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Endurance-sport athletes have a high incidence of gastrointestinal disorders,

compromising performance and impacting overall health status. An increase in several

proinflammatory cytokines and proteins (LPS, I-FABP, IL-6, IL-1β, TNF-α, IFN-γ,

C-reactive protein) has been observed in ultramarathoners and triathlon athletes. One

of the most common effects of this type of physical activity is the increase in intestinal

permeability, known as leaky gut. The intestinal mucosa’s degradation can be identified

and analyzed by a series of molecular biomarkers, including the lactulose/rhamnose

ratio, occludin and claudin (tight junctions), lipopolysaccharides, and I-FABP. Identifying

the molecular mechanisms involved in the induction of leaky gut by physical exercise

can assist in the determination of safe exercise thresholds for the preservation of the

gastrointestinal tract. It was recently shown that 60min of vigorous endurance training at

70% of the maximum work capacity led to the characteristic responses of leaky gut. It is

believed that other factors may contribute to this effect, such as altitude, environmental

temperature, fluid restriction, age and trainability. On the other hand, moderate physical

training and dietary interventions such as probiotics and prebiotics can improve intestinal

health and gut microbiota composition. This review seeks to discuss the molecular

mechanisms involved in the intestinal mucosa’s adaptation and response to exercise

and discuss the role of the intestinal microbiota in mitigating these effects.

Keywords: leaky gut, exercise threshold, gastrointestinal disorder, gut microbiota, gut injury

INTRODUCTION

Physical exercise is a non-pharmacologic agent in preventing and managing non-communicable
chronic diseases, where its beneficial effect is well-documented in the musculoskeletal and
cardiovascular systems. In addition to these systems, physical exercise also promotes positive
adaptations in the gastrointestinal tract, such as a decrease in colon cancer risk (1). However,
exacerbated exposure to exercise stress and even moderate-intensity training (depending
on volume, environment and age) may negatively impact the gastrointestinal environment,
contributing to the worsening of other clinical conditions (2–4). In this context, the array of
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normal physiological responses to exercise that disturb and
affect gastrointestinal integrity and function was dubbed
“exercise-induced gastrointestinal syndrome,” estimated to
present a 70% of the maximum work capacity prevalence among
endurance athletes (3).

Exercise-induced gastrointestinal syndrome results
from two distinct and communicable pathways:
The circulatory-gastrointestinal pathway and the
neuroendocrine-gastrointestinal pathway. The first pathway
redistributes blood flow to working muscles and peripheral
circulation, reducing total splanchnic perfusion, while the
neuroendocrine-gastrointestinal pathway is related to the
increase in sympathetic activation and the consequent reduction
in the gastrointestinal functional capacity (5, 6). Thus, it is
believed that intestinal ischemia is considered the leading cause
of abdominal pain, nausea, vomiting, and diarrhea (and bloody
diarrhea), occurring 2-fold more in running athletes compared
to other endurance sports (e.g., cycling or swimming), and
1.5–3 times more in elite athletes compared to amateurs (7).
Nevertheless, both pathways lead to gastrointestinal symptoms
with acute or chronic health complications (8).

Strenuous exercise’s negative effects (≥60–70% VO2max)
may not be limited to the gastrointestinal system and the
intestinal microbiota, affecting its structure and functionality.
Deterioration of the gastrointestinal mucosal barrier may
also occur, increasing its permeability to bacterial endotoxins,
and low-grade systemic inflammation may not only affect
gastrointestinal homeostasis but also overall health (9, 10).
However, not every type of physical exercise negatively affects
the gut microbiota; on the contrary, there is compelling evidence
that exercise has positive effects on the colon, increasing the
microbiota’s diversity and increasing butyrate-producing bacteria
as well as butyrate concentration (9).

Despite that, exercise varieties and their dynamics of intensity
and volume have not yet been widely studied to establish
the ideal dose-response ratio of exercise to its protective or
restorative effect on the gastrointestinal tract (11). To this
end, the present bibliographic review aimed to (1) report the
molecular and physiological changes in intestinal permeability
caused by exercise (2) describe whether it is currently possible
to determine an exercise “threshold” to avoid the leaky gut
phenomenon and the factors involved in this process and (3)
mention the main factors that contribute to minimizing the
occurrence of intestinal injury. For this, a search strategy was
used focusing on exercise and intestinal permeability, as well as
the factors that influence this process.

