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High-throughput sequencing is gaining popularity in clinical diagnoses, but more and more novel gene variants with unknown
clinical significance are being found, giving difficulties to interpretations of people’s genetic data, precise disease diagnoses, and
the making of therapeutic strategies and decisions. In order to solve these issues, it is of critical importance to figure out ways to
analyze and interpret such variants. In this work, BRCA1 gene variants with unknown clinical significance were identified from
clinical sequencing data, and then, we developed machine learning models so as to predict the pathogenicity for variants with
unknown clinical significance. Through performance benchmarking, we found that the optimized random forest model scored
0.85 in area under receiver operating characteristic curve, which outperformed other models. Finally, we applied the best
random forest model to predict the pathogenicity of 6321 BRCA1 variants from both sequencing data and ClinVar database. As

a result, we obtained the predictive pathogenic risks of BRCA1 variants of unknown significance.

1. Introduction

For diagnosis of ovarian cancer, the symptom-based diagnos-
tic approaches tend to be less precise because they usually do
not display obvious and specific symptoms in early-stage
patients. Therefore, unfortunately, the usual cases are that,
when confirmed, the cancer is already developed to a late
stage. The difficulties in detecting specific symptoms in
early-stage ovarian cancer have affected precise diagnosis,
and it is one of the important reasons causing the high mortal-
ity rate of ovarian cancer [1-3].

Since ovarian cancer is a multigenic disease, molecular
genetic diagnosis is better for ovarian cancer diagnosis, com-
pared with symptom-based methods, especially in cases of
early-stage cancer. According to investigations, several genes
are associated with the pathogenesis of ovarian cancer, and
amongst them, two genes—BRCA1 and BRCA2—are well-

known ones and found to have significant associations with
ovarian cancer [4]. “BRCA1” stands for “BReast CAncer type
1 protein.” It is a tumor suppressor and found to be associated
with familial breast cancer [5]. Since the discovery of BRCAL,
scientists have been researching the molecular structure and
functions of it and its products [6-9]. Thanks to their efforts,
parts of its functions and roles in biological processes have
been elucidated. For instance, BRCA1 is known to participate
in the processes of DNA repairing [10, 11], and its muta-
tions/variants are known to have association with the onset
of breast cancer and ovarian cancer [12-14]. Moreover, germ-
line mutations of BRCA1 have also been discovered, and it is
reported that, for patients of familial ovarian cancer, over 80%
of patients carry BRCAL (or BRCA2) mutation [4, 15, 16].
Because of the high susceptibility of BRCALI to ovarian can-
cer, for molecular and genetic tests of ovarian cancer, BRCA1
is one of the most indispensable genes for probing.
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Nowadays, modern sequencing technologies are not only
applied to researches but also clinical diagnoses. Sequencing
detects genotypes via reading nucleotide sequences in the
human body, while challenges exist. A significant one is the
gene Variants of Unknown Significance (VUSs). Sequencing
keeps generating large sets of novel gene variants. However,
except for their physical/structural variation information,
such as the mutation position, and nucleic acids’ changes,
nothing else is known. This gives great difficulties in data
interpreting and clinical diagnoses. For example, real cases
happened that novel VUSs of BRCA1 were detected in people
who seem to be healthy (at least no symptom was detected),
while doctors still had no way to analyze the genetic patho-
genic risks for these people. Therefore, it is urgent and neces-
sary to find ways to analyze and interpret VUSs of genes.

Theoretically, biomedical characteristics and molecular
functions of a VUS can be explored via biochemical approaches;
e.g., immunoprecipitation and immunoblotting can probe the
potential binding partner molecules with the protein of VUSs.
Crystallization and 3D structural analyses could reveal the
structure-function relationships of the protein of VUSs. While
these methods are highly costly in all sorts of aspects including
time, labor forces, and budget, in fact, large amounts of such
VUSs are seen in clinical data and doctors usually face more
than one VUS. Thus, wet lab methods are impractical for the
purpose of quickly and efficiently characterizing large amounts
of VUSs. The more realistic and practical way is computational
analysis.

