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A comprehensive transcriptome analysis has been performed on protein-coding RNAs of Strongylocentrotus purpuratus,
including 10 different embryonic stages, six feeding larval and metamorphosed juvenile stages, and six adult tissues. In this
study, we pooled the transcriptomes from all of these sources and focused on the insights they provide for gene structure in
the genome of this recently sequenced model system. The genome had initially been annotated by use of computational
gene model prediction algorithms. A large fraction of these predicted genes were recovered in the transcriptome when the
reads were mapped to the genome and appropriately filtered and analyzed. However, in a manually curated subset, we
discovered that more than half the computational gene model predictions were imperfect, containing errors such as
missing exons, prediction of nonexistent exons, erroneous intron/exon boundaries, fusion of adjacent genes, and pre-
diction of multiple genes from single genes. The transcriptome data have been used to provide a systematic upgrade of the
gene model predictions throughout the genome, very greatly improving the research usability of the genomic sequence.
We have constructed new public databases that incorporate information from the transcriptome analyses. The transcript-
based gene model data were used to define average structural parameters for S. purpuratus protein-coding genes. In addition,
we constructed a custom sea urchin gene ontology, and assigned about 7000 different annotated transcripts to 24
functional classes. Strong correlations became evident between given functional ontology classes and structural properties,
including gene size, exon number, and exon and intron size.

[Supplemental material is available for this article.]

The genome of Strongylocentrotus purpuratus, commonly known as

the ‘‘purple sea urchin,’’ was published in 2006 (Sea Urchin Ge-

nome Sequencing Consortium 2006). This organism has long

served as an important research model in many different fields of

developmental and cell biology, and currently S. purpuratus is the

focus of advanced studies on the gene regulatory networks un-

derlying its embryonic development (Oliveri et al. 2008; Peter and

Davidson 2009, 2011). For this and the many other areas of con-

temporary molecular and cell biology in which S. purpuratus plays

a prominent role, progress is directly affected by the accuracy of the

annotated gene models available in the current genome builds.

The initial set of gene models was obtained by merging four dif-

ferent sequence-based approaches to computational gene pre-

diction: Ensembl pipeline, NCBI gnomon, FgenesH, and Genscan,

using the GLEAN algorithm (Sodergren et al. 2006). The GLEAN

result was evaluated using a set of ;600 cDNA/ESTs that were not

used in any of the gene prediction programs, and was considered

better than any single algorithm. But much subsequent experi-

mental work indicated anecdotally that many of the computa-

tional gene models are in various respects inaccurate. Here we

address this problem with the aid of a large-scale transcriptome

analysis carried out using current RNA sequencing technology.

This method has very low background noise, a large dynamic

range, and single-nucleotide resolution (Wang et al. 2009). We

have thus generated a comprehensive gene model data set for

S. purpuratus, derived from analysis of transcriptomes of many

embryonic stages, larvae, and adult tissues. Approximately half of

all of the a priori computational gene models have been improved

in one respect or another, many deeply revised, and the rest have

been empirically confirmed. In addition, we report quantitative

distributions of the structural characteristics of sea urchin protein-

coding genes, and of sea urchin mRNA populations that have not

previously been available.

Results

Quantitative aspects of the transcriptome data set

We are interested in protein-coding transcripts expressed at bi-

ologically meaningful levels. In sea urchin embryos, a very im-

portant class of transcripts for which expression is meaningful at

relatively low levels is that encoding transcription factors. Fortu-

nately there exists a great deal of quantitative information with

respect to the levels of these mRNAs that could be meaningful,

based on earlier measurements of many key kinetic parameters

determining their interactions with DNA and their synthesis

and turnover (Bolouri and Davidson 2003). In addition, a high-

resolution NanoString data set providing the actual numbers of

mRNAs per embryo through developmental time for almost 200

specific transcripts encoding regulatory proteins has recently been

published by this laboratory (Materna et al. 2010). Thus, we set the

sensitivity (depth) of our transcriptome analysis such that it would

easily provide coverage in depth of mRNAs encoding transcription

factors. In the sea urchin embryo, the number of regulatory mRNA

molecules of each species, averaging over all regulatory genes at all

embryonic time points, is typically only several hundred per em-

bryo (fertilization to 48-h late gastrula; the embryo is a constant
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size, constant mass system over this period). This suffices to pro-

vide more than the minimal effectively meaningful level of a reg-

ulatory gene mRNA in those cells expressing each such gene, i.e., at

least 10–40 molecules of mRNA of each active species per cell.