SEARCH STRATEGY

The following search strategy was carried out by searching for
full-text articles indexed in Pubmed. The terms used for the
search were: “exercise AND intestinal permeability”; “exercise
AND intestinal injury”; “exercise AND leaky gut”; “exercise AND
gut microbiota.” All individual terms were used to assess related
topics on exercise and intestinal permeability and the other
factors that boost this relationship.

Gastrointestinal Physiological and
Molecular Adaptations to Exercise
The intestinal environment is a complex of different cells,
acting together to generate motility, digestion, absorption, and
secretion, as shown in Figure 1. Above the intestinal epithelial
cells (IECs) and in contact with the intestinal lumen, a
mucus layer contains the intestinal microbiota, composed of
trillions of microorganisms with metabolic, immunological, and
physiological roles in symbiosis with the host. Different IECs
exist in the intestine’s innermost layer, such as enterocytes, Paneth
cells, goblet cells, enterocytes, and microfold cells, each with
a distinct function. In general, these cells protect the IECs by
creating a barrier with narrow spaces between them and secreting
mucus and various antimicrobial agents to defend the epithelial
layer. In addition, a covering layer of connective tissue known
as the lamina propria is responsible for establishing molecular
communication between the microbiota and the immune cells.
The last layer comprises smooth muscle, regulated by interstitial
cells; this layer is responsible for intestinal motility (12). The
myenteric and submucosal plexuses form the enteric nervous
system and are responsible for regulating the local bloodstream
and intestinal secretions (13). Thus, physiological responses to
exercise are changes in a large group of cells (14), in addition to
modulations in the intestinal microbiota (15).

It is well-known that physical exercise leads to an increase
in the skeletal muscle’s energy demand and the organism’s
adaptation to supply this demand. Through this stimulus, the
sympathetic nervous system’s activity alters hemodynamics,
reducing and redistributing the blood flow from vital organs to
the exercising muscles. It has been shown that the decrease in
splanchnic blood flow occurs at around 70–80% of the maximum
oxygen consumption (VO2max) during exercise (5, 16). Thus, the
type of exercise and its intensity can promote changes in the
gastrointestinal system through its hypoxic effect.

Local intestinal ischemia is one of the main characteristics of
vigorous endurance (17). This is one of the main physiological
factors that cause cell damage and disorders, due to a
reduction in adenosine triphosphate (ATP) synthesis in
mitochondrial respiration (18, 19). Splanchnic hypoperfusion
and subsequent ischemia can damage the specialized
antimicrobial protein-secreting cells (Paneth cells), the
mucus-producing cells (such as goblet cells), and the tight
junction proteins (claudin and occludin) that prevent the
infiltration of pathogenic organisms into the systemic circulation
(8). Thus, endotoxins such as lipopolysaccharide (LPS) and
proinflammatory cytokines may pass through epithelial cells due
to their permeability, an effect known as “leaky gut” (20, 21).
This phenomenon may explain, in part, the impaired absorption
of intestinal nutrients observed after strenuous exercise (22).

An increase in sympathetic system stimuli can also lead
to subsequent alterations in intestinal motility and absorption
capacity (8, 23). This malabsorption is observed in endurance
running, and it is not yet known whether it is due to local
ischemia or down-regulated intestinal transporter activity, or
a combination of both (22, 24). Together, the above exercise-
related responses are associated with lower-gastrointestinal
symptoms such as flatulence, lower-abdominal bloating, urge to
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FIGURE 1 | Intestinal molecular environment. Intestinal health and the permeability balance depend on the homeostasis of the intestinal environment.

defecate, abdominal pain, abnormal defecation, such as diarrhea,
and bloody stools (8, 14, 17, 22).

