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1  | INTRODUC TION

When a selectively favored mutation occurs in a population and 
is subsequently fixed, it is inevitable that the frequency of linked 
neutral variants will be altered. In a seminal paper, Maynard Smith 
and Haigh (1974) described this process and termed it genetic 
hitchhiking. They showed that in large populations a single hitch-
hiking event may temporarily reduce neutral genetic variation 
around the site of selection. In recombining organisms the size 
of the region of reduced variation depends critically on the ratio 
of the recombination rate and the selection coefficient of the fa-
vorable mutation and may be limited to a relatively small fraction 
of the genome. In nonrecombining organisms such as bacteria, 

however, variation on entire chromosomes may be eliminated by 
genetic hitchhiking.

The hitchhiking model was revisited in the late 1980s to de-
scribe patterns of reduced variation in DNA polymorphism data, 
which were found in genomic regions of low recombination rates 
around centromeres and telomeres of Drosophila (Aguade et al., 
1989; Begun & Aquadro, 1992; Stephan & Langley, 1989) and also 
on the fourth chromosome (Berry et al., 1991). Begun and Aquadro 
further showed that levels of DNA variation correlate with recom-
bination rates across much of the Drosophila melanogaster genome, 
whereas average divergence to its sibling species Drosophila sim-
ulans was hardly affected by recombination. Given these data, 
the deterministic hitchhiking model of Maynard Smith and Haigh 
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Abstract
Detecting selective sweeps driven by strong positive selection and localizing the 
targets of selection in the genome play a major role in modern population genetics 
and genomics. Most of these analyses are based on the classical model of genetic 
hitchhiking proposed by Maynard Smith and Haigh (1974, Genetical Research, 23, 23). 
Here, we consider extensions of the classical two-locus model. Introducing mutation 
at the strongly selected site, we analyze the conditions under which soft sweeps 
may arise. We identify a new parameter (the ratio of the beneficial mutation rate to 
the selection coefficient) that characterizes the occurrence of multiple-origin soft 
sweeps. Furthermore, we quantify the hitchhiking effect when the polymorphism at 
the linked locus is not neutral but maintained in a mutation-selection balance. In this 
case, we find a smaller relative reduction of heterozygosity at the linked site than for 
a neutral polymorphism. In our analysis, we use a semi-deterministic approach; i.e., 
we analyze the frequency process of the beneficial allele in an infinitely large popu-
lation when its frequency is above a certain threshold; however, for very small fre-
quencies in the initial phase after the onset of selection we rely on diffusion theory.
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(1974) was extended by Kaplan et al. (1989) who analyzed a sto-
chastic version of the process (including genetic drift) by means of 
coalescent theory. Furthermore, Stephan et al. (1992) studied ge-
netic hitchhiking using the diffusion equation method. Alternative 
approximations of the hitchhiking model were provided by Barton 
(1998) and Gillespie (2000).

In population genetics, the concept of “genetic hitchhiking” is 
now more broadly used than around the year 1990 and describes 
any situation in which changes in allele frequencies caused by rel-
atively strong selection affect the frequencies of neutral or weakly 
selected variants at linked sites in the genome. This includes—for 
instance—the case of balancing selection (Kaplan et al., 1988) and 
also background selection (Charlesworth et al., 1993). At the same 
time, and more specifically, for genetic hitchhiking caused by pos-
itive directional selection (as considered by Maynard Smith and 
Haigh), the term selective sweep is now generally used, which was 
introduced by Berry et al. (1991).

Several controversies have surrounded the application of the 
selective sweep model to data. Charlesworth et al. (1993) have ex-
plained the observed reduction of nucleotide variation in genomic 
regions of reduced recombination rates by background selection. 
According to this model, the level of neutral (or nearly neutral) varia-
tion can be reduced below classical neutral expectation by selection 
against the steady input of deleterious mutations. Furthermore, it 
has been difficult to distinguish the effect of selective sweeps from 
that of specific demographic scenarios, in particular bottlenecks 
(Pavlidis et al., 2010). Another controversy arose between selective 
sweeps and so-called soft sweeps (Jensen, 2014). The latter may be 
caused by positive directional selection on standing genetic variation 
after an environmental change or by multiple beneficial mutations 
segregating simultaneously in a population (Hermisson & Pennings, 
2005, 2017; Innan & Kim, 2004). Despite substantial efforts from 
many theorists and empiricists, fundamental questions on the rela-
tionship of demography, selective sweeps, soft sweeps, and back-
ground selection with regard to data analysis are still open. However, 
since these issues are not a focus of this study, the reader is referred 
to the work of Li and Stephan (2006), Elyashiv et al. (2016), Comeron 
(2017), Harris et al. (2018), Garud et al. (2021), or to the Perspectives 
article by Stephan (2019).