Unlike some previous studies aimed at detecting extremely low

levels of transcripts in mammalian cells (Blencowe et al. 2009;

Toung et al. 2011), our objectives were to obtain reliable data re-

garding mRNAs that clearly function as protein-coding transcripts,

rather than extremely rare noncoding transcripts, and previous

work suggested that these objectives could be met at a modest

depth of RNA sequence (Tarazona et al. 2011). Initial experiments

were designed to determine the amount of sequencing necessary

to measure reliably the abundance of mRNAs present at several

hundred per embryo and up. If all transcripts >10/embryo are

measured in an embryonic transcriptome, the mean value is 439/

embryo (computed from data from Materna et al. 2010); in other

words, most transcript species are relatively rare, but not below the

levels that could be considered significant on a priori grounds.

To carry out the necessary pilot experiment, mRNA was

extracted from mesenchyme blastula-stage embryos (24 h post-

fertilization, hpf ), and it was spiked with known amounts of seven

RNAs from heterologous species (Mortazavi et al. 2008). A se-

quencing library was run on an Illumina GAIIx instrument in two

lanes, each generating ;20 million (M) reads. The reads were

mapped to the S. purpuratus genome using the standard RNA se-

quencing packages Bowtie (Langmead et al. 2009) and TopHat

(Trapnell et al. 2009). The prevalence of each transcript species was

estimated by Cufflinks (Trapnell et al. 2010) from the number of

reads mapped to the respective GLEAN gene model, normalized by

transcript length and by total mapped reads. Thus the prevalence

reported by Cufflinks is given as FPKM (fragments per kilobase of

transcript, per million fragments sequenced), similar to RPKM

(reads per kilobase of gene model exon, per million mapped reads),

a measure used earlier (Mortazavi et al. 2008). The complete 20M

read set from each lane and randomly chosen subsets of 2M and

0.2M reads from each lane were then compared statistically (Fig. 1).

Here we see for the three read depths a scatterplot showing on the

ordinate the ratio of the two FPKM estimates of prevalence for each

transcript species plotted against its mean prevalence on the

abscissa, i.e., the average of the two FPKM values for each transcript

species (‘‘ratio-intensity’’ plot). In Figure 1 the ordinate is shown in

units of log2 and the abscissa in units of log10. The vertical scatter

clearly reveals the expected: the more reads the less scatter, par-

ticularly at lower prevalence. From the spiked standards, FPKM

values can be expressed in absolute terms as numbers of transcripts

in the sample, and this, in turn, can be expressed as number of

transcripts of each given mRNA species per embryo, since the

amount of mRNA per embryo is known (30 pg) (Davidson 1986).

Thus, an FPKM of 5 (vertical dashed line in Fig. 1) is about 400

molecules of transcript per embryo, close to a general lower level

of biological significance for one of the least prevalent classes of

transcript, those encoding transcription factors. Figure 1 shows

that in the 20M read sample, for the four orders of magnitude

above FPKM = 5, replicate prevalence values fall within a factor of

2. This can be regarded as an acceptable variance, and we con-

cluded that for the sea urchin embryo, a single Illumina GAIIx lane

of 20M reads suffices to provide a reliable estimate of mRNA

prevalence over the range of biological interest.

RNA samples were collected from 10 embryonic stages, from

post-embryonic larval stages through metamorphosis, from juve-

niles, and from a variety of adult tissues (Table 1). In all, 22 samples

were subjected to sequencing and analysis. All developmental

stages (except that used for the experiment of Fig. 1) were from the

same parental animals in order to minimize biological variation.

On average, 35.6M 76-bp pair-end reads were obtained for each

sample, and in total, the 22 samples yielded 784M reads. Of these

621M (79%) could be mapped to the S. purpuratus genome v3.0

downloaded from SpBase (Cameron et al. 2009).

Transcriptome-based gene models

Raw gene models built by the Cufflinks assembly program are

subject to various interpretive difficulties, particularly when they

are generated from a very large data set. For example, loci that are

represented by low-abundance transcripts in any one sample can

sometimes be assembled into gene models by pooling samples, but

such constructs may not be biologically meaningful. To remove as

many false results as possible, and to ensure the best quality of the

final outcome of the analysis, a set of conservative filters was ap-

plied to the assembly of raw gene models. To pass the filter, a gene

model must meet all of the following

three criteria: (1) the length of the model

must be larger than 400 bp (since the

cDNA fragments selected in the se-

quencing library preparation process are

;300 bp, small transcripts are not likely

to be sequenced anyway); (2) the FPKM

of the model must be over 0.5, which

equates to a minimum coverage of ;503;

