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Purpose: To quantify the relative importance of brain regions responsible for reduced functional connectivity (FC) in their 
Voiding Initiation Network in female multiple sclerosis (MS) patients with neurogenic lower urinary tract dysfunction 
(NLUTD) and voiding dysfunction (VD). A data-driven machine-learning approach is utilized for quantification.
Methods: Twenty-seven ambulatory female patients with MS and NLUTD (group 1: voiders, n=15 and group 2: VD, n=12) 
participated in a functional magnetic resonance imaging (fMRI) voiding study. Brain activity was recorded by fMRI with si-
multaneous urodynamic testing. The Voiding Initiation Network was identified from averaged fMRI activation maps. Four 
machine-learning algorithms were employed to optimize the area under curve (AUC) of the receiver-operating characteristic 
curve. The optimal model was used to identify the relative importance of relevant brain regions.
Results: The Voiding Initiation Network exhibited stronger FC for voiders in frontal regions and stronger disassociation in 
cerebellar regions. Highest AUC values were obtained with ‘random forests’ (0.86) and ‘partial least squares’ algorithms (0.89). 
While brain regions with highest relative importance (>75%) included superior, middle, inferior frontal and cingulate regions, 
relative importance was larger than 60% for 186 of the 227 brain regions of the Voiding Initiation Network, indicating a global 
effect.
Conclusions: Voiders and VD patients showed distinctly different FC in their Voiding Initiation Network. Machine-learning 
is able to identify brain centers contributing to these observed differences. Knowledge of these centers and their connectivity 
may allow phenotyping patients to centrally focused treatments such as cortical modulation.

Keywords: Neurogenic lower urinary tract dysfunction; Multiple sclerosis; Functional magnetic resonance imaging; Machine 
learning
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• HIGHLIGHTS
- �Female MS patients with voiding dysfunction exhibit different FC patterns than those who void spontaneously.
- �Machine learning algorithms are of advantage as they allow access to the complex nonlinearity of individual brain region FC for classification 

in voiding dysfunction.
- �Differences in FC in voiding dysfunction are most pronounced in the left frontal brain and left cingulate.
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INTRODUCTION

As many as 90% of multiple sclerosis (MS) patients experience 
some sort of voiding dysfunction (VD) or incontinence [1]. The 
loss of neural conduction along axonal pathways that occurs in 
MS is caused by autoimmune-driven demyelination often ac-
companied by edema worsening the neurologic impairment. 
Depending on the affected regions in the central nervous sys-
tem, symptoms vary greatly [2], generally characterized by neu-
rogenic lower urinary tract dysfunction (NLUTD) [3] and may 
include difficulty of initiation or maintenance of voiding (VD).
  Traditional clinical assessments such as urodynamic testing 
and urinary symptoms may not correlate with findings derived 
from standard clinical imaging [4]. Advanced neuroimaging 
methods, such as functional magnetic resonance imaging 
(fMRI) allow probing the involvement of regions in the brain 
and brainstem during micturition and have been recently suc-
cessfully applied to female MS patients [5].
  The demyelination of white matter tracts in MS affects func-
tional connectivity (FC) in the brain [6]. A method to probe FC 
during micturition was recently presented [7]. In this approach, 
while undergoing a fMRI examination, subjects performed a 
voiding task during which blood oxygen level dependent 
(BOLD) signal time curves were recorded. Standard fMRI 
BOLD analysis provides a means to identify the brain network 
active during initiation of voiding. Strength of FC in this net-
work is then derived from the degree of synchronicity of the 
BOLD signal time curves of corresponding voxels. The varia-
tion of FC in MS patients with VD may provide a more detailed 
picture of neural deficiency as it may directly relate to the un-
derlying loss of anatomical connectivity while the activation/
deactivation of a particular brain region alone (as assessed by 
traditional fMRI BOLD analysis) may constitute a consequence 
of this impaired connectivity.
  Distribution of white matter lesions in MS visible in standard 
clinical images vary individually. Large-scale diffusional chang-
es in normal appearing white and gray matter have been re-
ported thereby attributing a neurodegenerative component to 
MS [8].
  While these findings may not allow generalization of FC dis-
ruptions, we hypothesize that differences in the Voiding Initia-
tion Network in VD versus spontaneous voiders will be dis-
cernible.
  Machine-learning algorithms furnish the technical means to 
assess the predictive power of FC strength of selected brain re-

gions in the Voiding Initiation Network in order to distinguish 
these 2 patient groups. From the FC analysis, a complex inter-
action between different brain regions is obtained, which is 
represented by the correlation coefficient of the fMRI BOLD 
time courses. With machine-learning, this complexity can be 
handled efficiently, where all the connectivity information is 
used directly, in the training and classification approach. In ad-
dition, once trained, the machine-learning algorithms used 
here will allow providing a relative importance for each brain 
region.
  Identifying these brain regions may lead to improvement of 
therapy, in particular of new approaches that aim to use brain 
stimulation techniques aimed at cortical modulation [9].

