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Abstract

E-cadherin is a well-known mediator of cell–cell adherens junctions. However, many other functions of E-cadherin have been reported. Collec-
tively, the available data suggest that E-cadherin may also act as a gene transcriptional regulator. Here, evidence supporting this claim is
reviewed, and possible mechanisms of action are discussed. E-cadherin has been shown to modulate the activity of several notable cell
signalling pathways, and given that most of these pathways in turn regulate gene expression, we proposed that E-cadherin may regulate gene
transcription by affecting these pathways. Additionally, E-cadherin has been shown to accumulate in the nucleus where documentation of an
E-cadherin fragment bound to DNA suggests that E-cadherin may directly regulate gene transcription. In summary, from the cell membrane to
the nucleus, a role for E-cadherin in gene transcription may be emerging. Studies specifically focused on this potential role would allow for a
more thorough understanding of this transmembrane glycoprotein in mediating intra- and intercellular activities.
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An emerging function of E-cadherin:
gene transcriptional regulation

E-cadherin is a member of the cadherin family, a family of transmem-
brane glycoproteins responsible for calcium-dependent cell adhesion
that are the key structural components of adherens junctions (AJs)
[1]. E-cadherin is present in epithelial tissues and composed of a

single-pass transmembrane region, a cytoplasmic region and an
ectoregion [1].

Recently, reports have described other functions of E-cadherin
beyond its role in mediating AJs. In particular, E-cadherin was found
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to regulate gene expression. Sasaki et al. first reported that a loss of
E-cadherin in invasive breast cancer cells resulted in an increase of
Bcl-2 expression, contributing to chemotherapy resistance in tumour
cells [2]. Wang et al. found an inverse correlation between E-cadherin
and epidermal growth factor (EGF) receptor (EGFR) expression in tis-
sue specimens of head and neck sarcoma, further demonstrating that
EGFR signalling activation inhibited the expression of E-cadherin, and
knockdown of E-cadherin resulted in the elevation of EGFR transcrip-
tion [3]. Strumane et al. found an inverse correlation between
E-cadherin and human Nanos1 expression in various cell lines and
showed that the re-expression of E-cadherin in a human breast can-
cer cell line decreased hNanos1 expression [4]. The first systematic
study on the role of E-cadherin in global gene transcription was per-
formed by Onder et al. in 2008. They inhibited the function of E-cadh-
erin through either siRNA-mediated knockdown or expression of a
truncated form of E-cadherin (cytoplasmic-region) in human mam-
mary epithelial cells and found that the expression of many genes had
been altered significantly as a result. Indeed, they showed that it was
the loss of E-cadherin itself and not the loss of cell–cell contacts or
the subsequent activation of b-catenin that contributed mostly to this
alteration. This was the first time to show that a loss of E-cadherin
resulted in the transcriptional elevation of Twist and ZEB1, two well-
known transcriptional repressors of E-cadherin [5]. Recently, Fran-
cesca et al. compared global transcript expression in E-cadherin-null
(E-cad-/-) embryonic stem (ES) cells and E-cadherin wide-type ES
cells, showing that E-cadherin depletion led to the altered expression
of 2265 genes. Notably, they did not detect an elevation of b-catenin
activity after E-cadherin depletion in their model. However, they did
observe an enhancement of FGF signalling activity as a result of the
increase of FGF5 transcription in E-cad-/- ES cells [6]. These results
implied that E-cadherin was a novel regulator of gene transcription,
even though the molecular mechanisms involved had not yet been
fully detailed. Analysis of the available E-cadherin data, particularly in
regard to its regulation of cell signalling pathways, may help shed
some light on this issue.

Mechanism of action: regulation of
cell signalling by E-cadherin

Recently, it was reported that E-cadherin was tightly linked to several
major signalling pathways, including Wnt/b-catenin, NF-jB, receptor
tyrosine kinase (RTK) and GTPase signalling pathways. In most
cases, the end-point of the cell signalling pathways is to regulate gene
expression and ultimately modulate cellular behaviour. Thus, E-cadherin
may regulate gene expression through influencing the transduction of
these signals to the nucleus.

