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Faced with the high heterogeneity and poor prognosis of colorectal cancer

(CRC), this study sought to find new predictive prognostic strategies to improve

the situation. Cuproptosis is a novel cell death mechanism that relies on copper

regulation. However, the role of cuproptosis-related gene (CRG) in CRC

remains to be elucidated. In this study, we comprehensively assessed the

CRG landscape in CRC based on The Cancer Genome Atlas (TCGA). We

identified differential expression and genetic alterations of CRG in CRC. CRG

is highly correlated with initiation, progression, prognosis, and immune

infiltration of CRC. We construct a risk score signature containing 3 CRGs

based on LASSO. We explored the correlation of CRG-Score with

clinicopathological features of CRC. Age, stage, and CRG-Score were

integrated to construct a nomogram. The nomogram has robust predictive

performance. We also understand the correlation of CRG-Score with CRC

immune landscape. CRG-Score can effectively predict the immune landscape

of CRC patients. Low-risk CRC patients have greater immunogenicity and

higher immune checkpoint expression. Low-risk CRC patients may be better

candidates for immunotherapy. At the same time, we also predicted more

sensitive drugs in the high-risk CRC patients. In conclusion, the CRG risk score

signature is a strong prognostic marker and may help provide new insights into

the treatment of individuals with CRC.
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Introduction

Colorectal cancer (CRC) shows a steady upward trend worldwide, and its morbidity

and mortality ranks third among all malignant tumors (Siegel et al., 2022). Despite

advances in treatment and diagnosis in recent years, a mass of patients still die from

cancer recurrence and metastasis. The 5-years survival rate is only 14.0% (Olenius et al.,
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2022). This is often attributed to the high degree of tumor

heterogeneity and complex dynamic evolution (Hanahan and

Weinberg, 2011). Therefore, more prognostic-related factors are

needed for precise risk stratification of patients. To guide a more

effective and individualized treatment plan.

Copper is an indispensable nutrient in the human body as a

cofactor for essential enzymes. However, dysregulation of copper

homeostasis may also lead to many diseases (Oliveri, 2022).

Extensive research shows that dysregulation of copper

homeostasis plays a key role in cancer initiation and

progression (Shanbhag et al., 2021). Currently, significant

abnormalities in copper content have been found in serum

and tumor tissues of different cancers (gallbladder, breast,

thyroid, colorectal, lung, and oral) (Basu et al., 2013; Ding

et al., 2015; Baltaci et al., 2017; Stepien et al., 2017; Zhang

and Yang, 2018; Chen et al., 2019; Aubert et al., 2020). At the

same time, high levels of copper are associated with higher stages

of colorectal and breast cancer (Gupta et al., 1993; Denoyer et al.,

2015). Copper can promote tumor progression and metastasis by

activating fibroblast growth factor 1, angiopoietin, interleukin

1 and vascular endothelial growth factor (Lelièvre et al., 2020; Li,

2020). Based on the above mechanisms, copper chelators

(elesclomol, disulfiram, and dithiocarbamates) and copper ion

carriers (trientine, tetrathiomolybdate) have been used in

carcinoma treatment and have been shown to be effective

against cancer stem cells (Brady et al., 2017; Davis et al., 2020;

Chen et al., 2006; O’Day et al., 2013). Recently, researchers

discovered a new copper-dependent and copper-regulated cell

death mechanism called Cupproptosis. Copper binds to proteins

containing fatty acylated structures in the tricarboxylic acid

(TCA) cycle, resulting in abnormal aggregation of the latter

and loss of iron-sulfur cluster proteins, triggering proteotoxic

stress and eventual cell death (Tsvetkov et al., 2022). However,

cancer metastasis is highly dependent on TCA cycle

reprogramming. Downregulation of the TCA cycle releases

CO2, lactate, and other organic acids to benefit tumor

invasion (Faubert et al., 2020). At the same time, the altered

microenvironment suppresses the activation of immune cells and

promotes immune escape (Cerezo and Rocchi, 2020). At present,

some genes that can regulate cuproptosis have been identified.

However, the clinical impact of cuproptosis-related gene (CRG)

on CRC still needs to be further elucidated. This may help to

accurately predict the prognosis of CRC patients.

Transcriptome data of 612 CRC samples from TCGA

database were collected in this study. We collected 10 CRGs

from previous studies (Tsvetkov et al., 2022). We identified

differential expression and genetic alterations of CRG in CRC.

CRG is highly correlated with initiation, progression, prognosis,

and immune infiltration of CRC.

We successfully constructed a CRG risk score signature to

quantify cuproptosis levels in individual tumors. The nomogram

integrating the CRG-Score has robust predictive performance. It can

help patients accurately determine survival outcomes. We found that

the CRG-Score could effectively predict the immune landscape of

CRC patients. And predict the sensitivity of different CRG-Score

patients to immunological drugs and chemical drugs. In conclusion,

the CRG risk score signature is a strong prognostic marker and may

help provide new insights into the treatment of individuals with CRC.

Materials and methods

Data collection

TCGA database (https://portal.gdc.cancer.gov/repository)

accessed: 27 May 2022. GEO database (https://www.ncbi.nlm.nih.

gov/geo/) Accessed: 9 August 2022. The study consisted of 1412 CRC

data from 5 cohorts (TCGA-COAD, TCGA-READ, GSE17538,

GSE29623, GSE39582). The genes transcriptome expression

profile of CRC patients was obtained from the above 5 cohorts.

TCGA expression data were converted to fragment per kilobase

million (FPKM) values prior to use. The “affy” and “simpleaffy”

packages were used to normalize GEO data. The dataset was batch

corrected using combat in the “sva” package. DNAmutation data of

CRC patients were obtained fromTCGA-COAD cohort and TCGA-

READ cohort. Clinical information was obtained from the respective

matched cohorts. To reduce statistical errors in the analysis, we

excluded CRC patients with short overall survival (OS) values

(<30 days) and missing information. According to the ratio of 1:1,

TCGA CRC patients were randomly divided into train and test

groups.

Construction of a cuproptosis-related
gene signature

10 CRGs retrieved from previous reports (Tsvetkov et al., 2022).

A detailed list of CRGs is shown in the attached file: Supplementary

Table S1. We screen the CRG using iterative LASSO (Least Absolute

Shrinkage and Selection Operator) with 1,000 iterations. To prevent

overfitting, for each iteration, 1,000 random stimuli were set. The area

under the curve (AUC) was calculated from the receiver operating

characteristic curve (ROC). The inclusion was stopped when the

AUC reached its peak, and the obtained CRG was used to establish

the CRG risk score signature. CRG-Score=(mRNA1 expression ×

coefficient mRNA1) + (mRNA2 expression × coefficient mRNA2) +

(mRNA3 expression × coefficient mRNA3). CRC patients were

divided into low/high risk groups according to the median value

of CRG-Score.