MATERIALS AND METHODS

Subjects
Functional MRI imaging data was used from a previously con-
ducted prospective study approved by the Institutional Review 
Board [5]. Informed consent was obtained from subjects par-
ticipating in the study. Twenty-seven ambulatory female pa-
tients were recruited with stable MS and NLUTD. Patients were 
separated into 2 groups: group 1, voiders (n=15) and group 2, 
VD (n =12). VD was defined as having postvoid residual of 
≥40% of the maximum cystometric capacity or performing 
self-catheterization.

fMRI Examination
The detailed protocol of the fMRI examination has been re-
ported previously [5]. Prior to the start of the fMRI examina-
tion (axial echo-planar imaging [EPI], TR=3,000 ms, 4.0-mm 
slice thickness, 3.38-mm in-plane resolution covering the entire 
brain, Philips Ingenia 3.0T, standard 12-channel head coil) and 
after the subject voided spontaneously or was catheterized, a 
double lumen 7Fr MRI-compatible bladder and rectal catheters 
were inserted to conduct urodynamic testing concurrent with 
the fMRI examination [10].
  The bladder was gradually filled at 50 mL/min with room-
temperature sterile saline until subjects signaled by hand move-
ment a strong desire to void. After 30 seconds of instructed 
holding, the subjects were then given permission to initiate 
voiding. After voiding or attempt of voiding was completed, the 
cycle was repeated up to 4 times depending on the tolerance of 
the subject. Bladder was aspirated passively if patients we un-
able to void. Total duration of the fMRI examination was limit-
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ed to 45 minutes.
  In addition to the fMRI EPI images, also a high-resolution 
T1-weighted image set was acquired (fast-field echo, sagittal di-
rection, 0.7-mm in-plane resolution) to serve as anatomical ref-
erence.

fMRI Activation Maps
Functional MRI image analysis was performed using the AFNI 
software suite (http://afni.nimh.nih.gov/afni) as described pre-
viously [5]. Functional and anatomical images were co-regis-

tered, and motion correction was applied to the functional data. 
Significant activated voxels (P<0.05) were identified at the ini-
tiation of voiding under the generalized linear model (GLM). 
Group level analysis was performed by transforming data into 
Talairach space, and significantly activated voxels were identi-
fied using a Student t-test for both groups and an average 
BOLD activation map averaged over all subjects was created.

Voiding Initiation Brain Network in MS
The Voiding Initiation Network in MS was identified by the 

Fig. 1. Upper panel: Voxels of the Voiding Initiation Network colored by functional magnetic resonance imaging blood oxygen level 
dependent activation overlaid onto brain anatomy in Talairach space. Lower panel: Individual and averaged functional connectivity 
(FC) patterns in the 27 multiple sclerosis patients participating in this study visualized by a color representation of the corresponding 
adjacency matrix (V, voider; VD, voiding dysfunction). In this presentation, vertices (i.e., voxels) of the Voiding Initiation Network are 
displayed vertically and horizontally. The intensity of the colored circle represents the strength of connection between each region 
(red: positive correlation, blue: negative correlation). As connections are undirected, the patterns are symmetric around the diagonal. 
While individual variation can be appreciated, VD globally exhibit weaker connections and larger variations. Consequently, while 
similar, the averaged FC pattern for VD is generally weaker and less coherent (lower right).
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most highly activated voxels (t=3.5) in the averaged BOLD ac-
tivation map and detailed in Supplementary material 1. This 
threshold was chosen as a compromise to include voxels in all 
pertinent brain regions, which exhibited activation in the aver-
aged BOLD fMRI map (P<0.05), and at the same time to limit 
the number of predictor variables to render the data suitable for 
the machine-learning analysis. The resultant voxels (n=227) 
defined the brain network of voiding initiation (Fig. 1).
  For each subject, a FC graph network was created using the 
voxels of the Voiding Initiation Network as vertices. Edge weights 
were defined as the correlation coefficient of the BOLD signal 
time courses of the corresponding voxels centered around its 
mean and divided by their standard deviation (R-project, scale 
function).
  Graph networks were visualized by their adjacency matrix 
(R-project, corrplot package) and by their connectivity pattern 
in Talairach anatomical space (Paraview, Kitware Inc., Clifton 
Park, NY, USA).