Effects of E-cadherin on the Wnt/b-catenin
signalling pathway

E-cadherin-based AJs share a key component with the Wnt/b-catenin
signalling pathway – b-catenin. b-catenin can be found in the mem-

brane, cytoplasm or nucleus depending on the status of Wnt signals
and the expression and distribution of E-cadherin (Fig. 1). In normal
epithelial cells, b-catenin interacts with and binds to the cytoplasmic
tail of E-cadherin and is sequestered at the membrane [7]. When Wnt
signals are absent, free b-catenin forms a complex with GSK3b, APC
and Axin in the cytoplasm, and is phosphorylated by CK1 and GSK3b.
Phosphorylated b-catenin is subsequently degraded through the ubiq-
uitination-proteasome degradation system. While Wnt signalling is
active because of Wnt ligand binding to Frizzled receptor, however,
GSK3b is displaced from the regulator APC/Axin/GSK3b complex and
thus its activity is inhibited, thereby liberating b-catenin, allowing it to
accumulate in the cytoplasm and translocate to the nucleus where it
can then regulate target gene transcription through an interaction with
TCF/LEF family transcription factors and Legless family docking pro-
teins [8].

Over the past few decades, some reporters have surmised that a
loss of E-cadherin may elevate the activity of b-catenin, having evalu-
ated its activity through luciferase reporter systems and determina-
tion of TCF/b-catenin target gene expression [5, 9]. However, it was
commonly accepted that E-cadherin loss alone was not sufficient to
activate b-catenin signalling [3, 6, 10–12], requiring instead the pres-
ence of other effectors, such as Wnt and FGFR signalling activity [13,
14]. With the combined use of time-lapse microscopy and image
analysis, the cadherin-bound pool of b-catenin was shown to accu-
mulate at the perinuclear endocytic recycling compartment (ERC)
upon AJ dissociation and then translocate into the nucleus upon Wnt
signalling pathway activation, which suggests that the ERC may be a
site of residence for b-catenin following its liberation from the mem-
brane cadherin complex and prior to entering the nucleus [15]. In
most cases, restoration or overexpression of E-cadherin inhibited b-
catenin activity by sequestering cytoplasmic b-catenin [9, 16–21].
Notably, overexpression of the cytoplasmic region of E-cadherin was
sufficient to achieve this response [9, 18, 21]. These results imply
that E-cadherin may be a negative regulator of the Wnt/b-catenin sig-
nalling pathway. However, Howard et al. recently showed that the
ability to bind E-cadherin was necessary for b-catenin’s transcrip-
tional activity, and E-cadherin was required for augmented activation
of the Wnt/b-catenin pathway in vivo, which suggests that E-cadherin

Fig. 1 E-cadherin inhibits Wnt/b-catenin signalling. b-catenin can be

located in the membrane, cytoplasm or nucleus depending on the status

of Wnt signals and the expression and distribution of E-cadherin.
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could be a positive regulator of the Wnt/b-catenin pathway in certain
models [22]. In yet another study, the Wnt/b-catenin pathway
seemed to regulate E-cadherin expression. The E-cadherin gene pro-
moter contains TCF/b-catenin binding sites, and Wnt signalling acti-
vation represses the expression of E-cadherin in a TCF/b-catenin-
dependent manner, which suggests that a feedback circuit may exist
between E-cadherin and Wnt/b-catenin signalling [23].

Effects of E-cadherin on RTK signalling pathways

Growth factors, such as EGF, FGF, TGF and HGF, are known to pro-
mote cell proliferation and prevent apoptosis through binding to their
receptors in the cell membrane, inducing dimerization of the recep-
tors and concomitant activation of the intracellular tyrosine kinase
domains. The activated RTKs can then phosphorylate their substrates,
resulting in the activation of multiple downstream signalling path-
ways, including MAPK (mitogen-activated protein kinase), PI3K/AKT
and STAT signalling pathways [24].

As early as 1994, the E-cadherin–b-catenin complex was shown
to interact with Erb-B2, a member of the EGF receptor family of RTKs,
in the cancer cell membrane [25]. Soon after, several other groups
demonstrated that E-cadherin could bind the EGFR [26–28]. In one
study, interaction of the extracellular domain of E-cadherin with EGFR
was required for the transient activation of EGFR signalling in mam-
mary cells [26]. In another, Pece and Gutkind showed that E-cadherin
interacted with EGFR and activated EGFR-mediated MAPK signalling
in a ligand-independent manner [28]. More recently, the extracellular
domain of soluble E-cadherin was shown to interact with EGFR and
activate EGFR-mediated PI3K/AKT and ERK1/2 signalling in breast
cancer cells and squamous cell carcinoma [29, 30].