This article is devoted almost exclusively to the modeling efforts 
of selective sweeps by extending the classical hitchhiking model. We 
begin by formulating the model of Maynard Smith and Haigh (1974) 
more generally as a two-locus two-allele model with additive fitness. 
Besides strong positive directional selection at the selected locus, we 
allow for weak purifying selection at the linked locus. Furthermore, 
we introduce mutation at both loci. This allows us to address the 
following topics: First, following Maynard Smith and Haigh we per-
form a deterministic analysis of the extended hitchhiking model. This 
analysis is valid after the trajectory of the strongly advantageous al-
lele has reached a certain threshold frequency. Second, we derive 
analytical results that show under which conditions soft sweeps 
caused by multiple beneficial mutations segregating in a population 
(so-called multiple-origin soft sweeps) are predicted by our extended 

hitchhiking model and identify a new parameter characterizing the 
occurrence of this type of soft sweeps. Third, we quantify the hitch-
hiking effect (i.e., the degree of reduction of variation) under the as-
sumption that the polymorphism at the linked locus is not neutral 
but in a mutation-selection balance. Fourth, we analyze the initial 
phase of the frequency process of strongly beneficial alleles after 
the onset of positive selection (until it reaches x0) by diffusion the-
ory. This allows us to derive initial conditions for our deterministic 
analyses mentioned above.

2  | DETERMINISTIC HITCHHIKING MODEL

To extend the classical hitchhiking model (Maynard Smith & Haigh, 
1974), it is convenient to start from a diploid, two-locus two-allele 
model with additive fitness (Bürger, 2000, Chapter II.1). In this 
model, selection at both loci may be introduced in a straightfor-
ward way as well as mutation and recombination between both loci. 
Calling the alleles at the first locus A and a, where A is the major al-
lele, and those at the second locus B and b, we denote the possible 
gametes as AB, aB, Ab, and ab, and the relative frequencies of these 
gametes are x1, x2, x3, and x4. They add up to 1. Wiehe (1995, Chapter 
4) derived equations for this model including viability selection and 
two-way mutation at both loci and recombination between loci. The 
ordinary differential equations (ODEs) of this model are as follows.

where a dot denotes differentiation with respect to time. �A is the 
mutation rate from allele a to A, and �A that in the opposite direction. 
Similarly, �B denotes the mutation rate from b to B. To maintain the 
property of the original model that the positively selected mutation at 
the second locus gets fixed at the end of a sweep, we put �B = 0. The 
selection coefficients at the first and second locus are given by s1 and 
s2, respectively. We assume that the absolute value of s1 is generally 
(much) smaller than s2, which is positive and characterizes the fitness 
advantage of the beneficial allele. The recombination fraction between 
the two loci is r, and D = x1x4 − x2x3 measures linkage disequilibrium 
(LD).

The model described by the above equations is different from 
the model proposed by Maynard Smith and Haigh (1974) as it allows 
for mutation at both loci and variation at the first locus may devi-
ate from neutrality. We will explore next to what extent this more 
general model can be treated analytically. Subsequently, because 
the deterministic model is not valid for very small frequencies of 
the beneficial allele (Kaplan et al., 1989), we analyze the initial phase 
of the adaptive process stochastically. This allows us to specify the 

(1)
ẋ1 = −

(
�A + �B

)
x1 + �Ax2 + �Bx3 + s1x1

(
1 − x1 − x3

)
+ s2x1

(
1 − x1 − x2

)
− rD

(2)
ẋ2 = −

(
�A + �B

)
x2 + �Ax1 + �Bx4 − s1x2

(
x1 + x3

)
+ s2x2

(
1 − x1 − x2

)
+ rD

(3)
ẋ3 = −

(
�A + �B

)
x3 + �Ax4 + �Bx1 + s1x3

(
1 − x1 − x3

)
− s2x3

(
x1 + x2

)
+ rD,
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state of the above variables at time t0 at which the deterministic 
phase begins.

3  | ANALYSIS OF THE DETERMINISTIC 
PHA SE

Following Maynard Smith and Haigh (1974), we introduce the coor-
dinates p1, the frequency of A alleles in chromosomes containing B, 
and p2, the frequency of A in b-chromosomes. Thus, assuming x is 
the frequency of the selected allele B, we have p1 =

x1

x
 and p2 =

x3

1− x
 . 