and (3) the model should have some po-

tential protein-coding capacity. We ac-

cepted for this criterion any of the fol-

lowing: (3a) an exon of the model overlaps

with an exon of the GLEAN gene model

in the genomic sequence; (3b) the model

has a significant (e-value < 1 3 10�10) hit

in the SWISS-PROT database; or (3c) the

model has an ORF longer than 500 bp

and includes more than one exon. We

noticed that some ‘‘isoforms’’ differ in

only a few base pairs at the exon bound-

ary, probably due to minor inaccuracies

Figure 1. Computational simulation of quantitative variations at different sequencing depths. The
ordinate, ratio of FPKM per transcript species in the two data sets compared, is given in log2; the
abscissa, mean of the two FPKM values, in log10. (Blue dots) 20 million (M) reads; (green dots) 2M reads;
(red dots) 0.2M read. (Vertical dashed line) Average FPKM 5; (horizontal dotted lines) 6 twofold
change. The plot shows that in the 20M read data set, prevalence estimations for almost all mRNAs over
FPKM 5 are within twofold.
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in read mapping, and these were pooled. Isoforms were regarded as

true if they displayed distinct exon usage. In several instances, it

was necessary to curate gene models manually.

After applying these filters, 21,092 transcript-based gene

models were obtained. This is to be compared to the ;23,000 genes

predicted to exist in the S. purpuratus genome. From short read data

it is, however, difficult to determine the number of isoforms that

these genes generate. Most of the gene models satisfied more than

one of the protein-coding criteria (Supplemental Fig. S1). More

than half (56%) were supported by all three kinds of evidence for

protein-coding capacity; 26% were supported by two; and 18% by

only one. It is important to note that 16% (3421) of all of the

transcriptome models are novel with respect to the GLEAN gene

predictions. They were retained due to

a significant match to the SWISS-PROT

database (10.7%) or to the presence of

a long ORF (6.5%; these possible genes

require further validation). A large ma-

jority of the genes, 85% (17,942), are

represented at significant levels of ex-

pression (FPKM > 5) in at least one of the

transcriptomes studied.

The ‘‘vital statistics’’ of S. purpuratus
protein-coding genes

Based on the filtered gene models, coding

sequences (CDS) for the transcripts were

predicted. For each reconstructed mRNA,

ORFs (>150 bp) were identified and

searched against the SWISS-PROT data-

base by BLAST. The ORF with the best

hit, or alternatively the longest one, is

assigned as the CDS. However, many

CDSs cannot be comprehensively as-

signed in this manner, since the reading

frame runs off the end of the sequences.

This could introduce an unknown bias

when calculating the length distribution of CDS and 39 un-

translated regions (39 UTRs). Thus, a subset of transcripts (19,998,

69%) that have both 59 and 39 UTRs was used for the calculation of

CDS and UTR features in order to avoid distortions caused by the

problem of uncertain 39 UTRs.

Several interesting parameters can be calculated from these

data sets, as summarized in Figure 2 and Table 2. The length dis-

tributions of genes, exons, introns, complete mRNAs, 39 UTRs, and

CDS all display extremely long tails (Fig. 2). The lengths of mRNAs,

CDSs, and 39 UTRs extend over a large range, while the distribution

of 59-UTR lengths is typically narrow. An average sea urchin pro-

tein-coding gene is 15.2 kb long and contains eight exons, the

average length of which is 364 bp, and all exons together add up to

7.5% of the genome. However, these values are skewed by in-

clusion of the 39 terminal exon, which includes the long 39 UTR. If

we consider only the internal exons, which usually exclusively

contain coding sequences, we see that the average length of 177 bp

is directly comparable to that computationally predicted for pro-

tein-coding exons from the genomic sequences of other deutero-

stomes: for amphioxus, 204 bp (http://genome.jgi-psf.org/Brafl1/

Brafl1.info.html) (Putnam et al. 2008) and for various vertebrates

150–180 bp (Zhu et al. 2009; Koralewski and Krutovsky 2011). The

average length of an intron in a sea urchin gene is 1753 bp, and all

introns together total 31.7% of genome, while the intergenic re-

gions total 60.8% of the genome. On average, genes are spaced

23.5 kb apart. The mean mRNA length is 3.5 kb, of which the

59 UTR, CDS, and 39 UTR, respectively, account for ;8%, 40%, and

52%, respectively. Thus the length of coding sequence in the ge-

nome, 40% of total exon length, is 24.6 Mb, only 3.0% of the

whole genome.

