram showing the number of shared species between each pre-filtration condition.

(TIF)

S3 Fig. Two-dimensional NMDS ordination of the fish community under each pre-filtra-

tion condition based on Jaccard indices and Bray-Curtis indices for water samples col-

lected on on June 9, 2018. Circles, squares, diamonds, triangles, and inverted triangles

indicate the results for NoPre, Pre840μm, Pre200μm, Pre50μm, and Pre10μm, respectively. (A)

Jaccard indices. NMDS stress was 0.21. (B) Bray-Curtis indices. NMDS stress was 0.032.

(TIF)

S4 Fig. Two-dimensional NMDS ordination of the fish community under each pre-filtra-

tion condition based on Jaccard indices and Bray-Curtis indices for water samples col-

lected on December 22, 2018. Circles, squares, diamonds, triangles, and inverted triangles

indicate the results for NoPre, Pre840μm, Pre200μm, Pre50μm, and Pre10μm, respectively. (A)

Jaccard indices. NMDS stress was 0.192. (B) Bray-Curtis indices. NMDS stress was 0.067.

(TIF)

S1 Table. Taxonomic composition and sequence read numbers of the species detected in

MiFish analysis under each pre-filtration condition. Water samples were collected from the

Sagami River system on 9 June 2018, and 57 species were detected. The table shows the total

read numbers obtained from eight PCR replicates of each sample.

(XLSX)

S2 Table. Taxonomic composition and sequence read numbers of the species detected in

MiFish analysis under each pre-filtration condition. Water samples were collected from the

Sagami River system on 22 December 2018, and 69 species were detected. Compared to 9 June

2018, eight replicates of the first PCR were pooled before the second PCR.

(XLSX)

S3 Table. Primer list used in the species-specific qPCR assay. CytB-F and CytB-R were used

as primers for amplification. An EJ probe for TB was used as the detection probe for the

THUNDERBIRD1 qPCR Mix and an EJ probe for EMM was used as detection probe for the

TaqMan Environmental Master Mix 2.0.

(XLSX)

S4 Table. All threshold cycles of qPCR in this study.

(XLSX)
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