Functional enrichment and immune
correlation analysis

The Kyoto Encyclopedia of Genes and Genomes (KEGG)

analysis on Gene Set Enrichment Analysis (GSEA) software
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(version 4.2.3) was used to assess pathway activity. CIBERSORT-

ABS, CIBERSORT, EPIC, MCPcounter, QUANTISEQ, TIMER,

and XCELL on TIMER2.0 were used to assess immune

infiltration status. Immune-related pathway activity was

assessed using the Single-sample gene set enrichment analysis

(ssGSEA) algorithm. Tumor mutational burden (TMB) score

analysis was performed between CRG-Score risk groups.

Expression levels of 47 immune checkpoint-related genes (He

et al., 2022) were analyzed between CRG-Score risk groups.

Tumor Immune Dysfunction Exclusion

Data on clinical response to immune checkpoint inhibitors in

CRC are lacking. We used the Tumor Immune Dysfunction

Exclusion (TIDE) website to predict efficacy between CRG-Score

risk groups. The resulting data can be obtained after uploading

the expression profile data to the TIDE website (https://tide.dfci.

harvard.edu) (Lu et al., 2019).

Drug susceptibility prediction

To help clinical patients achieve better drug outcomes.

Referring to Genomics of Drug Sensitivity in Cancer (GDSC,

https://www.cancerrxgene.org), sensitivity to common

chemotherapeutics and targeted drugs was predicted between

CRG-Score risk groups. The evaluation index is the median

inhibitory concentration (IC50).

Statistical analysis

R software (version 4.1.2) was used for analysis and plotting

of all data in this study. The “caret” package is used to randomize

groupings. The “limma” package is used to extract the expression

levels of CRGs in downloaded mRNA expression profiles. The

“ggpubr” and “reshape2”packages are used to draw boxplots. The

“maftools” package is used to draw waterfall charts. The

“RCircos” package is used to draw circle diagrams. The

“forestplot” package is used to draw forest plots. The

“timeROC” package is used for ROC. The “scatterplot3d”

package is used for principal components analysis (PCA). The

“survival” and “survminer” packages are used to draw survival

curves. The “pheatmap” package is used to plot survival status,

risk heatmaps and risk curves. The “regplot” and “rms” packages

are used to draw nomograms and calibration curves. The

“clusterProfiler” package is used for gene ontology (GO)

analysis. The “pRRophetic” package was used for drug

susceptibility comparisons.

Strawberry Perl software was used for data processing. The

illustrations by Figdraw. Statistical differences between the two

groups were compared using the Kruskal-Wilcoxon test. The

Kruskal–Wallis test was used to compare statistical differences

among three or more groups. All statistical p-values are two-way

outcomes. Only p < 0.05 was considered statistically significant.

Results

Landscape of Cuproptosis-related Gene in
colorectal cancer

Based on previous literature reports, we included a total of

10 CRGs (CDKN2A, DLAT, DLD, FDX1, GLS, LIAS, LIPT1,

MTF1, PDHA1, and PDHB) (Tsvetkov et al., 2022) for study. We

first explored CRG expression changes in mRNA expression

profiles. The results showed that most of the CRGs (7/10, 70%)

were differentially expressed between tumor tissues and adjacent

non-tumor tissues (p < 0.05). CDKN2A, GLS, LIPT1, and

PDHA1 were up-regulated in tumor samples, and FDX1,

DLD, MTF1 were down-regulated in tumor samples

(Figure 1A). Furthermore, there was a strong association

between these genes (Figure 1B). Subsequently. We performed

SNV and CNV analyses based on data from the TCGA-COAD

cohort and the TCGA-READ cohort. The results showed that

only 54 (9.98%) of 541 CRC samples had CRGs mutations

(Figure 1C), and the mutation frequency was very low. CNV

alterations are not prevalent in these genes. MTF1 had the most

significant copy number gain, while PHDB exhibited the most

significant copy number loss (Figure 1D). The chromosomal

location changes of CRGs CNVs are shown in the figure

(Figure 1E).

The role of CRGs in CRC is currently unclear. We analyzed

the correlation between CRGs and important initiation and

progression mechanisms of CRC. CRG was strongly associated

with important initiation and progression mechanisms of CRC

(Figure 1F). The relationship between CRGs and prognosis of

CRC patients was further explored. Univariate COX regression

analysis showed that CDKN2A was a risk factor for OS (p < 0.05)

and DLAT was a protective factor for OS ((p < 0.05, Figure 1G;

Supplementary Table S2). Finally, there is growing evidence that

the tumor immune landscape is closely related to tumor

prognosis and treatment outcomes (Chen and Mellman,

2017). Therefore, we further explored the relationship between

CRGs and cellular infiltration in CRC. The expression level of

most CRGs strongly correlated with the level of immune cell

infiltration (p < 0.05, Figure 1H).

Construction and evaluation of the
Cuproptosis-related Gene risk score
signature

According to the ratio of 1:1, 540 CRC patients were

randomly divided into train and test groups. The detailed
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clinical information of the test group, train group and total group

is shown in Table 1. Based on 10 CRGs described above, we used

iterative LASSO to construct a CRG risk score signature for

predicting CRC survival. And 3 genes were extracted when the

first-order value of Log(λ) was the minimum likelihood of bias

(Figures 2A,B).

FIGURE 1
Landscape of Cuproptosis-related Genes (CRGs) in CRC. (A) Expression of CRGs in colorectal tumor tissues and adjacent non-tumor tissues
from TCGA-COAD and TCGA-READ (612 patients: 568 tumor and 44 normal). (B) Correlation between CRGs expression. (C) Gene mutation of
CRGs. (D) Copy number variation (CNV) frequency of CRGs. (E) The location on the chromosome where CRGs CNV changes. (F) Correlation
between CRGs and CRC important initiation and progression mechanisms. (G) Univariate COX regression analysis of the hazard ratio between
CRGs and CRC overall survival. (H) Correlation of CRGs and immune cell infiltration. *p < 0.05, **p < 0.01, ***p < 0.001.
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The CRG risk score signature formula:CRG Score=

(CDKN2A ×0.1649) - (DLAT ×08,399) + (GLS ×0.4064).

CRC patients were divided into low/high risk groups

according to the median value of CRG-Score (Table 2).