From a molecular perspective, the Caco-2 TJ permeability
induced by the increase of IL-1β is regulated by synthesis
and increased transcription of MLCK mRNA (25, 26). The
IL-1β causes a rapid increase in mitogen-activated protein
kinase kinase kinase 1 (MEKK1), and this plays an important
role in the regulation of a variety of biological activities in
intestinal epithelial cells (27). Further, the MLCK activation
pathway appears to be an essential molecular issue in TJ
regulation and intestinal permeability (26, 28, 29). Similarly,
the increase in permeability occurs with the increase of
tumor necrosis-alpha (TNF-α) (30). Thus, physical exercise
can increase intestinal permeability due to the increased
expression of these molecules caused by physiological changes
in exercise.

Strenuous exercise may affect the intestinal epithelial cells
(31), tight junction (TJs) proteins (32), smooth muscle cells
(33), and the composition and function of the gut microbiota
(GM) (34), compromising gastrointestinal homeostasis. This
phenomenon has been observed in ultramarathon athletes, where
the profile of proinflammatory proteins and cytokines such
as C-reactive protein, interleukin-6 (IL-6), IL-1β, TNF-α, and
interferon-gamma (IFN-γ) increased (20). Similarly, LPS, IL-6,

and C-reactive protein levels also increase in other types of ultra-
endurance exercise (e.g., ∼8 h of triathlon) (35). Apparently, the
increase in intestinal permeability caused by strenuous exercise
seems to coincide with the gut microbiota changes (36). The
molecular and tissue changes in the intestine caused by exercise
are shown in Figure 2.

Strenuous exercise is also known to induce the synthesis
of enterocyte-derived intestinal fatty-acid binding protein (I-
FABP), an intestinal biomarker of enterocyte damage and
ischemia (8). The increased release of I-FABP into circulation
indicates damage to mature enterocytes, and is observed after
prolonged exercises (≥1 h) and after shorter periods of resistance
training (30min) (8). Besides these factors, hyperthermia (>40◦)
and acute local ischemia are exercise-related factors that are
known to disturb the tight junctions, increasing intestinal
permeability (31, 32).

The increase in intestinal permeability also allows LPS to pass
into the bloodstream. This increase in the concentration of LPS
in the blood occurs in exercise with short duration (<20min)
(37), long (>1 h) duration (38, 39), and performed in a hot
environment (40, 41). However, there is evidence that moderate
exercise can decrease circulating LPS concentrations (42). These
data show a similarity between the increases in circulating LPS
and I-FABP, as well as the increase in proinflammatory cytokines.
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FIGURE 2 | Molecular changes from exercise causing leaky gut. Interleukin 1 beta, IL-1B; interleukin 6, IL-6; lipopolysaccharides, LPS; tumor necrosis factor-alpha,

TNF-alfa; interferon gamma, IFN-y and intestinal fatty-acid binding protein, I-FABP.

After exploring the main molecular changes caused by
exercise, the next topic aims to highlight whether it is possible
to determine an exercise “threshold” that leads to the “leaky
gut” phenomenon.

A Possible Exercise “Treshold” to Avoid
Leaky Gut
While low-to-moderate intensity is associated with positive
effects on the gastrointestinal tract, including mucosa
preservation and improved intestinal motility, ischemia
and hypoperfusion associated with strenuous exercise are
commonly associated with reduced gastric motility, epithelial
injury, disturbed mucosa integrity, enhanced permeability,
impaired nutrient absorption, and endotoxemia with local and
systemic low-grade inflammation (8) (Figure 2). It is therefore
essential to identify the appropriate exercise dose-response or
safe thresholds that do not generate these adverse effects or even
act as a recovery agent for the intestinal mucosa.

Naturally, it should be noted that different exercise stimuli
may lead to adverse impacts on the intestine, also considering
their intensity and duration, and the environmental conditions

in which they take place. It is known that high altitudes can
have adverse effects on the small intestine (43, 44) and that
high temperatures (hyperthermia) induced by intense exercise
may lead to gut ischemia (45). Also, variations in physical
training such as intensity, volume, continuity (alternation
between increasing stresses and the proportional recovery
period), training time (46) and fluid restriction during exercise
are determinant factors that may contribute to leaky gut
(8, 47, 48). Finally, the impact of exercise on the intestinal
microbiota (IM) composition must be considered, as the IM
is a crucial component for maintaining the gastrointestinal
mucosa’s integrity.