We also calculated average exon and intron length differences

with respect to their relative positions in genes (Fig. 3). Genes with

five or more exons were selected, and the average lengths of the

first, second, last, and second to last exons, and the lengths of

the introns were calculated (Fig. 3A). The last exon that encodes

the 39 UTR is always, of course, the longest (Fig. 3B), while the first

intron is the longest (Fig. 3C); these results are consistent with

Table 1. RNA samples sequenced in this study

Type Sample (stage)

Egg and embryo Unfertilized egg
Cleavage (10 hpf )
Hatched blastula (18 hpf )
Mesenchyme blastula (24 hpf )
Early gastrula (30 hpf )
Mid gastrula (40 hpf )
Late gastrula (48 hpf )
Prism (56 hpf )
Late prism (64 hpf )
Pluteus (72 hpf )

Larva and juvenile Four-arm stage
Vestibular invagination stage
Pentagonal disc stage
Tube-foot protrusion stage
Post-metamorphosis
Young juvenile

Adult tissues Ovary
Testes
Gut
Radial nerve
Axial gland
Coelomocyte

Figure 2. Length distributions of protein-coding genes and their components. Essentially these plots
are smoothed versions of a histogram where the ordinate represents the frequency of the given length
in base pairs. All distributions have very long tails, and the plots only show part of the distributions: (A)
genes, 0–100 kb; (B) introns and mRNA, 0–10 kb; (C ) UTRs and CDS, 0–5 kb; (D) exons, 0–1 kb.

Gene structure in the sea urchin
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previous reports on various genomes (Maroni 1996; Bradnam and

Korf 2008). When length differences of exons and introns for genes

as a function of number of exons were calculated, there emerged the

clear trend that intron length becomes shorter the farther from the

transcription start site. Statistics for genes with 10 exons and nine

introns illustrate this, as shown in Figure 3, D and E.

To facilitate the use of these gene models, we set up a query

tool, which retrieves detailed information on the transcriptome-

based gene models, including the corresponding GLEAN gene

model, the functional ontology class to which the gene belongs

(see below), the mRNA and protein sequences, and the expression

dynamics of the gene in embryogenesis, by line plots or heat

maps. The data including gene structure, sequencing coverage, and

mapped reads are available through the Integrative Genomics

Viewer (Robinson et al. 2011), which is a stand-alone desktop ge-

nome browser with the important characteristic of fast data load-

ing and many other convenient features including pan and zoom

capability. Multiple tracks are included on the data server, repre-

senting genomic sequence features, GLEAN gene models, tran-

scriptome gene models, RNA sequencing coverage, and reads

(Fig. 4). All of these query and visualization tools are available

via SpBase, the public sea urchin genome database (http://www.

spbase.org/SpBase/rnaseq/).

Comparison between transcriptome-based gene models
and predicted GLEAN gene models

Adequate comparison between the computationally predicted

GLEAN gene models and transcriptome-based gene models requires

manual curation, and we chose the subset of genes encoding

transcription factors to evaluate the differences between these two

types of model. This choice somewhat biases the comparison in

that regulatory genes are in general simpler in structure than some

other classes of protein-coding genes, for example, those encoding

cell adhesion proteins, and the following results may well un-

derestimate the actual amount of error in the computational

GLEAN model predictions on a genome-wide scale. Results for all

406 regulatory genes analyzed here are summarized in Supple-

mental Table S1.

For the regulatory gene subset, 45% of the GLEAN models are

essentially consistent with those derived from the transcriptome

analysis. In about two-thirds of these, the GLEAN model and

transcriptome-based models agree exactly, except that the 59 and 39

sequences could now be extended. This is to be expected, since

computational gene models are generally based on predictions of

coding regions, while the RNA sequence data include the whole

of the mRNA (Supplemental Fig. S2A). In the remainder of the

45%, the RNA sequence-based models include one or more addi-

tional terminal exons, which could also be UTRs (Supplemental

Fig. S2B,C). Figure 4A shows such a case for which there is also

independent published evidence, the blimp1 gene model. The

GLEAN model has five exons. A corresponding transcript model

(WHL22.5073.1) shows the same structure with extended UTRs.

Another transcript model also required by the transcriptome data

(WHL22.5073.2) uses an alternative exon1, and this exon is made

up of 59-UTR sequence. This latter isoform was previously anno-

tated as Blimp1a, while the GLEAN model corresponds to Blimp1b

(Livi and Davidson 2006).

For 39% of the regulatory genes, the GLEAN models differ in

fundamental ways from the RNA sequence-based results. Among

these, in ;80% of the cases, the gene models had to be revised

dramatically (Supplemental Fig. S2D), while in the rest, a GLEAN

model was simply a duplication of parts of another GLEAN model

at the same locus (Supplemental Fig. S2E). Among discrepancies

that could now be repaired were the addition of newly identified

internal exons, correction of erroneous intron/exon boundaries,

and false connections between models. To justify this evaluation,

we compared these discrepant models with reliable third-party

evidence, including known cDNA sequences from NCBI Refseq

database and ESTs. cDNA/EST sequences were found for 32 genes,

which support RNA-seq models in 29 genes, support the GLEAN

model in one gene, and support neither in two genes (Supple-

mental Table S1). The invalidated RNA-seq models of the three

genes were broken due to a missing single splice junction. It is clear

that in most of these discrepant cases, RNA sequence-based models

are better than GLEAN models. Figure 4B illustrates discrepancies

for the hnf6 gene, where there is also additional earlier evidence.