AUC values were evaluated by ROC curve. The AUC

values of the CRG risk score signature reached 0.616,

0.681, and 0.677 in the 1st, 3rd, and 5th years, respectively

(Figure 2C). The expression of risk model genes for high-risk

and low-risk patients in the train, test, and total groups is

shown in a heatmap (Figure 2D). Comparison of risk score

distribution, survival time and survival status among risk

groups in the train, test, and total groups confirmed that high

CRG-Score CRC patients had a worse prognosis

(Figures 2E–G).

Among the 3 expression profiles (total gene expression

profile, CRG expression profile, expression profile of 3 risk

model genes), we used PCA to verify differences between

CRG-Score risk groups. The 3 risk model genes had the best

discriminative power, which could well distinguish high/low risk

groups (Figure 2H).

In order to avoid analysis bias caused by a single database.

We revalidated the CRG score signature by integrating 3 sets of

CRC data from the GEO database (GSE17538, GSE29623,

GSE39582). The expression of risk model genes for patients in

the high-risk and low-risk groups is shown in a heat map

(Supplementary Figure S1A). Risk score distribution, survival

status, and survival time (Supplementary Figures S1B–D)

reconfirmed that high CRG-Score CRC patients had a worse

prognosis. The combination of the 3 risk model genes had the

highest prediction accuracy with an AUC value of 0.633

(Supplementary Figure S1E).

Clinicopathological features and
biological functions between
Cuproptosis-related Gene-Score groups

To further validate the importance of CRG-Score in clinical

practice, we examined its correlation with clinicopathological

features. We first classified CRC into 3 subtypes: microsatellite

stable (MSS), microsatellite low instability (MSI-L), and

microsatellite high instability (MSI-H). The CRG-Score was

significantly lower in the MSI-H subtype than in the MSS

subtype (p = 0.00035) and MSI-L subtype (p = 0.0009,

Figure 3A). This is consistent with current literature reports:

MSI-H subtype has the best prognosis (Popat et al., 2005). In

addition, the Wilcoxon test was used to compare different stages

and high CRC scores were associated with high stages

(Figure 3B). Interestingly, there was a stepwise increase in

CRC score between clinical stages I and II, and between

clinical stages III and IV, but lack of statistical significance

(Figure 3B). The relationship between CRG-Score and CRC

subtype and stage was visualized using a Sankey diagram

(Figure 3C). These results suggest that the CRG-Score is able

to characterize some clinical features and molecular subtypes of

CRC patients.

We further explored differences in biological function

between risk groups. GO analysis showed that signaling

receptor activity, growth factor activity, and serine proteases

activity were significantly enriched (Figure 3D). Growth and

metabolic regulation that predict differences between risk groups.

KEGG analysis showed that glycolysis-related pathways

(pyruvate metabolism, glycolysis/gluconeogenesis, citric acid

cycle) and some tumor-related pathways were significantly

enriched (Figure 3E).

Development and evaluation of
nomograms

To build a CRC patient survival prediction model for

clinical use, we first performed univariate and multivariate

Cox regression. CRG-Score is an independent prognostic

TABLE 1 Clinical information of train, test, total groups.

Covariates Total Test Train p value

Age 0.3854

age≤65 235 (43.52%) 123 (45.56%) 112 (41.48%)

age>65 305 (56.48%) 147 (54.44%) 158 (58.52%)

Gender 0.7301

FEMALE 253 (46.85%) 129 (47.78%) 124 (45.93%)

MALE 287 (53.15%) 141 (52.22%) 146 (54.07%)

Stage 0.232

I 93 (17.22%) 49 (18.15%) 44 (16.3%)

II 207 (38.33%) 111 (41.11%) 96 (35.56%)

III 148 (27.41%) 73 (27.04%) 75 (27.78%)

IV 77 (14.26%) 31 (11.48%) 46 (17.04%)

unknown 15 (2.78%) 6 (2.22%) 9 (3.33%)

T stage 0.8603

T1 15 (2.78%) 8 (2.96%) 7 (2.59%)

T2 93 (17.22%) 48 (17.78%) 45 (16.67%)

T3 368 (68.15%) 184 (68.15%) 184 (68.15%)

T4 63 (11.67%) 30 (11.11%) 33 (12.22%)

Tis 1 (0.19%) 0 (0%) 1 (0.37%)

N stage 0.4122

N0 317 (58.7%) 166 (61.48%) 151 (55.93%)

N1 129 (23.89%) 62 (22.96%) 67 (24.81%)

N2 93 (17.22%) 42 (15.56%) 51 (18.89%)

unknown 1 (0.19%) 0 (0%) 1 (0.37%)

M stage 0.0896

M0 401 (74.26%) 204 (75.56%) 197 (72.96%)

M1 76 (14.07%) 30 (11.11%) 46 (17.04%)

unknown 63 (11.67%) 36 (13.33%) 27 (10%)
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factor for OS. In univariate Cox, hazard ratio (HR) of the

CRG-Score was 1.558 and 95% confidence interval (CI) of the

CRG-Score was 1.280–1.898 (p < 0.001, Figure 4A;

Supplementary Table S3). In multivariate COX, HR of the

CRG-Score was 1.295 and 95% CI was 1.028–1.632 (p = 0.028,

Figure 4B; Supplementary Table S3).

FIGURE 2
Construction and evaluation of the CRG risk score signature. (A,B) Use iterative LASSO to construct a CRG risk score signature. (C) Time-
dependent receiver operating characteristic (ROC) curve validated the prognostic performance of CRG-Score. (D) Heatmap of the expression of
3 CRGs in train group, test group and total group. (E) CRG-Score distribution in train group, test group and total group. (F) CRG-Score survival status
in train group, test group and total group. (G) Survival time between CRG-Score groups in train group, test group and total group. (H) Principal
component analysis (PCA).
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In addition, clinical tumor stage and age were also

independent prognostic factors. We combined age, tumor

stage and CRG-Score to graphically construct the final

nomogram (Figure 4C). By calculating the score for each

variable, a vertical line can be drawn to easily estimate the 1-,

3-, and 5-years survival of individual CRC patients. The ROC

showed that the nomogram had excellent accuracy in terms of

OS, AUC = 0.809 (Figure 4D). Meanwhile, the calibration plots

illustrate that the nomogram achieves good agreement between

the observed and predicted OS outcomes at 1st, 3rd and 5th years

(Figure 4E).

Correlation between Cuproptosis-related
Gene-Score groups and immunity

CRG-Score plays an excellent role in predicting prognosis, and

we next explored differences in immune signatures between CRG-

Score risk groups in CRC and their potential value in guiding

individualized treatment. We first assessed immune infiltration

status using several different platforms (CIBERSORT-ABS,

CIBERSORT, EPIC, MCPcounter, QUANTISEQ, TIMER and

XCELL) with a filter criterion of p < 0.05. Immune cell bubble

plot showed: T-cells CD4+, NK cells, macrophage M1, myeloid

dendritic cells were associated with the CRG-Score low risk group

(Figure 5A). Hematopoietic stem cells and cancer-associated

fibroblasts were associated with the CRG-Score high risk group

(Figure 5A). The CRG-Score low risk group has a higher immune

infiltration status and the CRG-Score high risk group has more

stromal cells.