A consequence of this variable change is that we can analyze the 
model only in the interval 0 < x < 1. As explained above, this is not 
a severe limitation as our deterministic treatment is not valid very 
close to the boundary 0 anyway (Kaplan et al., 1989). With this trans-
formation of variables, the ODEs (1)–(3) become

Eq. (4) results from adding ODEs (1) and (2) and putting 
x = x1 + x2 . Eqs. (5) and (6) exploit the equality

Eq. (4) indicates that the beneficial allele B may be driven by three 
forces: positive directional selection at the second locus, mutation at 
the second locus, and selection at the first locus (via LD between the 
first and second locus; see Eq. (7)).

In the following, we analyze the behavior of the deterministic 
model in several distinct parameter ranges. In each case, strongly pos-
itive directional selection at the second locus is assumed to be present.

Case 1: 𝜇B > 0, r = 0,𝜇A = 𝜇A = 0, s1 = 0.
It is informative to first consider the effect of mutation and 

strong directional selection at the second locus on neutral variation 
(at the first locus) alone. Using the assumption that all parameter 
values are zero, with the exception of 𝜇B, s2 > 0, it follows from Eqs. 
(4)–(6) that

and

These ODEs can be easily integrated by dividing Eq. (9) by Eq. 
(8). This leads to

Separation of variables then yields

where the integration constant is given as

The initial values (at t = t0) of the variables x, p1, and p2 are de-
noted by the index 0. Simulations by Kaplan et al. (1989) suggest that 
x0 should be at least as high as 5

�
, where � is given by 2Ns2 in diploid 

populations of size N.
Eqs. (11) and (12) can be used to calculate the allele frequencies 

x1 and x2 as a function of x (or alternatively as a function of t by solv-
ing Eq. (8)). From Eq. (6) follows that p2 does not depend on mutation 
at the second locus. Therefore,

The allele frequencies AB and aB are then given as

and

respectively.
Based on these results, we can address the question whether 

multiple-origin soft sweeps (Hermisson & Pennings, 2005, 2017) are 
predicted by our extended hitchhiking model. In our model, such a 
soft sweep occurs if both gametes AB and aB are simultaneously 
present in a population in substantial amounts. Eq. (8) suggests that 
the probability of a sweep being soft is significantly high if the mu-
tation rate �B is sufficiently large compared to the selection pressure 
s2x (Johri et al., 2021); i.e.,

Of course, this inequality holds only for very small values of x. It 
describes the situation in which initially the frequency of the benefi-
cial allele does not increase in an exponential fashion (as in the case 
of the classical hitchhiking model in which a single beneficial allele is 
assumed to be present at the onset of selection). Instead, in our case 
this exponential increase is delayed until the process reaches values 
of x >

𝜇B

s2
. This suggests that �B

s2
 represents a threshold parameter such 

that for x <
𝜇B

s2
 mutation dominates selection, whereas for x >

𝜇B

s2
 the 

opposite occurs. More multiple-origin soft sweeps should arise with 
increasing values of �B

s2
 for the following reason: A larger mutation 

rate increases the frequency of B alleles and a larger selection 
strength reduces their fixation time. Therefore, if a first mutation 
that arose on an A-chromosome is on its way to fixation, the proba-
bility that a second beneficial mutation arises on an a-chromosome 
and substantially increases in frequency becomes smaller.

(4)ẋ =
{[
s1

(
p1 − p2

)
+ s2

]
x + �B

}
(1 − x)

(5)
ṗ1 = − �Ap1 + �A

(
1 − p1

)
+ s1p1

(
1 − p1

)
− r (1 − x)

(
p1 − p2

)
− �B

1 − x

x

(
p1 − p2

)

(6)ṗ2 = − �Ap2 + �A

(
1 − p2

)
+ s1p2

(
1 − p2

)
+ rx

(
p1 − p2

)
.

(7)D = x (1 − x)
(
p1 − p2

)
.

(8)ẋ =
(
s2x + �B

)
(1 − x)

(9)ṗ1 − ṗ2 = − �B

1 − x

x

(
p1 − p2

)
.

(10)
d
(
p1 − p2

)

dx
= − �B

p1 − p2

x
(
s2x + �B

) .

(11)p1 − p2 = C
s2x + �B

x
,

(12)C =
x0

s2x0 + �B

(
p10 − p20

)
.

(13)p2 = p20.