The GLEAN model shows two exons. But according to the RNA

sequence-based model, the boundary of exon1/intron1 is wrong,

and exon 2 is absent from the transcript, while two other exons

should have been included. The three-exon transcriptome-based

gene model (WHL22.288683.0) is identical in structure with

a cDNA isolated previously (Otim et al. 2004). However, as pointed

out (Otim et al. 2004), an a-isoform, in which the internal exon is

spliced out, leaving two exons only exists in other species. Al-

though the a-isoform had not previously been identified in sea

urchins, it is present in the current transcriptomes and now could

also be assembled (WHL22.288683.1). It differs from the GLEAN

model in the corrected intron/exon boundaries.

For 11% of the GLEAN models in the regulatory gene subset,

no corresponding RNA sequence-based model was identified, due

Table 2. Parameters for S. purpuratus protein-coding genes based
on transcriptome analysis

Genes
Total number 21,092
Total length 320.0 Mb (39.2%)
Average length 15,172 bp

Exons
Total number 168,626
Total length 61.4 Mb (7.5%)
Average length 364 bp
Average length of internal exons 177 bp
Average number per gene 8

Introns
Total number 147,534
Total length 258.6 Mb (31.7%)
Average length 1753 bp

Intergenic regions
Total length 496.0 Mb (60.8%)
Average gene spacing 23.5 kb

mRNAs
Average length 3461 bp

Average CDS and UTR lengths
Average length of 59 UTR 269 bp
Average length of CDS 1393 bp
Average length of 39 UTR 1799 bp

Genomic parameters, including the length of genome (816.0 Mb), gene,
intron, and intergenic regions, were all calculated from sequences with-
out gaps. Percentages of total genome are shown in parentheses. mRNA-
related parameters, including the length of mRNA, CDSs, and UTRs, were
calculated based on a subset of mRNA that contain both UTRs.
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to lack of transcription in any of the studied samples, i.e., too few

reads (Supplemental Fig. S2F). In the remaining 5% of those con-

sidered, the comparison was moot, due to insufficient evidence to

enable resolution (Supplemental Fig. S2G).

Functional classification

Although functional classification of transcripts is a critical aspect

of downstream transcriptome analysis, the available standard

classifications that are supposed to bridge across all genomes are

error prone and often biologically arbitrary. We took advantage of

the massive annotation effort made by the sea urchin community

when the S. purpuratus genome was first released and, in particular,

of a set of high-quality annotation papers published in 2006 in

a special volume of Developmental Biology (Sea Urchin Genome: Im-

plications and Insights, Volume 300, Number 1). These works cover

many of the important functional transcript classes and have the

advantage that they reflect the community’s major research in-

terests. These papers reported about 7000 annotated genes con-

sidered with respect to the functions of the encoded proteins. To

develop a maximally useful sea urchin transcript classification,

we manually collected, curated, and organized the published 2006

annotations into a new ontology suggested by the studies in these

papers. The ontology has 24 major functional classes, as can be

seen in Figure 5 (for example, transcrip-

tion factors, immune-related genes, bio-

mineralization genes, etc.), and up to

three hierarchical levels (e.g., Signaling/

TGFb Signaling/TGFb Signaling Recep-

tors). The complete classification can

be found in Supplemental Table S2,

which includes 8954 annotations of 7000

GLEAN gene models. Using this custom-

built sea urchin Gene Ontology, 5113

transcriptome gene models (24% of the

total) were assigned into at least one func-

tion class; the number of diverse transcripts

in each class is shown in Figure 5. Neither

the ontology nor the annotations have

until now been available in a computer-

readable, easily accessible format, with the

result that no large-scale analyses have

been conducted on these gene sets. The

current functional annotation, taken to-

gether with the improved and corrected

gene models validated as above by refer-

ence to our transcriptome results, provides

a high-quality data set for such analyses.

The elemental genomic parameters

for sea urchin protein-coding genes of the

different ontological classes, including

gene length, exon length, intron length,

and exon numbers, are shown in Figure 6.