Next, immune-related pathway activity was assessed using

ssGSEA with a filter criterion of p < 0.05. The results showed

that the MHC class I, CCR, Checkpoint, Parainflammation and

T cell co-stimulation scores were significantly lower in CRG-Score

high risk group than inCRG-Score low risk group (Figure 5B). This is

consistent with the immune infiltration results described above,

suggesting a higher immunogenicity in CRG-Score low risk

group. Interestingly, CRG-Score low risk group also showed

higher T cell co-inhibition and APC co-inhibition scores

(Figure 5B). The CRG-Score low risk group coexists with a state

of immunosuppression and a potential immune escape mechanism.

Subsequently, we further analyzed the top 15 mutated genes

between the CRG-Score risk groups (Figure 5C). TTN, OBSCN,

MUC16, RYR2, CSMD3, and FBXW7 have higher mutation

frequencies in the CRG-Score low risk group. At the same time,

KRAS and TP53 have highermutation frequencies in the CRG-Score

high risk group. These mutations may be associated with

hyperimmune infiltration (Hu and Sun, 2018; Li et al., 2020; Liu

et al., 2021; Lu et al., 2021; Xu et al., 2021; Shen et al., 2022; Yang et al.,

2022). These conclusions need further exploration and validation.

Due to significantly different mutation frequencies between

CRG-Score risk groups, we further assessed TMB between CRG-

Score risk groups. TMB was statistically different between

different CRG-Score risk groups (p = 0.039, Figure 5D). The

CRG-Score low risk group has higher TMB scores. The current

literature has confirmed that TMB will bring stronger

immunogenicity to tumor tissue (McGranahan et al., 2016).

High TMB tumors associated with longer survival after

immune checkpoint inhibitor therapy (Valero et al., 2021).

Finally, expression levels of 47 immune checkpoint-related

genes were analyzed between CRG-Score risk groups (p < 0.05,

Figure 5E). Except for TNFRSF25 and ADORA2A, the other

16 immune checkpoints were highly expressed in CRG-Score low

risk group (Figure 5E). Taken together, CRC patients with low

CRG scores may be better candidates for immunotherapy.

Drug susceptibility prediction and the
illustration

Data on clinical response to immune checkpoint inhibitors in

CRC are lacking. To correlate CRG-Score with guiding individual

TABLE 2 Clinical information of the high CRG-Score and low CRG-
Score groups.

Covariates High CRG-Score Low CRG-Score p value

Age 0.2477

age≤65 123 (41.14%) 112 (46.47%)

age>65 176 (58.86%) 129 (53.53%)

Gender 0.5338

Female 136 (45.48%) 117 (48.55%)

Male 163 (54.52%) 124 (51.45%)

Stage 0.0389

I 45 (15.05%) 48 (19.92%)

II 106 (35.45%) 101 (41.91%)

III 91 (30.43%) 57 (23.65%)

IV 50 (16.72%) 27 (11.2%)

unknown 7 (2.34%) 8 (3.32%)

T stage 0.0318

T1 4 (1.34%) 11 (4.56%)

T2 48 (16.05%) 45 (18.67%)

T3 203 (67.89%) 165 (68.46%)

T4 43 (14.38%) 20 (8.3%)

Tis 1 (0.33%) 0 (0%)

N stage 0.0019

N0 157 (52.51%) 160 (66.39%)

N1 78 (26.09%) 51 (21.16%)

N2 64 (21.4%) 29 (12.03%)

unknown 0 (0%) 1 (0.41%)

M stage 0.114

M0 216 (72.24%) 185 (76.76%)

M1 49 (16.39%) 27 (11.2%)

unknown 34 (11.37%) 29 (12.03%)
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treatment practices, we used the TIDE website to predict

immunotherapy efficacy between CRG-Score risk groups. The

results showed that CRG-Score was positively correlated with

TIDE score (p < 0.001, Figure 6A). CRC patients with low CRG

scores has a higher TIDE score. They may be better candidates

for immunotherapy. We also attempted to correlate the CRG-

Score with the efficacy of common CRC chemotherapeutics and

targeted drugs, looking for drugs that may be more sensitive to

FIGURE 3
Clinicopathological features and biological functions between CRG-Score groups. (A) Differences in CRG-Score among CRC molecular
subtypes (Kruskal–Wallis test). (B)Differences in CRG-Score in clinical staging of CRC (Kruskal–Wallis test). (C) Association of CRG-Score, molecular
subtypes and clinical stage in CRC. (D) GO analysis. (E) KEGG analysis on GSEA.
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the CRG-Score high risk group. CRC patients with high CRG

scores may be more sensitive to Ponatinib, Saracatinib,

Dasatinib, Imatinib, and Rapamycin (Figures 6B–F).

An illustration of this study is shown in Figure 7.

Discussion

In this study, we comprehensively assessed the landscape of

10 CRGs in CRC tissue based on TCGA. Differential expression

FIGURE 4
Development and evaluation of nomograms. (A,B) univariate and multivariate Cox analyses of CRG risk score and clinical information with
overall survival. (C) nomogram. (D) The AUC value of Nomogram in the ROC curve is 0.809. (E) Calibration plots illustrate nomogram with excellent
predictive power at 1st, 3rd and 5th years.
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and genetic alterations of CRGs in CRC were determined. CRG is

highly correlated with initiation, progression, prognosis, and

immune infiltration of CRC. We construct a risk score

signature containing 3 CRGs. The nomogram integrating the

CRG-Score has robust predictive performance. CRG-Score can

effectively predict the immune landscape of CRC patients. Low-

FIGURE 5
Correlation between CRG-Score groups and immunity. (A) Correlation between CRG-Score groups and immune infiltration status. (B)
Correlation between CRG-Score groups and immune-related pathway activity. (C) Oncoplot represents the top 15 mutated genes between CRG-
Score groups. (D) Tumormutational burden (TMB) between CRG-Score groups. (E)Correlation between CRG-Score groups and expression levels of
immune checkpoint-related genes. *p < 0.05, **p < 0.01, ***p < 0.001.
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risk CRC patients have greater immunogenicity and higher

immune checkpoint expression. Low-risk CRC patients may

be better candidates for immunotherapy. At the same time,

we also predicted more sensitive drugs in the high-risk CRC

patients.