The increase in intestinal permeability has already been
identified in several types of exercise: cycling (49), swimming
(50), and running (51, 52). Although there is still no comparison
between the types of exercise and the leaky gut, apparently
the determining factors for the increase in permeability are the
intensity and volume of training. The assessment of mucosal-
injury induced by exercise is often done by a dual-sugar test with
lactulose and rhamnose (L/R ratio’s) or claudin-3 concentrations
for analysis of the small intestine and the analysis of I-FABP
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concentration as an intestinal biomarker of epithelial injury (5),
as shown in Table 1. These studies show that≥70% of maximum
working capacity and with a volume >1 h can lead to an increase
in intestinal permeability. However, as shown in Table 1, several
factors can increase or minimize the permeability: temperature,
food during the training process, fluid restriction and training at
different times of the day.

It has been evidenced that 60min of running exercise at
an 80% VO2Peak leads to an enhanced lactulose/rhamnose
ratio, compared to lower intensities of 40 and 60% of the
VO2Peak (48). Furthermore, trained individuals submitted to
a fluid restriction protocol (glucose or sweetened water)
and 60min of exercise at 70% of VO2max presented an
enhanced lactulose/rhamnose ratio, indicating that dehydration
may increase intestinal permeability (47). On the other hand,
exercise-induced hyperthermia has been one of the leading
hypotheses for increasing intestinal permeability and exercise-
induced endotoxemia (65). Healthy people who trained for
60min at 70% of the VO2max in hot environments [33◦C, 50%
relative humidity (rH)] and cold (22◦C, 62% rH), led to the
same alteration in intestinal permeability compared to control
(same claudin-3 alterations). The hot environment group had a
significant increase in blood LPS, indicating the effect of exercise-
induced endotoxemia (60).

Similarly, 60min of running and cycling at a moderate
intensity led to an increased concentration of I-FABP (6, 55,
56), with the highest concentration seen in hot environments
(30◦C) (56). It was recently identified that 45min of cycling
at an intensity of 70% of VO2max at different temperatures
(30◦ or 20◦) raised I-FABP levels in a similar way (59). Thus,
the effect of temperature and endurance training on I-FABP is
still unclear, due to methodological differences in their analysis
(53). Besides, several dietary interventions can influence I-
FABP concentrations in the context of physical exercise (58,
62, 66). For example, sucrose supplementation may alleviate the
concentration of circulating I-FABP elevated by exercise (49).
Thus, great caution is needed when analyzing the relationship
between physical exercise and serum levels of I-FABP to presume
an intestinal injury.

Although the above studies have shown that 60min at an
intensity at 70% of VO2max are related to an increase in intestinal
permeability, the athlete’s training level must be considered. It has
been previously reported that local ischemia and hyperthermia
are the main factors for leaky gut. The progressive increase
in catecholamines by vigorous endurance exercise is one of
the main signs of this gastrointestinal ischemia (67). In this
sense, catecholamine levels tend to rise above the lactate
threshold, on average, in a range of 60–80% of VO2max, where
lactate is accumulated. Endurance-trained, sprint-trained, and
weightlifter-trained athletes tend to have higher catecholamine
concentrations at rest than inactive subjects (68). Endurance
athletes also tend to have a rise in post-exercise adrenaline
concentrations comparable to untrained subjects, even working
at the same relative training level (69). This suggests that local
intestinal ischemia should still be investigated in groups with
different levels of training.

After 30min of local intestinal ischemia, the circulating
concentration of the L/R ratio is increased, but after 120min of
reperfusion, there are no changes (70). I-FABP concentrations are
observed to be similar at the same times. There is evidence that
only 60min of reperfusion is capable of resealing the epithelial
barrier and that remnants of removed apoptotic epithelial cells
have been observed in the lumen (71). An acute bout of high-
intensity interval training (HIIT) (eighteen 400-m runs at 120%
maximal oxygen uptake) can increase permeability (increase
in L/R ratio’s and I-FABP) despite not experiencing symptoms
(52). However, although acute exercise generates an increase in
permeability, it has been hypothesized that chronic training may
enhance gut barrier integrity overall through several mechanisms
(72). Thus, it is not known how much physical training can
damage the intestine, and the comparison between the acute and
chronic effects of training on the intestinal injury still needs to
be explored.