It is clear that the ontological classes of

genes differ dramatically. For example,

Calcium toolkit genes are the longest

class due to the longest introns on aver-

age, and to an unusually large number of

exons (Fig. 6). Additional unusually long

classes of genes encode GTPases, kinases,

and phosphatases, among others (Fig. 6).

The classes of genes that have the largest

number of exons are cell adhesion genes and cytoskeletal genes,

although their individual intron, exon, and gene lengths are av-

erage or less than average (Fig. 6). Rhodopsin-type G-protein-

coupled receptor genes have unusually few exons, but their introns

and exons are unusually long (Fig. 6). Taken as a class, genes

encoding transcription factors also tend to consist of fewer than

average but longer exons and introns, a property also shared on

average with genes expressed particularly in the nervous system

(Fig. 6).

Although the manually curated functional transcript ontol-

ogy on which Figure 6 is based is of high quality, it covers only 24%

of all genes detected in the summed transcriptomes. As a comple-

mentary analysis, transcriptome models were also annotated using

the generic Gene Ontology by Blast2GO (Götz et al. 2008). By this

means, 15,475 genes (73%) could be assigned GO terms.

Leader trans-splicing

Spliced leader (SL) trans-splicing has been reported in several eu-

karyotes including euglenozoa, nematodes, flatworms, and tuni-

cates. In this form of RNA processing, a small RNA sequence (SL

RNA) is transferred to the 59 end of many pre-mRNA molecules

(Hastings 2005). To investigate the presence of SL trans-splicing in

the sea urchin mRNAs, reads from two embryonic stages (18 hpf

Figure 3. Lengths of exons and introns with respect to their relative positions in genes. (A) Labeling
method for introns and exons used in the following panels. (B,C ) Average length of exons and introns
diagrammed in A. (D,E ) Average length of each exon and intron in all genes containing 10 exons.

Gene structure in the sea urchin

Genome Research 2083
www.genome.org



and 40 hpf ) were separately assembled de novo using Trinity

(Grabherr et al. 2011). The assembled sequences were first clus-

tered to remove redundancy by CD-HIT, a program that clusters

sequences by their similarity (Huang et al. 2010), and then the first

200 bp at the 59 end of each sequence was used to search the ge-

nome. A potential spliced leader sequence would display matches

with the ends of multiple transcripts and would show up as a

‘‘hotspot.’’ But we found no significant evidence for trans-splicing

by this method and conclude that at least in sea urchin embryonic

stages, there is very little, if any, SL trans-splicing.

Discussion
Transcriptomes enrich understanding in multiple ways. They

illuminate developmental regulatory processes, they indicate

structure/function properties of genes and classes of genes, they

provide biological bases for custom-built gene expression ontol-

ogies, and they generate crucial empirical support for gene models.

Here we focus on the interplay between the results of a compre-

hensive transcriptome analysis and the genomics of the sea urchin;

the many developmental implications of this study are to be dis-

cussed elsewhere.

Limitations

Transcriptomes are the outputs of the gene regulatory processes

that control system function in animals, and it is virtually im-

possible to sample RNAs representing every regulatory state that

the genome is capable of generating. Thus, the repertoire of se-

quenced mRNAs, even when summed over many biological sam-

ples, as in this study, can never include transcripts of all protein-

coding genes in the genome. Nonetheless, we were able to recover

Figure 4. Discrepant predicted and observed gene structure displayed in the IGV genome browser. A selectable variety of aligned features is shown in
horizontal tracks with the feature label to the left: Repeat sequences (gray; shows the number of matches using 76-bp sequence windows in the whole
genome, using Bowtie with the same parameters as when mapping the reads); Gap (gray; sequence regions of the genome assembly that lie in gaps and
are therefore undetermined; several short gaps are shown in A); GLEAN model (red; the original gene model predicted by the GLEAN method); RNA-seq
gene models (blue; the models produced by this study; the blank terminal regions are UTRs); Coverage (green; a graphical presentation of the number of
sequencing reads that align at a particular location); Reads (gray; the alignment of individual reads to the genome sequence). (Orange arrows) Individual
RNA sequence-derived exons. (A) The genomic structure of the gene blimp1. The overall structure of the GLEAN gene model is correct except longer UTRs
are recovered and an alternatively spliced isoform that uses a distant 59 exon is recovered. (B) The genomic structure of the gene hnf6. The GLEAN model
predicted an incorrect exon1/intron1 boundary, and the 39 exon is not supported by sequence. The correct 39 exons and two isoforms were identified from
the RNA sequence data.
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transcripts mapping to >90% of predicted protein-coding genes, of

which 85% are expressed at clearly significant levels. This is better

coverage than might have been expected, although it is unevenly

distributed among ontology classes. Some genes, such as those

encoding transcription factors, are used over and over again in the

life cycle, and indeed an earlier study showed that >80% of pre-

dicted regulatory genes in S. purpuratus are expressed within 3 d of

fertilization (Howard-Ashby et al. 2006). Housekeeping metabolic

genes and many cytoskeletal genes are

likely to be included in multiple of the

transcriptome samples, as are all genes

required for the differentiated cell types

of the embryo and larva, etc. The current

transcriptome analysis is consistent with

prior studies. Models of genes known to

be expressed have been recovered.