(14)x1 = C
(
s2x + �B

)
+ p20x

(15)x2 = x − x1,

(16)�B ≥ s2x.
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Note that we have 𝜇B

s2
< x0 =

5

𝛼
 for realistic values of population 

size and beneficial nucleotide mutation rate. Therefore, �B

s2
 likely falls 

into the interval in which a stochastic treatment of the x process is 
required. Nonetheless, the above argument that is derived from Eq. 
(8) holds. The reason is that the right-hand side of Eq. (8) is identical 
to the drift coefficient of the diffusion equation (except for the scal-
ing factor 2N; see Eqs. (39) and (41) below).

Our analysis adds a new piece to the theory of Hermisson and 
Pennings (2005, 2017) who studied the occurrence of soft sweeps 
in a population of finite size. In their approach, the probability for 
mutation-based soft sweeps largely depends on a single param-
eter Θ, which is a scaled beneficial mutation rate that accounts 
for many short-term processes going on in a population (see the 
detailed discussion of short-term effective population size and 
the target size of beneficial mutations in Hermisson and Pennings 
(2017)).

Very recently, Feder et al. (2021) reported simulations of a 
model that is virtually identical to the hitchhiking model described 
here, except that it is haploid and consists of only a single locus at 
which beneficial mutations were allowed to arise such that each 
mutation created a new allele. In their simulations, mutation rate 
� was fixed, while the selection coefficient s and population size 
N varied as did � = N�. For many parameter combinations, they 
ran forward simulations and recorded the percentage of runs in 
which the sum the frequencies of all mutations reached 50% by 
generation 30. In this case, a run was counted as a sweep. If a 
sweep occurred, they also checked whether more than one allele 
was at frequency >5%, which was counted as a multiple-origin soft 
sweep. In their Figure 3C, they show that indeed for all values of s 
increasing � led to a higher percentage of soft sweeps, whereas Ns 
had almost no effect. These observations are consistent with the 
theory of Hermisson and Pennings (2017). A strong effect was also 
found for selection. Increasing s led to a remarkable reduction of 
the percentage of soft sweeps, which is in qualitative agreement 
with our analysis.

Finally, we discuss the role of p10 and p20 in the detection of soft 
sweeps. As we show in the stochastic analysis below, p20 is approxi-
mately given by the frequency x∗

3
 of the major allele A at the onset of 

selection, while p10 may be small due to the relatively large variance 
of x and x1 in the initial phase. For p10 < 𝜀, where � is the detection 
threshold of a soft sweep conditional on a sweep is occurring, AB 
gametes may remain undetected, if the mutation rate is too small 
(see Appendix A).

Case 2: 𝜇B > 0, r ≥ 0,𝜇A ≥ 0,𝜇A ≥ 0, s1 = 0.
We first analyze the joint effects of mutation at the second locus 

and recombination between both loci. Eqs. (9) and (10) then become

and

The latter ODE may be integrated in a similar way as Eq. (10) 
such that

where � =
r

s2 + �B

 and the integration constant is

Next, we calculate p2 using ODE (6). Inserting Eq. (19) into ODE 
(6) yields

This equation can be integrated taking into account that 𝜌 ≪ 1 
and dividing Eq. (21) by Eq. (8). This leads to

Since 𝜌 ≪ 1, which appears to be biologically realistic, Eq. (19) 
is nearly identical to Eq. (11) and Eq. (22) is very similar to Eq. (13). 
Therefore, in the presence of strong selection and mutation at the 
second locus recombination has only a very weak effect on the dy-
namics of the frequencies of the AB and aB gametes. This may be 
surprising, given the distinct effect of recombination in the pres-
ence of strong selection on heterozygosity at the neutral locus in 
the study of Maynard Smith and Haigh (1974). The critical differ-
ence between our model and the original one by Maynard Smith 
and Haigh, however, is mutation. Without mutation at the selected 
locus, our approach would lead to the same predictions as that of 
Maynard Smith and Haigh. In other words, the presence of muta-
tion alters the typical sweep (hitchhiking) effect of the Maynard 
Smith–Haigh model by generating more than one haplotype with a 
selected allele in the initial phase that may lead to partial parallel 
sweeps.

Finally, we discuss the effect of mutation at the first locus in con-
junction with recombination, mutation, and selection at the second 
locus. In this case, the difference between ODEs (5) and (6) is for-
mally identical to Eq. (17) and can be integrated as shown above in 
Eqs. (18)–(20), assuming that the selection coefficient is much larger 
than the mutation rates at the first locus and r . In a similar way as 
above, p2 can be calculated.