Low-to-moderate exercise (30–60% of maximum oxygen
consumption, VO2max) accelerates gastric emptying and may
decrease the risk for Gastroesophageal Reflux Disease (GERD)
(73). It was shown that moderate aerobic training improved
gastrointestinal motility after 12 weeks of training (74), reducing
transient stool time, which benefits the host by decreasing
pathogens’ contact with the gastrointestinal mucus layer (75).
A similar effect on gut transit was observed after 1 week of
running or cycling at a moderate intensity (50% of VO2max) (76).
Even an acute bout of swimming exercise increased the ileum’s
contractile reactivity in an animal model (77). These observations
demonstrate the intestinal mucosa’s sensitivity to physical
exercise and its most diverse manifestations; however, exercise-
induced gastrointestinal syndrome has beenmore associated with
strenuous exercise.

The studies revealed that variations in the intensity, volume,
and/or training time of exercise training make it difficult to
unify the relationship between physical training and leaky
gut. There is some evidence that vigorous endurance training
(≥60min and ≥70% of maximum work capacity) may lead
to injury and increased intestinal permeability. Depending on
variables such as temperature, moderate to prolonged exercise
(>60min) can also lead to intestinal injury, based on elevations
in the circulating I-FABP (56). It is still uncertain what the
acute and chronic effects of exercise are on intestinal injury.
Moreover, high altitude and dehydration also increase intestinal
damage and intestinal permeability. It is worth mentioning
that exercise performed above 70% of the maximum work
capacity can generate benefits in other organs, such as a
greater and faster increase in VO2max or a greater decrease
in total fat mass (78, 79). Thus, it is difficult to determine a
“threshold” of exercise to avoid leaky gut. Although intensities
over ≥70% of maximum work capacity and a duration of
≥60min is an approximate parameter, several variables can
act in the intestinal environment, and this possible “threshold”
becomes variable. Therefore, the emergence of new studies with
a focus on determining the “threshold” is extremely important
for active people to have a safe training parameter aimed at
intestinal health.
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TABLE 1 | Changes in intestinal permeability caused by exercise and the influencing factors.

Subjects Exercise type Exercise intensity Exercise volume Contribution

influence factor

Minimization influence

factor

Change in permeability References

Endurance trained

M and W (n = 7)

Acute running 70% of VO2max 60min 30◦C Tamb (12 to 20%

RH)

At 20min of exercise: 27 g

of Cho

Increase in I-FABP by exercise and

decreased hours after exercise in the

Cho group

(53)

Recreationally

trained M (n = 12)

Resistance-type

exercise (combined

cycling with a leg

press)

Load progression of

40–55–70% between sets

30min – – Increase in I-FABP by exercise (54)

Competitive cyclists

M and W (n = 13)

Acute cycling 70% Wmax + Time trial 45min of 70% Wmax +

15min of time trial

7 days of

gluten-containing diet

7 days of gluten-free diet Increase in I-FABP after 15min time

trial (no difference by diet)

(55)

Recreationally

trained M (n = 8)

Acute running and

cycling

Cycling at 50% HRR +

running at 80% HRR +

maximal-distance trial) +

cycling at 50% HRR,

respectively

15 (cycling)-30

(running)-30 (maximal

running)-15min

(cycling), respectively

30◦C Tamb (50% RH) 1.7 g·kg−1·day−1 of bovine

colostrum (COL)

supplementation

Increase in I-FABP by exercise (no

difference by diet). This increase was

greater with 6 training sessions per

wk than 3 sessions

(56)

Active runners (n =

20)

Running 70% of VO2max 60min – – Increase in I-FABP by exercise (6)

cyclists and

triathletes M (n = 9)