Evidence from a new study shows that CRG is a prognostic

molecular marker for kidney cancer (Bian et al., 2022). But their

effect in CRC remains unknown. To our surprise, most CRGs

were differentially expressed between tumor tissues and adjacent

non-tumor tissues. CRGs was strongly associated with important

initiation and progression mechanisms of CRC. In univariate

Cox regression analysis, 2 CRGs (CDKN2A, DLAT) were

significantly associated with OS. The expression level of most

CRGs strongly correlated with the level of immune cell

infiltration. These results hint us that CRG may play a

potential role in CRC and the possibility of using CRG to

build a prognostic model.

The CRG risk score signature consists of 3 CRGs (CDKN2A,

DLAT, GLS). CDKN2A can induce cell cycle arrest in G1 and

G2 phases. It is closely related to a variety of tumors (Bartels et al.,

2018; Adib et al., 2021; Luan et al., 2021). Dihydrolipoamide

S-acetyltransferase (DLAT), a component of the pyruvate

dehydrogenase (PDH) complex, catalyzes the overall

conversion of pyruvate to CO2 and acetyl-CoA, thereby

linking the glycolytic pathway to TCA cycle is linked. Copper

binds to proteins containing fatty acylated structures in the TCA

cycle can lead to aberrant oligomerization of DLAT (21). GLS is a

glutaminase that converts glutamine to glutamate. Cells convert

glutamine to glutamate. Glutamate is converted to alpha-

ketoglutarate by glutamate dehydrogenase (GLUD) or a group

of transaminases. The converted α-ketoglutarate enters the TCA

cycle (DeBerardinis and Cheng, 2010; Michalak et al., 2015). GLS

has been shown to promote tumor cell growth by modulating cell

metabolism (Herranz et al., 2015; Zhang et al., 2019; Mukha et al.,

2021; Tong et al., 2021).

Cuproptosis is a new cell death mechanism that relies on

copper regulation. Copper binds to proteins containing fatty

acylated structures in the tricarboxylic acid (TCA) cycle,

FIGURE 6
Drug susceptibility prediction. (A) Tumor immune dysfunction and exclusion (TIDE) scores between CRG-Score groups (*p < 0.05, **p < 0.01,
***p < 0.001). (B) IC50 values of Ponatinib betweenCRG-Score groups. (C) IC50 values of Saracatinib betweenCRG-Score groups. (D) IC50 values of
Dasatinib between CRG-Score groups. (E) IC50 values of Imatinib between CRG-Score groups. (F) IC50 values of Rapamycin between CRG-Score
groups.
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resulting in abnormal aggregation of the latter and loss of iron-

sulfur cluster proteins, triggering proteotoxic stress and eventual

cell death (Tsvetkov et al., 2022). This may provide a new strategy

for using copper toxicity to treat tumors. Based on different

CRG-Score, we divided into two risk groups. It was unexpectedly

found to be closely related to tumor immunity.

The CRG-Score low risk group have higher immune

infiltration status and immune-related functional scores. These

results suggest that it has higher immunogenicity. We further

analyzed the top 15 mutated genes between the CRG-Score risk

groups. TTN, OBSCN, MUC16, RYR2, CSMD3, and

FBXW7 have higher mutation frequencies in the CRG-Score

low risk group. At the same time, KRAS and TP53 have lower

mutation frequencies in the CRG-Score low risk group. Reported

so far: CRC patients with double TTN/OBSCN mutations were

significantly associated with high immune infiltration and the

“immune-hot” subtype (Liu et al., 2021). MUC16 mutations can

enhance the infiltration of cytotoxic T lymphocytes to enhance

antitumor immunity in patients with endometrial cancer (Hu

and Sun, 2018). RYR2 is frequently mutated in breast cancer, and

its mutations can enhance the infiltration of cytotoxic T

lymphocytes, activate memory CD4+ T cells and

M1 macrophages to enhance antitumor immune responses

(Xu et al., 2021). CSMD3 mutations may promote the

transformation of M0 macrophages to M2 macrophages, while

leading to increased CD8+ T cell infiltration (Lu et al., 2021).

FBXW7 mutations stimulate IFNα/β, CXCL9/10 and antigen

presentation machinery by promoting EYA2 degradation,

resulting in increased infiltration of cytotoxic T and NK cells

(Shen et al., 2022). TP53-mutated cancers have significantly

lower antitumor immune signature levels than TP53-wildtype

cancers in CRC (Li et al., 2020). KRAS mutations drive

immunosuppression and immunotherapy resistance in

colorectal cancer through the IRF2-CXCL3-CXCR2 axis (Yang

et al., 2022). The above reports suggest that these genes mutations

may be associated with higher immunogenicity in the CRG-Score

low risk group. However, these conclusions need further

exploration and validation.

Due to significantly different mutation frequencies between

CRG-Score risk groups, we further assessed TMB between CRG-

Score risk groups. TMB was statistically different between

different CRG-Score risk groups. TMB is currently considered

to be able to predict the efficacy of immune checkpoint inhibitor

drugs, and can play a predictive value as a biomarker for a variety

of malignant tumors (Chan et al., 2019; Lapke et al., 2021).

Malignant tumors with high TMB are usually accompanied by

FIGURE 7
An illustration of this study.
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better immunotherapy response (Chan et al., 2019; Lapke et al.,

2021). However, our results showed that the low-risk group had

higher TMB scores. These suggest that our score may reflect the

response to immunotherapy to a certain extent. Immune

checkpoint molecules play a vital role in tumor immune

escape (Schreiber et al., 2011; Noguchi et al., 2017). 16/

47 immune checkpoint-related genes were differentially

expressed between risk groups. We can regroup CRC patients

based on CRG-Score patterns and select appropriate immune

checkpoint inhibitors.

Data on clinical response to immune checkpoint inhibitors in

CRC are lacking. To correlate CRG-Score with guiding individual

treatment practices, we used the TIDE website to predict

immunotherapy efficacy between CRG-Score risk groups. CRC

patients with low CRG scores has a higher TIDE score. They may

be better candidates for immunotherapy. Finally, based on

IC50 values, we predicted common CRC drug sensitivities in

different CRGs score groups. CRC patients with high CRG scores

may be more sensitive to Ponatinib, Saracatinib, Dasatinib,

Imatinib, and Rapamycin. These findings suggest that the

CRG-Score has predictive value in individualizing treatment

selection in CRC.

Our study has several limitations. First, our research data is based

on retrospective data from public databases, lacking large-scale,

prospective, real-world data for validation. Secondly, our research

also lacks molecular biology support, and in-depth basic experiments

are needed in the future. Finally, it should be emphasized that the low

CRG scores may be more sensitive to immunotherapy in our study.