On the other hand, this should not

be true of genes expressed facultatively,

for example, in response to immune

challenge, and indeed it is not. For ex-

ample, more than 200 Toll-like receptors

(TLRs) were identified in the sea urchin

genome by the GLEAN prediction process

(Rast et al. 2006). Even after an extensive effort, including use of

de novo assembly on the specific transcriptome samples from

coelomocytes, the immune cells that express TLRs (Hibino et al.

2006), followed by manual evaluation, we could identify only 28

different TLR transcripts. This most likely reflects differential ex-

pression of these receptors (Messier-Solek et al. 2010), most of which

were not sampled in the healthy animals used to provide the (resting)

coelomocyte preparation, although if some of the transcribed TLRs

Figure 6. Gene structure parameters for individual ontological classes. The four panels show average gene length, exon length, intron length, and exon
number. (Black horizontal lines) The average value of the feature in the whole gene set. The ‘‘Unclassified’’ class refers to gene models that were not
included in these ontological classes. The ‘‘Novel’’ class refers to gene models newly identified in this study as described in the text; these tend to be
atypically small genes with few exons.

Figure 5. Numbers of gene models associated with major functional classes. The distribution is based
on the custom sea urchin ontology discussed in the text.
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are particularly closely related in sequence, they could have been

missed. Indeed, a second general limitation of transcriptome

analysis is in distinguishing closely related transcripts deriving

from large gene families, particularly in famously polymorphic

genomes such as that of S. purpuratus (Sea Urchin Genome Se-

quencing Consortium 2006). Another limitation, which for some

purposes could be crucial, is that the use of 300-bp RNA fragments

in the preparation of the sequencing libraries (according to stan-

dard protocols) severely diminishes the information available on

alternative splicing isoforms within each preparation. Finally, as

a choice based on the principle that we wished to generate a tran-

scriptional image exclusively of clearly functional protein-coding

gene expression, we deliberately filtered out transcripts expressed

at very low, probably meaningless levels, as well as all small tran-

scripts, noncoding or otherwise (<400 bp).

The accuracy of RNA sequencing-based gene models is also

limited by the computational analysis tools. In the comparison of

GLEAN models and RNA-seq models, we used known cDNA se-

quences and ESTs to evaluate the discrepancies between the model

sets. We found that occasionally splice junctions were not detected

causing ;10% of the RNA-seq models to be broken. This is prob-

ably due to some errors in mapping of reads that span a splice, since

adjacent exons generally have enough coverage. We also noticed

that in a few loci there were sufficient reads but no models were

assembled, or erroneous fusion of adjacent models. This is likely

due to the misbehavior of the gene model assembly program.

Despite these limitations, RNA-seq analysis methods generally

yield accurate results. Furthermore, the computational tools are

evolving rapidly, and future versions may correct these problems.