Acute cycling 70% Wmax 60min 400mg ibuprofen

intake before cycling

– Increase in I-FABP by exercise and

ibuprofen

(57)

Endurance trained

M (n = 8)

5 consecutive days

of Running

78% of VO2max (4 mMol/L

blood lactate) until Tc
increases 2.0◦C or

volitional exhaustion

Volitional exhaustion =

24min

Tamb 40◦C (40% RH) – Increase in I-FABP by exercise in the

heat. This increase was decreased

from the 1◦ to the 5◦ day of exercise

(41)

Well-trained athletes

M (n = 16)

Acute cycling 70% Wmax 60min – Acute ingestion of sodium

nitrate (NIT; 800mg NO3),

sucrose (SUC; 40 g) or

water (Placebo)

Increase in I-FABP by during exercise

and post-exercise. I-FABP was

attenuated in SUC vs. PLA

(49)

Endurance runners

M and W (n = 25)

Running 60% of VO2max 2 h – Gel-disks containing 30 g

carbohydrates (2:1

glucose-fructose, 10% w/v)

every 20min

Increase in I-FABP by exercise (no

difference by supplementation)

(22)

Healthy M (n = 12) Acute running 70% of VO2peak 60min – 14 days of 20 g/day

supplementation with

bovine colostrum (Col)

Increase in I-FABP by exercise.

I-FABP attenuated by Col

supplementation post-exercise

(58)

Health M (n = 12) Acute cycling 70% of VO2max 45min Tamb 30◦C (40% RH) Tamb 20◦C (40% RH) Increase in I-FABP by exercise (no

difference by temperatures groups)

(59)

Endurance runners

(n = 16)

Running 60% of VO2max 3 h Training at night

(21:00 h)

Training in the morning

(09:00 h)

Increase in I-FABP by exercise (both

trials). Night resulted in greater

total-gastrointestinal symptoms

(46)

Active M and W (n =

15)

Running 70% of VO2max 60min Tamb 33◦C (50% RH) – Increase in plasma claudin by

exercise

(60)

Triathletes (n = 15) Swimming, cycling,

and mountain

running

1,500-m swimming, 36-km

cycling, and 10-km

mountain running

– – 0.7 ± 0.3 L of water and 1.5

± 0.5 L of isotonic drinks

Increase in plasma zonulin by exercise (50)

(Continued)
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TABLE 1 | Continued

Subjects Exercise type Exercise intensity Exercise volume Contribution

influence factor

Minimization influence

factor

Change in permeability References

Active runners

(n = 17)

Acute running 80% of the speed of their

best 10 km race time.

90min Runners with history of

experiencing GI

symptoms during

running (symptomatic

group)

– Increase of L/R ratios, I-FABP and

zonulin after exercise. No difference

between asymptomatic and

symptomatic group

(51)

Endurance runners

M and W (n = 7)

Running 60% of VO2max 3 x of 2 h Tamb 35◦C (50% RH) -

Exertional heat stress

(EHS)

15 g glucose (GLUC) or

energy-matched whey

protein hydrolysate (WPH)

GLUC and WPH minimized I-FABP

and L/R ratios

(61)

Trained runners M

(n = 7)

High-intensity

interval running

120% of VO2max with 18 ×

400m interval efforts

Separated by 3min of

complete rest

– – Increase of L/R ratios and I-FABP

after exercise

(52)

Healthy M (n = 12) Running 80% of VO2max 20min – 20 g/day bovine colostrum

(14 days)

Increase of L/R ratios by exercise and

attenuated by colostrum

supplementation

(62)

M and W endurance

runners (n = 20)

Running 70% of VO2max 60min Fluid restriction 4% glucose solution Increase of L/R ratios by exercise +

fluid restriction

(47)

Active M and W

(n = 6)

Running 40–60–80% VO2peak 60min – – Increase of L/R ratios by 80% VO2peak

compared to other intensities

(48)

marathon runners M

and W (n = 15)

Acute running Road marathon

competition

2 h 43min to 5 h 28min – Vitamin E (1,000 IU daily) Increase of L/R ratios by exercise (no

difference by supplementation)

(63)