However, due to the lack of cohort data onCRC immunotherapy and

the strong heterogeneity among tumors, more evidence is needed to

confirm our conclusions.

In conclusion, we constructed a CRG risk score signature to

predict the prognosis of CRC patients. Patients with low CRG-Score

lived longer. Our findings provide an immune landscape of CRC

patients with different CRG-Score. The CRG-Score can be used to

stratify patients and provide strategies for individual treatment.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material, further

inquiries can be directed to the corresponding authors.

Ethics statement

The studies involving human participants were reviewed and

approved by This study is based on the TCGA public database.

The patients/participants provided their written informed

consent to participate in this study.

Author contributions

All authors listed have made a substantial, direct, and

intellectual contribution to the work and approved it for

publication.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fgene.

2022.976007/full#supplementary-material

SUPPLEMENTARY FIGURE S1
Further verification of the CRG risk score signature. 844 CRC data from
GEO database(GSE17538,GSE29623,GSE39582) were integrated.(A)
Heatmap of the expression of 3 CRGs between CRG-Score groups. (B)
CRG-Score distribution between CRG-Score groups. (C) CRG-Score
survival status between CRG-Score groups. (D) Survival time between
CRG-Score groups. (E) ROC curve validated validated the prognostic
performance of CRG-Score.

References

Adib, E., Nassar, A. H., Akl, E. W., Abou Alaiwi, S., Nuzzo, P. V., Mouhieddine, T.
H., et al. (2021). CDKN2A alterations and response to immunotherapy in Solid
tumors. Clin. Cancer Res. 27 (14), 4025–4035. doi:10.1158/1078-0432.CCR-21-0575

Aubert, L., Nandagopal, N., Steinhart, Z., Lavoie, G., Nourreddine, S., Berman, J.,
et al. (2020). Copper bioavailability is a KRAS-specific vulnerability in colorectal
cancer. Nat. Commun. 11 (1), 3701. doi:10.1038/s41467-020-17549-y

Baltaci, A. K., Dundar, T. K., Aksoy, F., and Mogulkoc, R. (2017). Changes
in the serum levels of trace elements before and after the operation in thyroid

cancer patients. Biol. Trace Elem. Res. 175 (1), 57–64. doi:10.1007/s12011-
016-0768-2

Bartels, S., van Luttikhuizen, J. L., Christgen, M., Mägel, L., Luft, A., Hänzelmann,
S., et al. (2018). CDKN2A loss and PIK3CA mutation in myoepithelial-like
metaplastic breast cancer. J. Pathol. 245 (3), 373–383. doi:10.1002/path.5091

Basu, S., Singh, M. K., Singh, T. B., Bhartiya, S. K., Singh, S. P., and Shukla, V. K.
(2013). Heavy and trace metals in carcinoma of the gallbladder. World J. Surg. 37
(11), 2641–2646. doi:10.1007/s00268-013-2164-9

Frontiers in Genetics frontiersin.org13

Du et al. 10.3389/fgene.2022.976007

https://www.frontiersin.org/articles/10.3389/fgene.2022.976007/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.976007/full#supplementary-material
https://doi.org/10.1158/1078-0432.CCR-21-0575
https://doi.org/10.1038/s41467-020-17549-y
https://doi.org/10.1007/s12011-016-0768-2
https://doi.org/10.1007/s12011-016-0768-2
https://doi.org/10.1002/path.5091
https://doi.org/10.1007/s00268-013-2164-9
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.976007


Bian, Z., Fan, R., and Xie, L. (2022). A novel cuproptosis-related prognostic gene
signature and validation of differential expression in clear cell renal cell carcinoma.
Genes 13 (5), 851. doi:10.3390/genes13050851

Brady, D. C., Crowe, M. S., Greenberg, D. N., and Counter, C. M. (2017). Copper
chelation inhibits brafv600e-driven melanomagenesis and counters resistance to
BRAFV600E and MEK1/2 inhibitors. Cancer Res. 77 (22), 6240–6252. doi:10.1158/
0008-5472.CAN-16-1190

Cerezo, M., and Rocchi, S. (2020). Cancer cell metabolic reprogramming: a
keystone for the response to immunotherapy. Cell Death Dis. 11 (11), 964. doi:10.
1038/s41419-020-03175-5

Chan, T. A., Yarchoan, M., Jaffee, E., Swanton, C., Quezada, S. A., Stenzinger, A., et al.
(2019). Development of tumor mutation burden as an immunotherapy biomarker: utility
for the oncology clinic. Ann. Oncol. 30 (1), 44–56. doi:10.1093/annonc/mdy495

Chen, D., Cui, Q. C., Yang, H., and Dou, Q. P. (2006). Disulfiram, a clinically used
anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in
breast cancer cultures and xenografts via inhibition of the proteasome activity.
Cancer Res. 66 (21), 10425–10433. doi:10.1158/0008-5472.CAN-06-2126

Chen, D. S., andMellman, I. (2017). Elements of cancer immunity and the cancer-
immune set point. Nature 541 (7637), 321–330. doi:10.1038/nature21349

Chen, F.,Wang, J., Chen, J., Yan, L., Hu, Z., Wu, J., et al. (2019). Serum copper and
zinc levels and the risk of oral cancer: A new insight based on large-scale case-
control study. Oral Dis. 25 (1), 80–86. doi:10.1111/odi.12957

Davis, C. I., Gu, X., Kiefer, R. M., Ralle, M., Gade, T. P., and Brady, D. C. (2020).
Altered copper homeostasis underlies sensitivity of hepatocellular carcinoma to
copper chelation. Metallomics. 12 (12), 1995–2008. doi:10.1039/d0mt00156b

DeBerardinis, R. J., and Cheng, T. (2010). Q’s next: the diverse functions of glutamine in
metabolism, cell biology and cancer.Oncogene 29 (3), 313–324. doi:10.1038/onc.2009.358

Denoyer, D., Masaldan, S., LaFontaine, S., and Cater, M. A (2015). Targeting
copper in cancer therapy: “Copper that cancer”. Metallomics 7 (11), 1459–1476.
doi:10.1039/c5mt00149h

Ding, X., Jiang, M., Jing, H., Sheng,W., Wang, X., Han, J., et al. (2015). Analysis of
serum levels of 15 trace elements in breast cancer patients in Shandong, China.
Environ. Sci. Pollut. Res. Int. 22 (10), 7930–7935. doi:10.1007/s11356-014-3970-9

Faubert, B., Solmonson, A., and DeBerardinis, R. J. (2020). Metabolic reprogramming
and cancer progression. Science 368 (6487), eaaw5473. doi:10.1126/science.aaw5473