Case 3: 𝜇B = 0, r ≥ 0,𝜇A > 0, s1 < 0.
Here, we analyze the case studied by Maynard Smith and Haigh 

(1974), except that the polymorphism at the first locus is not neu-
tral, but allele A is deleterious (maintained in a mutation-selection 
balance). Thus, in this subsection A is not the major allele. From Eqs. 
(4)–(6), we get the following ODEs

(17)ṗ1 − ṗ2 = − r
(
p1 − p2

)
− �B

1 − x

x

(
p1 − p2

)

(18)
d
(
p1 − p2

)

dx
= − r

p1 − p2

(1 − x)
(
s2x + �B

) − �B

p1 − p2

x
(
s2x + �B

) .

(19)p1 − p2 = C̃
(1−x)�

(
s2x+�B

)1−�

x
,

(20)C̃ =
x0(

1−x0
)�
(s2x0+�B)

1−�

(
p10 − p20

)
.

(21)ṗ2 = r C̃ (1−x)�
(
s2x+�B

)1−�
.

(22)p2 ≈ p20 − r C̃ln (1 − x) .

(23)ẋ =
[
s1

(
p1 − p2

)
+ s2

]
x (1 − x)

(24)ṗ1 = �A

(
1 − p1

)
+ s1p1

(
1 − p1

)
− r (1 − x)

(
p1 − p2

)
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The frequency of A in the mutation-selection balance at the first 
locus is given by x30 =

�A

|s1| . Since the frequency of A is assumed to be 

small, reverse mutation from A to a is neglected.

A general analytical solution of this system of ODEs is difficult to 
obtain, but we may approximate these equations under the assump-
tion that the frequency x30 of the deleterious allele A is relatively 
small such that a strongly advantageous mutation occurring at the 
second locus at t = 0 hits a chromosome carrying allele a with high 
probability. In other words, we consider the following initial condi-
tions at t = t0

Furthermore, we assume that both r and ||s1|| ≪ s2. Under these 
assumptions, the quantities p1 and p2 remain small (compared to 1), 
while the strongly selected allele B increases from x0 to 1 − x0 (i.e., 
near fixation). Then, from ODEs (23)–(25) we obtain the following 
equations

Equations (28) and (29) can be readily integrated using the initial 
conditions (26) and (27) and expressing time t by � = t − t0. Inserting 
the solutions into ODE (30) leads to a linear ODE of first order that 
can be solved. The resulting equation for p1 contains an integral over 
a function that can be approximated by replacing the denominator 
of this function by e−s2�� (see eqs. (14b) and (14c) of Stephan et al. 
(1992)). Thus, we have

Variable p1 is monotonically increasing from zero to the equilib-
rium frequency p20. The two most important parameters are s1 and r . 
Larger values of ||s1|| and less linkage between loci (i.e., larger r values) 
lead to faster increase of p1.

Next, we calculate (for a fixed time point at the end of the selec-
tive phase) the effect of strong selection at the second locus on the 
frequency of allele A and on heterozygosity at the first locus. Let p 
denote the frequency of A and H = 2p (1 − p) heterozygosity. Thus,

At the end of the selective phase at time �̂ = −
2

s2
ln
(
x0
)
 when x 

has reached the frequency 1 − x0 we have

For the case in which the polymorphism at the first locus is neu-
tral, this expression agrees with previous results (Maynard Smith & 
Haigh, 1974; Stephan et al., 1992; Wiehe, 1995).

Based on Eq. (36), we can immediately predict the effect of 
strong selection at the second locus on heterozygosity at the first 
locus. Heterozygosity is an average over two events, as allele B arises 
with probability p20 on an A-carrying chromosome or with probabil-
ity 1 − p20 on an a-chromosome (Kaplan et al., 1989; Stephan et al., 
1992). However, since in a mutation-selection balance p20 is small, 
we may neglect the first event and obtain

Therefore, the ratio of heterozygosity after the sweep (at � = �̂) 
to heterozygosity before the sweep at � = 0 is given by

Thus, heterozygosity at the first locus is reduced after a sweep 
caused by strong selection at a linked second locus. The relative 
reduction of variation, i.e., the hitchhiking effect, is, however, less 
pronounced than in the case of a neutral polymorphism at the first 
locus.

4  | STOCHA STIC ANALYSIS OF INITIAL 
PHA SE

As mentioned above, the dynamics of the beneficial allele 
at very low frequency (x ≤ x0) cannot be treated determin-
istically. Instead, we will use a diffusion approach. Assuming 
s2 > 0,𝜇B > 0, r = 0,𝜇A = 𝜇A = 0, and s1 = 0, we will derive an appro-
priate diffusion equation for a diploid population of constant size N 
and then calculate the first and second moments of this diffusion. 
We will first consider the frequency process of the beneficial allele 
and put z = x as diffusion variable. From Eq. (8), we find the drift 
coefficient as

(25)ṗ2 = �A

(
1 − p2

)
+ s1p2

(
1 − p2

)
+ rx

(
p1 − p2

)
.