In the present study, BRCA1 VUSs were identified from
clinical sequencing data. (Note that in this study, we also
consider “likely pathogenic” and “likely benign” variants
as the VUSs, since these variants lack solid evidence that
can demonstrate their pathogenic risks.) In order to inter-
pret the clinical significances of these data, we analyzed
the data and developed multiple machine learning models
to predict the pathogenic risks of these VUSs. After bench-
marking, the optimized random forest model was found to
have the best performance and it was chosen to predict
BRCA1 VUSs from both our sequencing data and ClinVar
database [17]. As a result, predictive pathogenicity of total
6322 VUSs was obtained. Amongst them, 1593 VUSs were
predicted to be pathogenic and 4729 VUSs were predicted
to be benign.

2. Materials and Methods

Initially, we identified and processed BRCA1 variant data
from RNA-seq. Since the year 2017, we have started to ask
hospital visitors if they are willing to donate their samples
for our cancer genetic research purposes. For those who
agreed, we sampled their bloods and made a third-party
contractor research organization (Beijing Genome Institute,
Shenzhen, China) to perform RNA-seq to these samples.
After bioinformatic analyses, we further confirmed, analyzed,
and identified the BRCA1 variant data via queries against
databases (Ensembl [18], dbSNP [19], and ClinVar [17], as
of 15 April 2020), information parsing, and data cleaning.
Accordingly, these variation data were parsed and converted
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into DNA sequences and they were prepared for loading into
predictive model predicting risks of ovarian/breast cancer.

Next, we prepared the dataset for training and bench-
marking predictive models. We extracted BRCA1’s variant
data from the ClinVar, dbSNP, and Ensembl databases
following such criteria. (1) Only retrieve BRCA1 variant data
that are labeled “benign” and “pathogenic” for ovarian/breast
cancer. (2) Choose variants that only have single nucleotide
base substitution. (3) Choose variants that are reviewed by
expert panel. As a result, 499 pathogenic BRCA1 variants and
585 benign BRCA1 variants were obtained. These variant data
were further transformed into DNA sequences, and subse-
quently, through different types of molecular descriptors,
DNA sequences were converted into feature vectors. Totally,
more than 100 kinds of feature combinations were tested.
Lastly, we found that the combination of 117 features gave
the best performance for machine learning. The adopted fea-
ture set included vectors of DNA 3-mer [20], genomic location
of variants, and di- (tri-) nucleotide-based autocross covariance
[21, 22].

In order to obtain good predictive results, we selected
multiple predictors and benchmarked their performance.
Through benchmarking, we chose the most well-performed
model to predict the pathogenic risk of BRCA1 VUSs so as
to obtain the better and more precise results.

After preparation of datasets, we initially chose 5 predic-
tors, i.e., the naive Bayes [23], the support vector machine
[24], the random forest [25], the PolyPhen program [26],
and the SIFT program [27]. Amongst them, the former 3
are classic machine learning models, and we trained, gener-
ated, and tested the models by ourselves. While the latter 2
were programs developed by other researchers, their perfor-
mances were used as the references to our models. Primary
performance tests (used 8:2 ratio to randomly split dataset
into training set and testing set) on 5 predictors identified
the strongly biased performance of the naive Bayes classifier
against our datasets; thus, naive Bayes was excluded from
further analyses.

A series of methods were used for machine learning model
optimizations; e.g., we adopted the oversampling method for
balancing the positive and negative training set. We applied
10-fold cross-validation strategy to models. We tried to select
a feature set giving the best performance to models. We also
tried to perform standardization, normalization, principal
component analysis, etc., to our dataset. In particular, for ran-
dom forest and support vector machine, model-specific opti-
mizations were conducted. For the support vector machine,
the cost coefficient, gamma, kernel, etc., were tuned. For ran-
dom forest, specific parameter tunings including the number
of trees and number of features were carried out.

Predictive performances of all predictors were visualized
as ROC plot, and the values of AUC were calculated for
quantitative comparison. Accordingly, we also computed
optimized random forest’s true-positive rate, true-negative
rate, false-positive rate, false-negative rate, positive predic-
tive values, accuracy, balanced accuracy, and F-measure,
so as to examine its extra performance scores in different
perspectives.
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Upon identification of the machine learning model with
the best performance in benchmarking, both sets of BRCA1
VUSs, including 6 VUSs identified from sequencing data
and 6315 VUSs identified from ClinVar database, were
loaded into the optimized random forest for prediction.
The obtained predictive results were statistically analyzed
and then compared with their original pathogenicity annota-
tions in the database.