Gupta, S. K., Shukla,V.K.,Vaidya,M. P., Roy, S. K., andGupta, S. (1993). Serumand tissue
trace elements in colorectal cancer. J. Surg.Oncol.52 (3), 172–175. doi:10.1002/jso.2930520311

Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of cancer: the next
generation. Cell 144 (5), 646–674. doi:10.1016/j.cell.2011.02.013

He, R., Zhang, M., He, L., Huang, J., Man, C.,Wang, X., et al. (2022). Integrated analysis
of necroptosis-related genes for prognosis, immune microenvironment infiltration, and
drug sensitivity in colon cancer. Front. Med. 9, 845271. doi:10.3389/fmed.2022.845271

Herranz, D., Ambesi-Impiombato, A., Sudderth, J., Sánchez-Martín, M., Belver,
L., Tosello, V., et al. (2015). Metabolic reprogramming induces resistance to anti-
NOTCH1 therapies in T cell acute lymphoblastic leukemia. Nat. Med. 21 (10),
1182–1189. doi:10.1038/nm.3955

Hu, J., and Sun, J. (2018). MUC16 mutations improve patients’ prognosis by
enhancing the infiltration and antitumor immunity of cytotoxic T lymphocytes in
the endometrial cancer microenvironment. Oncoimmunology 7 (10), e1487914.
doi:10.1080/2162402X.2018.1487914

Lapke, N., Chen, C-H., Chang, T-C., Chao, A., Lu, Y-J., Lai, C-H., et al. (2021).
Genetic alterations and their therapeutic implications in epithelial ovarian cancer.
BMC Cancer 21 (1), 499. doi:10.1186/s12885-021-08233-5

Lelièvre, P., Sancey, L., Coll, J-L., Deniaud, A., and Busser, B. (2020). The multifaceted
roles of copper in cancer: A trace metal element with dysregulated metabolism, but also a
target or a bullet for therapy. Cancers 12 (12), E3594. doi:10.3390/cancers12123594

Li, L., Li, M., and Wang, X. (2020). Cancer type-dependent correlations between
TP53 mutations and antitumor immunity. DNA Repair (Amst) 88, 102785. doi:10.
1016/j.dnarep.2020.102785

Li, Y. (2020). Copper homeostasis: Emerging target for cancer treatment. IUBMB
Life 72 (9), 1900–1908. doi:10.1002/iub.2341

Liu, Z., Wang, L., Guo, C., Liu, L., Jiao, D., Sun, Z., et al. (2021). TTN/OBSCN
’Double-Hit’ predicts favourable prognosis, ’immune-hot’ subtype and potentially
better immunotherapeutic efficacy in colorectal cancer. J. Cell. Mol. Med. 25 (7),
3239–3251. doi:10.1111/jcmm.16393

Lu, N., Liu, J., Xu, M., Liang, J., Wang, Y., Wu, Z., et al. (2021). CSMD3 is
associated with tumor mutation burden and immune infiltration in ovarian cancer
patients. Int. J. Gen. Med. 14, 7647–7657. doi:10.2147/IJGM.S335592

Lu, X., Jiang, L., Zhang, L., Zhu, Y., Hu, W., Wang, J., et al. (2019). Immune
signature-based subtypes of cervical Squamous cell carcinoma tightly associated

with human papillomavirus type 16 expression, molecular features, and clinical
outcome. Neoplasia 21 (6), 591–601. doi:10.1016/j.neo.2019.04.003

Luan, Y., Zhang,W., Xie, J., andMao, J. (2021). CDKN2A inhibits cell proliferation and
invasion in cervical cancer through LDHA-mediated AKT/mTOR pathway. Clin. Transl.
Oncol. 23 (2), 222–228. doi:10.1007/s12094-020-02409-4

McGranahan, N., Furness, A. J. S., Rosenthal, R., Ramskov, S., Lyngaa, R., Saini, S.
K., et al. (2016). Clonal neoantigens elicit T cell immunoreactivity and sensitivity to
immune checkpoint blockade. Science 351 (6280), 1463–1469. doi:10.1126/science.
aaf1490

Michalak, K. P., Maćkowska-Kędziora, A., Sobolewski, B., and Woźniak, P.
(2015). Key roles of glutamine pathways in reprogramming the cancer
metabolism. Oxid. Med. Cell. Longev. 2015, 964321. doi:10.1155/2015/964321

Mukha, A., Kahya, U., Linge, A., Chen, O., Löck, S., Lukiyanchuk, V., et al. (2021).
GLS-driven glutamine catabolism contributes to prostate cancer radiosensitivity by
regulating the redox state, stemness and ATG5-mediated autophagy. Theranostics
11 (16), 7844–7868. doi:10.7150/thno.58655

Noguchi, T.,Ward, J. P., Gubin,M.M., Arthur, C. D., Lee, S. H., Hundal, J., et al. (2017).
Temporally distinct PD-L1 expression by tumor and host cells contributes to immune
escape. Cancer Immunol. Res. 5 (2), 106–117. doi:10.1158/2326-6066.CIR-16-0391

O’Day, S. J., Eggermont, A. M. M., Chiarion-Sileni, V., Kefford, R., Grob, J. J.,
Mortier, L., et al. (2013). Final results of phase III SYMMETRY study: randomized,
double-blind trial of elesclomol plus paclitaxel versus paclitaxel alone as treatment
for chemotherapy-naive patients with advanced melanoma. J. Clin. Oncol. 31 (9),
1211–1218. doi:10.1200/JCO.2012.44.5585

Olenius, T., Koskenvuo, L., Koskensalo, S., Lepistö, A., and Böckelman, C. (2022). Long-
term survival among colorectal cancer patients in Finland, 1991-2015: a nationwide
population-based registry study.BMCCancer 22 (1), 356. doi:10.1186/s12885-022-09460-0

Oliveri, V. (2022). Selective targeting of cancer cells by copper ionophores: An
overview. Front. Mol. Biosci. 9, 841814. doi:10.3389/fmolb.2022.841814

Popat, S., Hubner, R., and Houlston, R. S. (2005). Systematic review of
microsatellite instability and colorectal cancer prognosis. J. Clin. Oncol. 23 (3),
609–618. doi:10.1200/JCO.2005.01.086

Schreiber, R. D., Old, L. J., and Smyth, M. J. (2011). Cancer immunoediting:
integrating immunity’s roles in cancer suppression and promotion. Science 331
(6024), 1565–1570. doi:10.1126/science.1203486

Shanbhag, V. C., Gudekar, N., Jasmer, K., Papageorgiou, C., Singh, K., and
Petris, M. J. (2021). Copper metabolism as a unique vulnerability in cancer.
Biochim. Biophys. Acta. Mol. Cell Res. 1868 (2), 118893. doi:10.1016/j.bbamcr.
2020.118893