(26)p10 = 0

(27)p20 =
x30

1 − x0
≈ x30.

(28)ẋ ≈ s2x (1 − x)

(29)ṗ1 − ṗ2 ≈ − �A

(
p1 − p2

)
+ s1

(
p1 − p2

)
− r

(
p1 − p2

)

(30)ṗ1 ≈ s1p1 + �A − r (1 − x)
(
p1 − p2

)
.

(31)x ≈
x0

x0 +
(
1 − x0

)
e−s2�

(32)p1 − p2 ≈ − p20e
(s1−�A−r)�

(33)p1 ≈ p20
(
1 − es1�

)
+ p20

r

�A + r
es1�

(
1 − e−(�A+r)�

)

(34)p2 = p1 −
(
p1 − p2

)
.

(35)p = p1x + p2 (1 − x) .

(36)

p
(
�̂
)
≈ p1

(
�̂
) (

1 − x0
)
≈ p20

[
1 − x

−2s1∕s2
0

(
1 −

r

�A + r

(
1 − x

2(�A+r)∕s2
0

))]
.

(37)H
(
�̂
)
≈ 2

(
1 − p20

)
p
(
�̂
) (

1 − p
(
�̂
))

≈ 2
(
1 − p20

)
p
(
�̂
)
.

(38)
H
(
�̂
)

H (0)
≈ 1 − x

−2s1∕s2
0

(
1 −

r

�A + r

(
1 − x

2(�A+r)∕s2
0

))
.

(39)
a (z) ≈ �z +

1

2
�,
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where � = 2Ns2 and � = 4N�B. The selection term is linear in z, as 
the frequency of the beneficial allele in the initial phase is very 
low. In the initial phase, the diffusion coefficient is also linear in 
z; i.e.,

Thus, we have the following Kolmogorov forward equation de-
scribing a one-dimensional diffusion in the initial phase (Ewens, 
2004, Chapter 4)

The probability density function f  of this equation has to satisfy 
some assumptions: The initial frequency of z is 0 at time t = 0, which 
denotes the onset of selection; furthermore, f  is normalized to 1 and 
the boundary conditions are such that for larger z values both f (z, t) 
and �

�z
f (z, t) converge to 0 (i.e., f (1, t) =

�

�z
f (1, t) = 0). Furthermore, 

in this section time is scaled in units of 2N.
We do not aim at finding an explicit solution of Eq. (41), but con-

sider only the two lowest-order moments defined as

This procedure leads to the following ODEs for the moments 
(see Appendix B):

and

Thus, we get a coupled system of ODEs. Note, however, that—
contrary to many other applications of this approach—the moment 
expansion breaks up (as the drift and diffusion coefficients do not 
contain the variable z in quadratic or higher-order forms). The ODE 
for the first moment corresponds to Eq. (8) of the deterministic 
system.

The solutions of these linear ODEs of first order can be easily 
obtained as

and

Thus, the variance of x is given by

Similarly, we may consider a one-dimensional diffusion equation 
for variable z = x1 describing the frequency process of gamete AB. It 
follows from ODE (1) that in the initial phase the drift coefficient is 
given by

and the diffusion coefficient by Eq. (40); � (t) is the solution of ODE

derived from Eq. (3) and given by

where x∗
3
 is the frequency of allele A at the onset of selection. The 

ODEs of the moments may be obtained by the same procedure as out-
lined in the Appendix B. We get

and

Using Eq. (50), ODE (51) can be formally integrated

The integral cannot be explicitly evaluated for all values of t. 
However, close inspection shows that for the biologically relevant 
parameter range (𝛼 > 100, 𝜃 > 0.005), the integrand in Eq. (53) can 
be approximated by e−�t� for t� ≤ 2t0, where t0 is defined below. This 
analysis takes the variance of the x diffusion (Eq. (47)) into account. 
Using this approximation, we get

Here, the mean time t0 until the beneficial allele B reaches the 
threshold frequency x = x0 under the influence of drift, directional 
selection, and mutation (starting from frequency 0) is given by

Using the same approximation as in the derivation of Eq. (54), we 
obtain for the second moment of the x1 process

Finally, we are able to determine the initial conditions for the de-
terministic phase. Eqs. (54) and (55) allow us to calculate the value of 

(40)b (z) ≈ z.