The aforementioned data processing and computational
analytic tasks including data parsing, data cleaning, sequence
manipulations, format conversions, statistical analyses, and
numeric computations were done in R computing environ-
ment and Rstudio [28, 29]. Besides self-scripted analytic
pipelines, other used R packages include BioMedR [30],
Bioconductor [31], Biostrings [32], e1071 [33], ROCR [34],
and RandomPForest [25].

3. Results

3.1. BRCA1 VUS Data. Through sequencing data analyses
and database queries, we totally identified 7 BRCA1 VUSs
that have substitution of single nucleotide base. The relevant
data and information are shown in Table 1. Of the 7 BRCA1
variants listed in Table 1, 4 of which have unknown clinical
significance. Here, the term “unknown clinical significance”
indicates that whether or not these VUSs will increase the
risk of having relevant diseases remains unclear. For the rest
of the other 3 BRCAI variants, they are annotated as “likely
benign” in databases. This indicates that so far these variants
lack sufficient or solid evidence supporting their associations
with pathogenic risk levels, and these uncertainties give
difficulties to diagnosis, as well. Hence, the word “likely” is
used and it is necessary to further analyze these variants.
Specifically, one of our 7 VUSs, the “c.1348A>T,” could not
be found in the results of database queries or searching
engines. It is indicating that the BRCAI “c.1348A>T” variant
is a new variant identified from our sequencing data. Regard-
ing this novel BRCAI variant and its molecular functions,
though nothing is known except its sequence variation infor-
mation, through our computational analyses and machine
learning prediction, its pathogenicity was characterized.

3.2. Performances of Predictive Models. As described in Mate-
rials and Methods, initially, 5 predictors were chosen for the
present study. Because of the obviously biased performance
of naive Bayes in primary tests [23], it was excluded from
further analysis and only 4 other predictors were used. Upon
benchmarking with datasets, each model’s receiver operating
characteristic (ROC) curve was plotted and the relevant value
of area under the curve (AUC) was computed accordingly.
Eventually, the performances of 4 included models are as
shown in Figure 1.

The 4 tested models, i.e., the support vector machine [24],
the random forest [25], the PolyPhen [26, 35], and the SIFT
[27], have the AUC values of 0.74, 0.78, 0.74, and 0.78,
respectively. For our own models, the random forest outper-
formed the support vector machine. For comparison between
our own models and others’ models, the support vector
machine had similar overall performance with PolyPhen,

TaBLE 1: Seven VUSs of BRCAI identified from sequencing data
and databases.

ID  Variation refSNP ID Clinical significance in
(a.k.a. rs number) database

c.1255G>C rs876658873 Unknown
c.824G>A rs397509327 Unknown
c.3448C>T rs80357272 Unknown

4" ¢1348A>T  Not available Unknown

5 ¢2566T>C rs80356892 Likely benign

6 c.3748G>A rs28897686 Likely benign

7 ¢571G>A rs80357090 Likely benign

*This BRCA1 variant was not found through querying databases.

and the random forest had similar performance with SIFT
as well.

Since our own models had similar performances with the
two reference models developed by other researchers, in
order to obtain the better model, we subsequently tried to
optimize our own support vector machine and random forest
models, hoping to see improvements in our models” predic-
tive performances. The optimization works are described in
Materials and Methods, and the performances of optimized
models are as seen in Figure 2.

For both optimized models, the AUC of ROC indicates
that the optimized random forest model had better overall
performance than the optimized support vector machine.
While comparing with our own models developed before
optimization works, the support vector machine seemed to
have little improvement (merely very slight improvement
from 0.74 to 0.75, only 0.01 difference in AUC value). And
for the random forest model, the optimization helped the
random forest model improve its AUC value from 0.78 to
0.853 (the best values). Specifically, in order to detect the
robustness of the model’s performance, we further carried
out 10 times 10-fold cross-validation to test the optimized
random forest model. As a result, the mean value and
standard deviation of AUCs are 0.85 and 0.006, respectively.
This result showed that the optimized random forest had
stable performance. For the best model of random forest, in
Table 2, we listed its other performance indicators based on
confusion matrix computing. Overall, the optimized random
forest model had good performance.