Improved status of the S. purpuratus genome

In only the few most studied model system genomes, e.g.,

Caenorhabditis elegans, mouse, and Drosophila, have the initial sets

of computationally generated gene model predictions been gen-

erally annotated and revised based on direct experimental evi-

dence. As we show here, transcriptome mapping results in a sig-

nificant improvement in the accuracy of the gene models in the

S. purpuratus genome: Accessed by a manually curated subset, only

about a third of the computational 2006 GLEAN predictions

proved to represent the actual structures of the transcribed genes,

and even these have now been augmented by addition of the 39-

and 59-UTR sequences, which, in fact, include 60% of the length of

the average sea urchin mRNA. For many experimental purposes,

the UTRs are essential and required information. More impor-

tantly, missing exons have been replaced in the empirical gene

models; falsely predicted exons removed; intermingled genes

separated; intron/exon boundaries corrected; and overlapping

models excised. Multiple comparisons to both published and un-

published full-length cDNA sequences, and to RACE-derived

fragments, indicate that the transcriptome-based gene models are

very accurate. Because of the high coverage of the pooled tran-

scriptome data, a majority of the gene models in the S. purpuratus

genome have now been systematically rederived from experi-

mental data, and this includes most of the genes that are the main

subjects of interest to the scientific consumers of genomic se-

quence information in experimental fields of sea urchin molecular

and cellular biology. For gene network regulatory molecular bi-

ology, the primary focus of this laboratory, correct gene models are

absolutely essential, and incorrect ones continuously generate se-

vere impediments, even if they do usually succeed in indicating

the presence of the gene in a given region of the genome. The

correct models are needed for the design of every kind of probe and

construct required for experimental assessment of regulatory in-

teractions, including in situ hybridization probes, QPCR probes,

Nanostring probes, reengineered BACs, expression constructs, and

of course for locating relevant cis-regulatory modules as well. A

fundamental strength of modern genomics is its computationally

mediated and automatically accessible genome-wide informa-

tional content. Thus in this study we have also implemented new

visualization and locational programs that link into SpBase the

fruits of this analysis of the sea urchin transcriptome.

Methods

Animal culture and sample collection
Embryos were obtained by combining gametes from a single male
and a single female animal, and cultured in filtered seawater at
a density of 500/mL at 14°C with stirring to ensure proper de-
velopment. The embryo samples were taken without further di-
lution. For larval stages, at 72 hpf the embryos were diluted from
10 to 1 embryo/mL and fed with the alga, Rhodomoas spp. (Wray
et al. 2004). Timed larval samples were taken and the culture was
kept until juveniles were harvested after ;4 mo in culture. All
embryonic and larval stages were collected from the same batch,
except the pilot experiment of 24 hpf. Larval staging follows a re-
cent morphological study (Smith et al. 2008). Adult tissues were
collected by dissection from multiple animals.

After collection, samples were immediately lysed in TRIzol
(Invitrogen) by vigorous shaking on a Vortex shaker (embryonic
stages) or homogenization (larval stages and adult tissues), then
frozen at �70°C until use.

RNA preparation and library building

The RNA preparation was as described previously (Mortazavi et al.
2008; Trapnell et al. 2010) with modifications (Dr. Brian Williams,
California Institute of Technology, pers. comm.). Total RNA was
prepared using TRIzol (Invitrogen), followed by DNase I treatment
(Turbo DNAFree Kit; Ambion). mRNA was purified by a double
selection with oligo(dT) beads (Dynabeads; Invitrogen). RNA qual-
ity was checked by BioAnalyzer (Agilent), and quantity was mea-
sured by Qubit (Invitrogen). For each sample, 100 ng of mRNA was
taken, and internal standard RNA aliquots were added. The RNA
was fragmented in the fragmentation buffer (39 IVT Express Kit;
Affymetrix) for 2.5 min at 94°C. The double-strand cDNA was
synthesized by the SuperScript kit (Invitrogen).

The sequencing library construction followed the protocol
suggested by the manufacturer. The sequencing was done by Illu-
mina Genome Analyzer IIx. Both library building and sequencing
were performed in the Millard and Muriel Jacobs Genetics and
Genomics Laboratory, California Institute of Technology.

Computational analysis

The analysis was performed based on S. purpuratus genome v3.0,
which was downloaded from SpBase (http://www.spbase.org)
(Cameron et al. 2009). The genome v3.0 differs with the current
v3.1 in only a few places due to the removal of contaminating
microbial sequences. But the assembled transcript sequences remain
the same. The reads were mapped by Bowtie 0.12.7 (Langmead et al.
2009) and TopHat 1.2.0 (Trapnell et al. 2009). Gene models were
assembled based on the mapped reads, and abundance was es-
timated by Cufflinks 0.8.1 (Trapnell et al. 2010). Reads from
coelomocytes were de novo assembled by Trinity (Grabherr et al.
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2011). These computations were done on the Amazon Elastic Com-
pute Cloud platform (http://aws.amazon.com/ec2/).

Gene models were visualized by Integrative Genomics Viewer
(IGV) (Robinson et al. 2011). GO annotation was done by
Blast2GO (Götz et al. 2008). In the analysis of spliced leader trans-
splicing and TLR genes, sequence redundancy was removed by CD-
HIT (Huang et al. 2010).

Data access
All data and the corresponding query and visualization tools are
available via SpBase, the public sea urchin genome database (http://
www.spbase.org/SpBase/rnaseq/). The assembled transcriptome se-
quences have been submitted to the NCBI Transcriptome Shotgun
Assembly Sequence Database (http://www.ncbi.nlm.nih.gov/
genbank/TSA.html) under accession numbers JT094275–JT123346,
which can also be retrieved as a whole through the NCBI BioProject
Database (http://www.ncbi.nlm.nih.gov/bioproject), accession num-
ber PRJNA81157. The read sequences have been submitted to the
NCBI Sequence Read Archive (SRA) (http://www.ncbi.nlm.nih.gov/
sra) under accession number SRA056880.
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