(41)�f (z, t)

�t
= −

�

�z
(a (z) f (z, t)) +

1

2

�2

�z2
(b (z) f (z, t)) .

(42)mi = ∫
1

0

zif (z, t) dz for i = 1, 2.

(43)ṁ1 ≈
1

2
� + �m1

(44)ṁ2 ≈ (1 + �)m1 + 2�m2.

(45)m1 ≈
�

2�

(
e�t − 1

)

(46)m2 ≈

(
1 +

1

�

)
m2

1
.

(47)m2 − m2
1
≈

1

�
m2

1
.

(48)a (z) ≈ �z +
1

2
�� (t)

(49)ẋ3 = −
(
�B + s2x

)
x3

(50)� (t) = x∗
3
exp

(
−

�

2�

(
e�t − 1

))
,

(51)ṁ1 ≈
1

2
�� (t) + �m1

(52)ṁ2 ≈ (1 + �� (t))m1 + 2�m2.

(53)m1 ≈
1

2
�x∗

3
e�t ∫

t

0

exp
(
−

�

2�

(
e�t

�

− 1
)
− �t�

)
dt�.

(54)m1 ≈
�

2�
x∗
3
(e�t − 1).

(55)t0 ≈
1

�
ln

(
1 +

2�

�
x0

)
.

(56)m2 ≈

(
1 +

1

�x∗
3

)
m2

1
.
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p1 =
x1

x
 at time t0, i.e., at the beginning of the deterministic phase. We 

find p1
(
t0
)
= p10 ≈ x∗

3
. However, since the variances of the diffu-

sions x and x1, for which we got simple analytical formulas (see Eqs. 
(47) and (56)), are relatively large, p1 may not be well predicted by the 
first moments of x and x1 at time t0. In contrast, the value of p2

(
t0
)
, 

which is defined as a ratio of two relatively large quantities (≥0.5) 
shortly after the onset of selection, is evidently better predicted. 

Using Eq. (50), we get p2
(
t0
)
=

x3(t0)
1− x0

= p20 ≈ x∗
3
. Thus, p2

(
t0
)
 is close 

to its value x∗
3
 at t = 0, which is expected.

On the other hand, if indeed p10 = p20, as expected, we get the 
interesting result that at the time of fixation x1 = p10 (see Eqs. (12) and 
14)). That means that the ratio of the frequency of AB gametes to the 
frequency of B alleles is constant during the selective phase from time 
t0 to fixation. The effect of mutation during this phase is therefore neg-
ligible. In other words, the competition between mutation and selec-
tion (and drift) is expected to occur exclusively during the initial phase.

5  | DISCUSSION

We extended the classical two-locus two-allele hitchhiking model 
of Maynard Smith and Haigh (1974) by allowing mutation and selec-
tion at both loci. Besides strong positive directional selection at the 
selected locus, we allow for weak purifying selection at the linked 
locus. We show that the hitchhiking effect expressed by a reduction 
of variation is weaker when the polymorphism at the linked locus is 
in a mutation-selection balance rather than neutral.

Furthermore, introducing mutation from the wild type to the 
strongly beneficial allele may lead to the occurrence of multiple-
origin soft sweeps in the extended hitchhiking model. We identified 
a new parameter, �B

s2
, determining the occurrence of this type of 

sweep. The proportion of soft sweeps (conditional on sweeps are 
occurring) is predicted to increase with increasing values of �B

s2
. This 

result may be compared with the simulations of Feder et al. (2021) 
who proposed a simulation model to explain certain features of HIV 
evolution. In their Figure 3C, they show for a fixed beneficial muta-
tion rate that increasing the selection coefficient leads to a strong 
reduction of the percentage of multiple-origin soft sweeps, which is 
in qualitative agreement with our analysis.

We also analyzed the initial phase when—after the onset of 
strong positive selection—the frequency of the beneficial allele is 
very small (≪ 1). Based on diffusion theory, we calculated the first 
and second moments of the frequencies x(benefical allele) and x1
(gamete AB). This helped us to quantify the initial conditions of the 
deterministic ODEs, which we needed to analyze our extended de-
terministic hitchhiking model. Our approach is based on the same 
biological assumptions as that of Martin and Lambert (2015) who 
analyzed the frequency process of the beneficial allele of the original 
hitchhiking model (i.e., without mutation at the selected locus). They 
used the (linear) Feller diffusion process for which more short-term 
results can be obtained explicitly than for a Wright-Fisher diffusion.