3.3. Prediction of Pathogenic Risks of BRCA1 VUSs. Upon
identification of the model with the best predictive perfor-
mance, i.e., the optimized random forest, it has been applied
to predict the BRCA1 VUS pathogenic risks for ovarian/breast
cancer. We initially predicted the BRCAI VUSs identified
from our sequencing dataset. The results of the machine
learning predictive analysis are shown in Table 3. For the first
3 VUSs, our best model predicted the first VUS to be patho-
genic while the other 2 are benign (Table 3). And for the rest
4 VUSs, according to our predictive analysis, their prefix
word “likely” was removed from their original clinical
significances. In other words, our model had given further
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F1Gure 1: ROCs of 4 kinds of predictive models. ROCs indicating varied performances of different models were plotted. And the relevant
AUCs were also computed to indicate models’ overall performance. For support vector machine (the light blue curve), random forest (the
purple curve), PolyPhen (the red curve), and SIFT (the green curve), their AUC values were 0.74, 0.78, 0. 74, and 0.78, respectively.
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F1GURE 2: The overall performance of optimized support vector machine, optimized random forest model, original (not optimized) support
vector machine, and original random forest. The optimized random forest (dark blue) had an obviously larger AUC than the optimized
support vector machine (light blue) and the original random forest (purple), while no significant increase of AUC was observed between
the original support vector machine (yellow) and the optimized one (light blue). The quantified AUC values of optimized random forest
and optimized support vector are 0.85 and 0.75, respectively, indicating that the random forest model had better performance after

optimization, while the support vector machine did not.

confidence to the likelihood of database’s original pathogenic
annotations of them.

Additionally, we found that large amounts of VUSs exist
in the ClinVar database, too. Many gene variants were dis-
covered and submitted to ClinVar. However, as mentioned

before, parts of variants do not have any function annotation
and hence they remain to be the VUSs. (Note that, here for
variants in ClinVar, we consider those variants of “likely
benign,” “likely pathogenic,” “not provided,” and “conflicting
interpretations of pathogenicity” the same as those variants
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TaBLE 2: Other performance indicators of the best random forest model. Tp, Tn, Fp, and Fn stand for the number of true-positive, true-
negative, false-positive, and false-negative instance in the machine learning confusion matrix, respectively.

ID Indicator Value Calculation

1 True-positive rate (a.k.a. sensitivity or recall) 0.84 Tp/(Tp + Fn)

2 True-negative rate (a.k.a. specificity) 0.86 Tn/(Tn + Fp)

3 False-positive rate 0.13 Fp/(Fp + Tn)

4 False-negative rate 0.16 Fn/(Fn + Tp)

5 Positive predictive value (a.k.a. precision) 0.77 Tp/(Tp + Fp)

6 Accuracy 0.85 (Tp+Tn)/(Tp+Tn + Fp + Fn)

7 Balanced accuracy 0.85 (True-positive rate + true-negative rate)/2
8 F-measure (a.k.a. F1 score) 0.80 2Tp/(2Tp + Fp + Fn)

TaBLE 3: Predictive pathogenic risks for 7 VUSs of BRCAI identified
from our sequencing data.

(Original) clinical Predictive pathogenic

ID Variation

significance risk
1 ¢1255G>C Unknown Pathogenic
2 c.824G>A Unknown Benign
3 c.3448C>T Unknown Benign
4% c1348A>T Unknown Pathogenic
5 ¢2566T>C Likely benign Benign
6 c.3748G>A Likely benign Benign
7 c571G>A Likely benign Benign

“Except this variant, the rest of the variants can be found in the ClinVar
database.

of “uncertain significance,” as the VUSs. And hence, all of
them were the targets for our predictive analysis.) For
example (as of 16 May 2020), for BRCAI, the number of
variants of “likely benign,” “likely pathogenic,” “not provided,”
“conflicting interpretations of pathogenicity,” and “uncertain
significance” is 937, 82, 2797, 264, and 2235, respectively
(Table 4). In order to provide more insights for these BRCAI
VUSs which are not covered by our datasets, we also used
the optimized random forest model to carry out pathogenic
risk prediction of these BRCAI VUSs. Notice that 6 of VUSs
identified from sequencing data were also found in ClinVar’s
VUSs. For a total of 6315 predicted variants, in which 6 VUSs
identified from sequencing were excluded, 4724 (74.81%) were
predicted to be benign and 1591 (25.19%) were predicted to be
pathogenic (Table 4). Interestingly, we found that the percent-
ages of predicted pathogenic variants in different subclasses
are close. These percentages range from 69.51% to 77.80%.
For variants of “likely pathogenic,” “uncertain significance,”
and “conflicting interpretations of pathogenicity,” the pre-
dicted pathogenic ratios of variants are 69.51%, 71.19%, and
71.97%, respectively. These values fluctuate around 70%, while
the two percentages, 77.80% for “not provided” subgroup of
BRCAI1 VUSs and 75.78% for “likely benign,” are slightly
higher than the former 3 percentages (Table 4). The full
predictive results can be found in supplementary file S1.