Shen, J. Z., Qiu, Z., Wu, Q., Zhang, G., Harris, R., Sun, D., et al. (2022). A FBXO7/
EYA2-SCFFBXW7 axis promotes AXL-mediated maintenance of mesenchymal and
immune evasion phenotypes of cancer cells.Mol. Cell 82 (6), 1123–1139.e8. doi:10.
1016/j.molcel.2022.01.022

Siegel, R. L., Miller, K. D., Fuchs, H. E., and Jemal, A. (2022). Cancer statistics,
2022. Ca. A Cancer J. Clin. 72 (1), 7–33. doi:10.3322/caac.21708

Stepien, M., Jenab, M., Freisling, H., Becker, N-P., Czuban, M., Tjønneland, A.,
et al. (2017). Pre-diagnostic copper and zinc biomarkers and colorectal cancer risk
in the European Prospective Investigation into Cancer and Nutrition cohort.
Carcinogenesis 38 (7), 699–707. doi:10.1093/carcin/bgx051

Tong, Y., Guo, D., Lin, S-H., Liang, J., Yang, D., Ma, C., et al. (2021).
SUCLA2-coupled regulation of GLS succinylation and activity counteracts
oxidative stress in tumor cells. Mol. Cell 81 (11), 2303–2316.e8. doi:10.1016/j.
molcel.2021.04.002

Tsvetkov, P., Coy, S., Petrova, B., Dreishpoon, M., Verma, A., Abdusamad, M.,
et al. (2022). Copper induces cell death by targeting lipoylated TCA cycle proteins.
Science 375 (6586), 1254–1261. doi:10.1126/science.abf0529

Valero, C., Lee, M., Hoen, D., Wang, J., Nadeem, Z., Patel, N., et al. (2021). The
association between tumor mutational burden and prognosis is dependent on
treatment context. Nat. Genet. 53 (1), 11–15. doi:10.1038/s41588-020-00752-4

Xu, Z., Xiang, L., Wang, R., Xiong, Y., Zhou, H., Gu, H., et al. (2021).
Bioinformatic analysis of immune significance of RYR2 mutation in breast
cancer. Biomed. Res. Int. 2021, 8072796. doi:10.1155/2021/8072796

Yang, K., Li, C., Liu, Y., Gu, X., Jiang, L., and Shi, L. (2022). Prognostic and
immunotherapeutic roles of KRAS in pan-cancer. Cells 11 (9), 1427. doi:10.3390/
cells11091427

Zhang, J., Mao, S., Guo, Y., Wu, Y., Yao, X., and Huang, Y. (2019). Inhibition of
GLS suppresses proliferation and promotes apoptosis in prostate cancer. Biosci. Rep.
39 (6), BSR20181826. doi:10.1042/BSR20181826

Zhang, X., and Yang, Q. (2018). Association between serum copper levels and
lung cancer risk: A meta-analysis. J. Int. Med. Res. 46 (12), 4863–4873. doi:10.1177/
0300060518798507

Frontiers in Genetics frontiersin.org14

Du et al. 10.3389/fgene.2022.976007

https://doi.org/10.3390/genes13050851
https://doi.org/10.1158/0008-5472.CAN-16-1190
https://doi.org/10.1158/0008-5472.CAN-16-1190
https://doi.org/10.1038/s41419-020-03175-5
https://doi.org/10.1038/s41419-020-03175-5
https://doi.org/10.1093/annonc/mdy495
https://doi.org/10.1158/0008-5472.CAN-06-2126
https://doi.org/10.1038/nature21349
https://doi.org/10.1111/odi.12957
https://doi.org/10.1039/d0mt00156b
https://doi.org/10.1038/onc.2009.358
https://doi.org/10.1039/c5mt00149h
https://doi.org/10.1007/s11356-014-3970-9
https://doi.org/10.1126/science.aaw5473
https://doi.org/10.1002/jso.2930520311
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.3389/fmed.2022.845271
https://doi.org/10.1038/nm.3955
https://doi.org/10.1080/2162402X.2018.1487914
https://doi.org/10.1186/s12885-021-08233-5
https://doi.org/10.3390/cancers12123594
https://doi.org/10.1016/j.dnarep.2020.102785
https://doi.org/10.1016/j.dnarep.2020.102785
https://doi.org/10.1002/iub.2341
https://doi.org/10.1111/jcmm.16393
https://doi.org/10.2147/IJGM.S335592
https://doi.org/10.1016/j.neo.2019.04.003
https://doi.org/10.1007/s12094-020-02409-4
https://doi.org/10.1126/science.aaf1490
https://doi.org/10.1126/science.aaf1490
https://doi.org/10.1155/2015/964321
https://doi.org/10.7150/thno.58655
https://doi.org/10.1158/2326-6066.CIR-16-0391
https://doi.org/10.1200/JCO.2012.44.5585
https://doi.org/10.1186/s12885-022-09460-0
https://doi.org/10.3389/fmolb.2022.841814
https://doi.org/10.1200/JCO.2005.01.086
https://doi.org/10.1126/science.1203486
https://doi.org/10.1016/j.bbamcr.2020.118893
https://doi.org/10.1016/j.bbamcr.2020.118893
https://doi.org/10.1016/j.molcel.2022.01.022
https://doi.org/10.1016/j.molcel.2022.01.022
https://doi.org/10.3322/caac.21708
https://doi.org/10.1093/carcin/bgx051
https://doi.org/10.1016/j.molcel.2021.04.002
https://doi.org/10.1016/j.molcel.2021.04.002
https://doi.org/10.1126/science.abf0529
https://doi.org/10.1038/s41588-020-00752-4
https://doi.org/10.1155/2021/8072796
https://doi.org/10.3390/cells11091427
https://doi.org/10.3390/cells11091427
https://doi.org/10.1042/BSR20181826
https://doi.org/10.1177/0300060518798507
https://doi.org/10.1177/0300060518798507
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.976007

	Cuproptosis patterns and tumor immune infiltration characterization in colorectal cancer
	Introduction
	Materials and methods
	Data collection
	Construction of a cuproptosis-related gene signature
	Functional enrichment and immune correlation analysis
	Tumor Immune Dysfunction Exclusion
	Drug susceptibility prediction
	Statistical analysis

	Results
	Landscape of Cuproptosis-related Gene in colorectal cancer
	Construction and evaluation of the Cuproptosis-related Gene risk score signature
	Clinicopathological features and biological functions between Cuproptosis-related Gene-Score groups
	Development and evaluation of nomograms
	Correlation between Cuproptosis-related Gene-Score groups and immunity
	Drug susceptibility prediction and the illustration

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