In the theoretical analysis of selective sweeps, several ques-
tions have not been satisfactorily addressed (Stephan, 2019). A 
major one concerns the traffic model. Although this model has 
been proposed 25 years ago (Barton, 1995; Kirby & Stephan, 1996), 
not much progress has been made in analyzing it. Most analyses 
still assume that selective sweeps along the genome occur se-
quentially, without interfering with each other. However, imagine 
a model with two partially linked loci at which beneficial mutations 
may enter a population independently. An interesting scenario 
arises when a second mutation B with higher fitness occurs, while 
the first one (A) is on its way to fixation. If A and B can recombine 
at some rate, there is a chance that the double beneficial mutant 
AB forms and eventually fixes. Basic questions such as the fixa-
tion probability of AB and its fixation time have been addressed 
in a series of mathematical papers (Bossert & Pfaffelhuber, 2018; 
Cuthbertson et al., 2012; Yu & Etheridge, 2010). However, the pat-
tern of variation in genetic data for such a model of competing 
sweeps is largely unknown.

The only report on patterns of variation in recombining genomic 
regions has been published by Chevin et al. (2008). They modeled 
the case of two partially linked loci with positive directional selec-
tion at both of them and one neutral locus for an infinitely large 
population using ordinary differential equations. Solving these equa-
tions numerically, they found that the hitchhiking effect is weaker in 
this model than for a single sweep of comparable selection strength. 
Furthermore, the interference of both sweeps may lead to an excess 
of intermediate-frequency variants in the genomic region between 
the selected sites, a signature that may be falsely interpreted as a 
sign of balancing selection. More work is needed to understand such 
a model.

Similarly, selective sweep models from the quantitative genetics 
literature have been relatively neglected by the population genetics 
community, such as the work of Santiago and Caballero (1995, 1998). 
These authors developed a quantitative genetic theory of effective 
population size and polymorphism of linked neutral loci in popula-
tions under directional selection and continuous mutation pressure. 
Interestingly, they were able to apply the principles of their theory 
to the recurrent hitchhiking case by considering a steady input of 
weakly beneficial mutations instead of rare, strongly favorable ones, 
as is usually assumed in the model of recurrent selective sweeps 
(Kaplan et al., 1989; Wiehe & Stephan, 1993).
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APPENDIX A

Condition for the occurrence of soft sweeps may be violated
In our model a soft sweep can be detected conditional on a sweep 
has occurred (i.e. x = 1), if the frequencies x1 and x2 of the gametes 
AB and aB are both larger than a threshold value 𝜀 < 0.5. For x1 this 
condition, however, may be violated. Using Eq. (14) and inserting 
x = 1, we find that x1 < 𝜀 if

where 

is a positive function (i.e. p10 < 𝜀). As shown in the second to last para-
graph of section 4, p20 is approximately given by the frequency x∗

3
 of 

the major allele A at the onset of selection, while p10 < 𝜀 may occur due 
to the large variances of x and x1 in the initial phase.

APPENDIX B

Derivation of the moments
Using the definition of the moments (Eq. (42)) and integrating by 
parts, we get

For both i = 1 and 2 the term (B2) vanishes because of the bound-
ary condition f (1, t) = 0. For i = 1 integral (B3) yields 1

2
� + �m1 (with-

out the – sign in front of the integral), whereas for i = 2 we find 
�m1 + 2�m2.

Similarly, we obtain the contribution of the diffusion part of Eq. 
(41) as

Here, the term (B4) vanishes for both i = 1 and 2 because 
of the boundary conditions f (1, t) =

�

�z
f (1, t) = 0. The integral 

(B5) vanishes for i = 1 because of f (1, t) = 0. For i = 2 a similar 
calculation as for the integral (B1) shows that integral (B5) is 
equal to 2m1.

Collecting the non-zero terms for i = 1 leads to the ODE for the 
first moment shown in Eq. (43). Note that the minus signs in front 
of integral (B3) and in front of the drift term of the diffusion equa-
tion cancel each other. Similarly, collecting the terms for i = 2 and 
multiplying them by 1

2
 leads to the ODE for the second moment 

(Eq. (44)).

(A1)𝜇B < s2x0I
(
p10, p20

)
,

(A2)I
(
p10, p20

)
=

� − p10

p20
(
1 − x0

)
+ x0p10 − �

≈
� − p10

p20 − �

(B1)∫
1

0

zi
�

�z

((
�z +

1

2
�

)
f (z, t)

)
dz

(B2)=
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zi
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2
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f (z, t)
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0
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0
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− ∫
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