Machine-Learning Analysis
For each vertex of the individual Voiding Initiation Network, its 
strength (as the sum of its edge weights) was calculated. These 
values represented the predictor variables for the machine-
learning analysis. The classifier variable was implemented as a 
binary vector (0, VD; 1, voiders).
  The entire dataset was split into a training set (50%) and a 
test set (50%). Ten-fold repeated cross validation with 5 repeats 
was used to train the machine-learning algorithms (R-project, 
caret package).
  The following 4 different machine-learning algorithms were 
employed and details are provided in Supplementary material 2. 
These 4 algorithms represent different concepts ranging from a 
simple linear approach (GLM) over a hybrid approach, where 
the original predictor variables are linearly combined (partial 
least squares), to highly nonlinear approach (neural network) 
and a classification approach (random forests). The use of these 
different concepts is motivated by the assumption that the 
structure of the data may be more suited for one of these ap-
proaches thereby yielding the best classification.

Random forests
An ensemble of decision trees is created where each tree uses a 
randomly selected subset of the predictors, which is smaller 
than the total number of predictors. Each tree is then used to 
generate a prediction from its subset and these predictions are 

averaged (‘bagged’) to give the final prediction.

Neural networks
Neural Networks are nonlinear regression techniques inspired 
by theories of neural interactions. The outcome is modeled by 
an intermediary set of unobserved variables (‘hidden units’), 
which are linear combinations of the original predictors that are 
transformed by a nonlinear function. A linear combination of 
these hidden units is then related to the outcome.

Generalized linear model
The outcome is modeled by a linear combination of the original 
predictors.

Partial least squares
This algorithm iteratively seeks to find underlying, latent, rela-
tionships among the predictors that highly correlate with the 
response. Linear combinations of the original predictors are 
created maximizing their internal variation and their correla-
tion with the response. By creating these linear combinations, 
the algorithm reduces the dimensionality of the predictor space, 
which is favorable if more predictor variables than response 
variables exist as is the case in this study. By combining the pre-
dictor variables, a more favorable ratio between these combined 
variables and the number of data available to train the algo-
rithm is obtained with will improve the quality of the training.
  Area under the curve (AUC) of the receiver-operating char-
acteristic curve represented the cost function to determine the 
optimal algorithm.

RESULTS

Voiding Initiation Network in MS
Spatial extent
The Voiding Initiation Network in MS was found to be widely 
distributed in the brain including areas such as the dorsal vagal 
motor nuclei, pontine storage and micturition center, periaque-
ductal gray (PAG), ventral tegmental area, substantia nigra, red 
nuclei, thalamus, cingulate and insula was well as cortical re-
gions in the frontal, parietal, and mesial temporal lobes (Fig. 1, 
Supplementary material 1). Visualization in the anatomical Ta-
lairach space demonstrates a global connectivity pattern: for 
frontal brain regions the connection strength was mainly posi-
tive while  cerebellar regions and selected limbic regions were 
more negative (Fig. 2).
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Fig. 2. Averaged functional connectivity patterns for voiders (Vs) and voiding dysfunction (VD) from Fig. 1 displayed in anatomical 
space. Color is based on graph network strength of the individual vertices (voxels). Lower maximum strength in the VD network, 
particular in the frontal lobes and the cerebellum, can be appreciated. On right, brain regions are listed in 2 columns. The first column 
(connected) identifies voxels of the Voiding Initiation Network (by location) where total connection strength is positive for VD and 
negative for V. The second column (disassociation) lists those voxel of the Voiding Initiation Network (by location), where total con-
nection strength is negative for VD and positive for V (see Supplementary material 1 for numerical values).
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Differences between voiders and voiding dysfunction
While some variation existed between the individual networks, 
in general voiders exhibited stronger connections (Fig. 1). Simi-
lar to the individual networks, also the averaged network for 
voiders demonstrated stronger connections (Fig. 1).
  Network components in the PAG, thalamus, substantia nig-
ra, insula, subcallosal gyrus, hippocampus and in the frontal 
lobes were stronger connected for VD than voiders, whereas 
components in the temporal lobe hippocampus and fusiform 
gyrus were weaker connected for VD than voiders (Fig. 2, Sup-
plementary material 1).

Machine-Learning Analysis
AUC values
The 2 best-performing machine-learning algorithms were 
found to be partial least squares (AUC=0.89) and random for-
ests (AUC=0.86) (Fig. 3). AUC for the Neural Network algo-
rithm was 0.71 and worst performance the GLM (AUC=0.61) 
(Table 1).