Soldiers M (n = 73) 4-day cross-country

ski march

51 km cross-country

ski-march while 139

carrying a ∼45 kg pack

50:10min work-to-rest

ratios

– – Increase of L/R ratios by exercise (36)

Endurance trained

M and W (n = 7)

Acute running 65–70% of VO2max 60min Tamb 30◦C (12–20%

RH)

Oral glutamine

supplementation (0.9 g/kg)

for 7 days

Increase of L/R ratios by exercise and

decreased with glutamine

supplementation

(64)

I-FABP, intestinal fatty-acid binding protein; HRR, heart rate reserve; L/R ratios, Men, M; dual-sugar test with lactulose and rhamnose; Post-exercise (or peak) core temperature (Tc), RH, relative humidity; Tamb, ambient temperature;

VO2max , maximum oxygen consumption, W, women; Wmax , watt maximum; wk, week.
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Exercise as a Restorative Agent of the
Gastrointestinal Environment
The gut microbiota’s responsiveness to external factors has
received much attention in recent years due to these changes’
clinical potential effects on the host’s health. Among these
factors, dietary intervention and physical exercise are recurrent
elements in studies involving the GM’s composition and its
systemic impacts across different tissues and physiologic systems
(80). Naturally, adequate eating habits and physical activity
are two external factors that receive much attention from the
scientific community due to their role in preventing diseases and
maintaining health (81).

As previously described, prolonged and excessive exercise
stimuli may affect the gastrointestinal environment, impacting
the mucosa’s integrity and increasing its permeability to external
agents such as endotoxins. This process is associated with the
onset of proinflammatory signaling, affecting gastrointestinal
health. Dehydration, bloody diarrhea episodes, and abdominal
discomfort are typical responses in endurance athletes
(17). These effects are also expected to compromise sports
performance and affect overall health (39, 82). As a result, several
strategies have been considered to restore the gastrointestinal
mucosa by modulating the gut microbiota. To date, the mutual
interaction among exercise, dietary supplementation, and gut
microbiota is speculated to be a key strategy to reduce the effects
of gastrointestinal distress caused by strenuous exercise and even
a game-changer concerning sports performance.

Unlike what is observed in response to strenuous
exercise stimuli, certain intensities positively modify the
GM’s quality and function, favoring the host’s health. In
this way, a body of evidence has shown that exercise is a
potent modulator of intestinal microbiota composition and
function, leading to enrichment and bacterial proliferation,
improvement of intestinal barrier integrity, and the synthesis of
immunomodulatory and antimicrobial agents (83). Moderate
endurance exercise has been associated with preserving the
intestinal mucosa and the upregulation of β-defensin 1, α-
defensin 5, regenerating gene Type IIIb (Reg IIIb), and Reg
IIIc (84). The defensins and the Reg 3 family are proteins
with antimicrobial actions that act as barriers, protecting
body surfaces against microorganisms (85, 86). This exercise
intensity was also shown to reduce irritable bowel syndrome
(80) effectively, which is a condition often observed and
underdiagnosed in endurance athletes (87).

Recent research on the GM’s response to exercise, especially
endurance, has shed light on the cross-talk between skeletal
muscle and the GM, and its influence on muscle bioenergetics.
In the gastrointestinal tract, some of these effects include the
proliferation and stimuli of intestinal microbes and the synthesis
of microbe-metabolites (88). Among thesemetabolites, the short-
chain fatty acids (formate, acetate, propionate, and butyrate)
significantly impact human metabolism and protect the gut
mucosa (89). In this matter, an injection of gastric and intestinal
SCFAs can lead to increased mRNA abundance of Occludin and
Claudin-1 (TJs), decreasing the mRNA and protein abundances
of IL-1β in the colon, and diminishing infiltration of neutrophils

to the gut lamina propria (90, 91). Thus, the hypothesis arises
that exercise changes may increase SCFAs, similarly to the direct

injection of these metabolites.
Studies with humans have shown that cardiovascular capacity

is positively correlated with increased bacterial diversity and
SCFAs producing bacteria (92). However, some of these effects