4. Discussion

We believe that the present study of us is of high significance.
Through analyzing potential pathogenicity of BRCA1 VUSs
via machine learning approaches, we succeeded in carrying
out such translational research that can help clinicians
interpret the clinical significances of VUSs. Our work not
only facilitates the precise clinical diagnosis but also pro-
vides references to clinical therapeutic decision-making.

Before we had the performance scores of the optimized
machine learning models, we expected the AUC value of our
best model could reach around 0.9. However, it did not despite
our efforts and multiple trials, while we believe there exist ways
for improvement of predictive models, such as using other
advanced machine learning models or other optimization
methods. For example, through feature engineering approaches,
more advanced feature sets could be generated and tested.

In the present work, our analyses only covered single base
substitutions of BRCA1 VUSs, while the forms of BRCA1
VUSs are diverse. Besides single base substitution mentioned
in this work, there are deletion, insertion, and other kinds of
structural variations as well. These variations and variants,
though more complex than single nucleotide base substitu-
tion, are of equally high importance for medical researches,
clinical data interpretation, and clinical diagnosis. In the
future, we may take this challenge and try to analyze these
more complex forms of BRCA1 VUSs, so as to acquire more
insights between BRCA1 VUSs and cancers.

Variants’ precise functional annotations and associated
information are prerequisite for gene-disease relationship
analysis and thus play a vital and indispensable role in precise
diagnosis. On the one hand, we know that the precise func-
tional annotations of gene variants come from the labor-,
time-, and resource-consuming biochemical assays. On the
other hand, more and more novel VUSs are being discovered.
And the discovery of VUSs is in faster speed than the carry-
out speed of biochemical experiments for VUS characteriza-
tion. But for the purposes of clinical diagnosis, there is no
doubt that it is necessary to efficiently interpret the VUSs.
Hence, before databases can accumulate and disclose suffi-
cient biochemical assay-based annotation data for gene vari-
ants, computational methods for variant analysis would still
play important roles in the long run.
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Number of predictive pathogenic

variants (%)

Number of predictive benign

variants (%)

6

Class Clinical significance Varijant
(ClinVar database) amount

1 Likely benign 937

2 Likely pathogenic 82

3 Not provided 2797

4 Uncertain significance 2235

5 Conﬂictri)r;% hi(r:;z;;;;ett;tions of 264

6 Total 6315

227 (24.22%)
25 (30.49%)
621 (22.20%)
644 (28.81%)

74 (28.03%)

710 (75.78%)
57 (69.51%)
2176 (77.80%)
1591 (71.19%)

190 (71.97%)

1591 (25.19%) 4724 (74.81%)

5. Conclusions

In this work, we identified BRCA1 VUSs from sequencing data,
and subsequently, we developed machine learning predictive
models and benchmarked the performance of predictive
models. The best predictive model scored an AUC value 0.85,
namely, the optimized random forest, which was used to pre-
dict the pathogenic risk of BRCA1 VUSs, including those in
the ClinVar database. In total, 6322 variants of unknown
clinical significance were predicted. Amongst them, one variant
“c.1348A>T” identified from the sequencing data has not been
found in databases, and hence, we considered it as a novel VUS.
And it was predicted to be pathogenic. For the other 6 VUSs
identified from sequencing data, “c.1255G>C” was predicted
to be pathogenic, as well, while the remaining 5 were predicted
to be benign. For VUSs in ClinVar, our model predicted 4724
benign variants and 1591 pathogenic ones.

We believe that the present study of us is of high signifi-
cance. Through analyzing potential pathogenicity of BRCA1
VUSs via machine learning approaches, we succeeded in car-
rying out such translational research that can help clinicians
interpret the clinical significances of VUSs. Our work not
only facilitates the precise clinical diagnosis but also provides
references to clinical therapeutic decision-making.
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