Performance on test data sets
Evaluating the 2 best algorithms on the test data set yielded 
good values for accuracy (0.69 for partial least squares and 0.62 
for random forests) (Table 2).
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Relative Importance of Brain Regions
For the best-performing machine-learning model (partial least 
squares), brain regions with highest importance were located in 
the frontal lobes and the cingulate (Table 3, Fig. 4). Other re-
gions of high importance included the precentral and parahip-
pocampal gyrus as well as regions in the cerebellum (Fig. 4). 
However, no real ‘cutoff ’ in the relative importance was ob-
served, 25 regions showed importance higher than 70% and 
186/227 voxels in the Voiding Initiation Network had a relative 
importance higher than 60% (Fig. 4, Table 3).

DISCUSSION

Our results demonstrate that patients with VD exhibit an al-
tered functional connectome in their Voiding Initiation Net-

work where largest variations relative to voiders are found in 
the frontal lobes and the cingulate.
  Earlier neuroimaging studies have identified brain regions 
directly involved in initiating or continuing voiding in healthy 
individuals. These regions include: precentral gyrus, supple-
mentary motor area, dorsolateral prefrontal lobe, inferior fron-
tal gyrus, cingulate gyrus, insula, hypothalamus, PAG, and pons 
(PMC) [9-12], specifically the cingulate region is highly activat-
ed at full capacity and with strong desire to void (immediately 
prior to voiding) in healthy and MS patients [10-13]. Frontal 
and prefrontal regions of the brain combine all the input from 
cingulate, insula and hypothalamus and further the decision to 
void is made when it is the right time, the right place and with 
appropriate bladder volume [14,15].
  Due to the diffuse, multifocal disease involvement of the 

Fig. 3. Upper panel: Area under the curve (AUC) for all 4 machine-learning algorithms employed. AUC are provided. Lower panel: 
Receiver-operating characteristic curve (ROC) all 4 investigated machine-learning algorithms. Random forests (RF) and partial least 
squares (PLS) clearly outperform the other 2 algorithms. NNET, Neural Networks; GLM, generalized linear model.
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Table 1. Area under the curve (AUC) values for the different 
models				  

Model AUC

RF 0.86

NNET 0.71

GLM 0.61

PLS 0.89

RF, random forests; NNET, Neural Networks; GLM, generalized linear 
model; PLS, partial least squares.		

Table 2. Confusion matrices for the 2 models (%)	

Prediction

Partial least squarea) Random forestb)

Reference Reference

VD V VD V

VD 31 15 31 23

V 15 39 15 31

V, voider; VD, voiding dysfunction.  
a)Accuracy: 0.69, Kappa: 0.38. b)Accuracy: 0.62, Kappa: 0.24.
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brain in MS, anatomical connectivity and therefore FC is 
thought to be impaired on a global level [8]. Individual differ-
ences in the urinary symptom severity and impact on quality of 
life exist. This clinical observation is in concordance with our 
findings of global impairment of the Voiding Initiation Net-
works for VD patients compared to voiders. It is also in agree-
ment with a reduction in similarity of the global FC patterns 
with disease progression reported recently [7].
  Our approach complements standard clinical testing and es-

tablished traditional fMRI BOLD techniques, which focuses 
solely on activation of brain regions. By being able to character-
ize the global FC connectome, our method allows monitoring 
FC changes with disease progression as well as therapeutic in-
terventions. Of the latter, noninvasive brain stimulation has 
gained interest recently. It constitutes a promising new inter-
vention in MS that has already yielded promising results for 
motor and cognitive function in combination with appropriate 
training exercises [9]. Identifying potential brain regions as tar-

Table 3. Relative importance (PLS) of first 30 most important voxels of the Voiding Initiation Network that differentiate between 
voiders and voiding dysfunction (Fig. 4)				  