might depend on body composition (93). In this study,

endurance exercise altered the gut microbiota in lean and obese
subjects; however, the production of microbe-SCFAs (acetate,

propionate, and butyrate) was enhanced only in the lean group.
Together, these studies establish new clinical perspectives for

manipulating the GM and novel insights on the cross-talk
between gut microbes and their metabolites and the skeletal

muscle, especially concerning the host metabolism and exercise

capacity regulation.
The GM interacts with the intestinal immune function by

activating G protein-coupled receptor (GPR41 and GPR43) and
histone activation deacetylases (HDAC) in leucocyte endothelial

cells. SCFAs can bind to Gpr43 (SCFA-Gpr43 signaling) and
reduce inflammatory responses of neutrophils and eosinophils

and be capable of inhibiting HDAC, preventing colorectal

cancer (94, 95). In this context, moderate-to-vigorous physical
training for only 6 weeks can increase fecal SCFAs and possibly

activate themolecular pathwaysmentioned above, although these
pathways have not yet been clinically explored in the context of

exercise (93). This is one explanation for why exercise can prevent
and treat colorectal cancer (1, 96).

The transplantation of fecal microbiota containing Veillonella
atypica isolated from a marathon runner was shown to
increase the submaximal running time to exhaustion on
mice. Considering that Veillonella atypica metabolizes lactate
into propionate and acetate through the methyl malonyl-CoA
pathway, it is speculated that the lactate produced during exercise
is converted into SCFAs, improving exercise capacity (88).
Moreover, several probiotic supplements can decrease intestinal
damage caused by strenuous training (97–99), as shown in
Table 1. The probiotics Escherichia coli strain Nissle 1917 (100),
UCC118 (99) and bovine colostrum (98), in addition to different
dietary applications (61, 101, 102) seem to exert this softening
effect on the permeability caused by strenuous exercise.

Intestinal epithelial barrier properties are also maintained by
cellular junctions called desmosomes, shown in Figure 1. The
only desmosome expressed in enterocytes (Desmoglein 2, Dsg2)
is activated under the same conditions as p38 mitogen-activated
protein kinases (p38MAPK) (103, 104). Although there is still no
study showing the effects of exercise on Dsg2 of enterocytes, it is
known that physical training can activate p38 MAPK in different
muscles (105, 106).

If, on the one hand, intestinal dysbiosis is associated
with a quantitative and qualitative reduction of the intestinal
microbes, on the other hand, exercise at specific doses may
be a key strategy to restore the composition and function
of the gut microbiota, improving gastrointestinal mucosa and
reducing inflammatory signaling. It may also operate an intricate
process of bidirectional communication with the skeletal muscle
metabolism (83).
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CONCLUSION

Physical exercise acts as a modulator of the intestinal
environment due to the demands of skeletal muscle.
Strenuous exercise leads to higher gastrointestinal ischemia
and hyperthermia. So far, it is believed that vigorous endurance
training with ≥60min at ≥70% of the maximum work capacity
increases the intestinal permeability, with an enhanced effect
observed in hot environments, at high altitude, and under
dehydration. In response to strenuous exercise, leaky gut is
associated with increased I-FABP and infiltration of bacterial
endotoxins within the blood circulation. On the other hand,
non-prolonged moderate exercise may preserve the intestinal
mucosa by accelerating gastric emptying, improving intestinal
motility, increasing the abundance and diversity of the gut
microbiota, also increasing butyrate-producing bacteria and
the synthesis of short-chain fatty acids. However, to date, an
exercise “threshold” that may lead to increased gut permeability
is still uncertain.

The determination of a “threshold” is essential for the
intestinal health of individuals who are athletes or who seek to

be active. It is necessary to standardize the analyses that indicate
the leaky gut. After that, it is advisable to carry out research
that analyzes these factors (I-FABP, sugar test, LPS, among
others) with a progression of intensities and volumes of exercise.
Obviously, confounding factors such as temperature, altitude,
dehydration and degree of trainability need to be controlled for.
Thus, more studies are needed in order to emphasize the role of
exercise in intestinal permeability and to pinpoint other variables
that may influence this phenomenon at the time of activity.
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