Region R (mm) A (mm) I (mm)  PLS

Left medial frontal gyrus 2.5 -22.5 47.5 100.0

Left cingulate gyrus 2.5 -2.5 47.5 98.4

Left middle frontal gyrus 42.5 -12.5 32.5 97.3

Left inferior frontal gyrus 52.5 -7.5 17.5 94.9

Left inferior frontal gyrus 52.5 -7.5 22.5 94.5

Left medial frontal gyrus 2.5 -7.5 47.5 93.0

Left middle frontal gyrus 47.5 -12.5 27.5 86.9

Left medial frontal gyrus 7.5 -7.5 47.5 86.9

Left cingulate gyrus 7.5 -22.5 42.5 86.0

Left middle frontal gyrus 27.5 7.5 57.5 85.2

Left fusiform gyrus 42.5 32.5 -22.5 84.6

Left medial frontal gyrus 7.5 -22.5 47.5 83.3

Left cingulate gyrus 2.5 -7.5 42.5 80.1

Left inferior frontal gyrus 42.5 -2.5 32.5 79.2

Left inferior parietal lobule 32.5 27.5 27.5 77.6

Dorsal vagal motor nuclei 2.5 37.5 -42.5 74.7

Left cingulate gyrus 12.5 32.5 27.5 74.6

Right cingulate gyrus -7.5 -17.5 42.5 74.3

Right inferior semi-lunar lobule -12.5 62.5 -37.5 74.2

Dorsal vagal motor nuclei -2.5 32.5 -47.5 73.8

Left superior frontal gyrus 32.5 -37.5 32.5 73.8

Left cingulate gyrus 17.5 37.5 27.5 73.4

Left superior frontal gyrus 27.5 -37.5 32.5 73.3

Left precentral gyrus 22.5 12.5 52.5 71.0

Left precentral gyrus 27.5 12.5 52.5 68.7

Right uvula -7.5 62.5 -32.5 67.7

Left inferior frontal gyrus 47.5 -12.5 22.5 67.5

Left substantia nigra 7.5 17.5 -7.5 67.2

Left cingulate gyrus 12.5 37.5 22.5 65.6

R, right; A, anterior; I, inferior; PLS, partial least squares.
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get for stimulation (e.g., frontal regions) and monitoring global 
FC changes during and after stimulation may be essential for 
optimizing stimulation techniques.
  Machine-learning algorithms have found recent applications 
in correlating clinical neuropsychological findings with brain 
connectivity measures. Examples include brain-computer in-
terface stroke rehabilitation [11,12], discrimination of schizo-
phrenia [13] and mild traumatic brain injury [14,15]. In con-

Fig. 4. Upper panel: Relative importance differentiating functional connectivity (FC) in voiders and voiding dysfunction for vertices 
belonging to the Voiding Initiation Network displayed in anatomical space. Individual vertices corresponding to voxels in the brain 
are display in pseudo-color and size according the importance. Highest importance is found in the frontal lobes and cerebellum, but is 
generally high for all voxels. Middle panel: Voxel from top panel displayed in axial orientation in Talairach space. Lower panel: On left, 
the 30 top vertices (by location) of the Voiding Initiation Network with highest relative importance (in percent) in each hemisphere 
(coordinates are provided in Table 3). On right, histogram over all 227 voxels demonstrating the high relative importance for a large 
number of these voxels supporting the conclusion that FC is affected globally.
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trast to these approaches, in our method, no assumptions are 
made about significance of connections by applying a thresh-
old. Instead, the entire functional connectome of the Voiding 
Initiation Network is used as input into the machine-learning 
algorithms thereby improving the data-driven nature of the 
paradigm.
  The number of subjects (n=27) for a machine-learning ap-
proach is somewhat limited, in particular, if compared with the 
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number of predictor variables (i.e., number of brain voxels of 
the Voiding Initiation Network). The use of advanced algo-
rithms, such as partial least squares or neural networks, where 
the original predictor variables are combined, thereby reducing 
the dimensionality of the predictor space, creates a more favor-
able ratio between this number of variables and the number of 
available data for training the algorithm. This in turn will help 
to arrive at a better trained algorithm. Such an approach there-
fore successfully addresses the limited number of clinical datas-
ets, as they often exist in a single center clinical study. Alterna-
tively, the machine-learning algorithm may be trained by com-
bining data from several clinical sites. Once trained, it can then 
be applied to any single center study.
  Two algorithms, random forests and partial least squares 
performed best according to their AUC values (0.86 and 0.89, 
respectively). Therefore, we conclude that these 2 algorithms 
are best suited for the classification problem in this study.
  Understanding supraspinal centers and their role in initiating 
or modulating voiding is currently still limited in patients with 
neurogenic VD. By combining new concepts of neuroimaging 
with powerful machine-learning algorithms, we increase the 
knowledge of these processes and aid in phenotyping patients 
for novel treatment approaches such as brain stimulation.
  In conclusion, machine-learning is capable of quantifying FC 
differences in MS patients with NLUTD and VD. The function-
al connectome of the Voiding Initiation Network is less coher-
ent in this patient group. Global differences were found with 
focal points in the frontal lobes and the cingulate.

SUPPLEMENTARY MATERIALS
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