E-cadherin has also been shown to inhibit EGFR signalling in
some experimental contexts. Qian et al. demonstrated that E-cadherin
could bind EGFR and inhibit the ligation-dependent activation of EGFR
signalling in breast cancer and melanoma cells [27].By using micro-
sphere-embedded recombinant E-cadherin protein to form homophil-
ic bonds with E-cadherin at the cell surface, Perrais et al. showed that
E-cadherin directly transduced growth-inhibitory signals and that
E-cadherin ligation inhibited EGFR-mediated transphosphorylation and
activation of STAT5 [31]. In NCI-H292 cell lines, E-cadherin was dem-
onstrated to activate EGFR-mediated cell differentiation, but inhibit
EGFR-mediated cell proliferation [32]. In normal human urothelial
cells, E-cadherin inhibited EGFR-mediated MAPK signalling and
activated PI3K/AKT signalling [33]. However, direct binding may not
be the only in which EGFR-mediated signalling is modulated by
E-cadherin. In fact, knockdown of E-cadherin in head and neck
tumour cells was shown to elevate EGFR transcription [3]. Notably,
EGFR signalling has also been found to regulate E-cadherin expres-
sion and function in tumour cells through inhibiting its transcription
and promoting its cleavage, degradation and endocytosis [34–39],
suggesting a feedback regulation between E-cadherin and EGFR
signalling. Taken together, these results suggest that the regulation of
EGFR signalling by E-cadherin is indeed complex (Fig. 2).

In addition to EGFR, E-cadherin is also shown to interact with
FGFR. In MCF-7 breast cancer cells, treatment with FGF induced the

endocytosis of E-cadherin and FGFR. The interaction of E-cadherin
with FGFR was required for the nuclear translocation of FGFR and
subsequent activation of FGF-induced MAPK signalling. Overexpres-
sion of E-cadherin blocked the endocytosis of both molecules, the
nuclear translocation of FGFR and the activation of FGFR-mediated
MAPK signalling [40]. In Ewing tumour cells, under anchorage-
independent growth conditions, E-cadherin was up-regulated and
correlated with the formation of multicellular spheroids and the
suppression of anoikis. The mechanism study showed that E-cadherin

A

B

C

Fig. 2 Effects of E-cadherin on RTK signalling. (A) E-cadherin or the sol-

uble E-cadherin interacts with EGFR and activates MAPK signalling path-
way in cancer cells; (B) E-cadherin interacts with EGFR or ERBB4 and

activates PI3K/AKT signalling pathway in cancer cells; (C) In normal

human urothelial cells, E-cadherin inhibited EGFR-mediated MAPK sig-

nalling and activated PI3K/AKT signalling.

1714 ª 2014 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.



activated the Erb-B4 RTK coupled with the activation of PI3K/AKT
signalling [41].

E-cadherin may also directly regulate PI3K activity. Indeed, PI3K
was recruited to the site of cell–cell contact by the ligation of homo-
philic E-cadherin, resulting in the activation of PI3K signalling [42,
43]. Recently, the p85 subunit of PI3K was shown to be directly tar-
geted by the E-cadherin complex and activated in ovarian cancer cells
[44].

Effects of E-cadherin on the GTPase signalling
pathways

GTPases are molecular switches that control multiple processes in
eukaryotic cells while cycling between a GTP-bound active state and a
GDP-bound inactive state. GTPases consist of five major groups:
Rho, Ras, Rab, Ran and Arf. Rho GTPases are primarily known for
regulating the actin cytoskeleton and cell polarity [45]. Recently, Rho
GTPases were also found to regulate gene transcription. For example,
in mid-G1 phase of the cell cycle, Rho GTPases inhibited the expres-
sion of cyclin/CDK inhibitor P21, but induced the expression of cyclin
D1 through promoting the sustained activation of MAPK signalling
[46, 47]. E-cadherin was found to regulate the activity of Rho, Rac
and Cdc42, the three most well-characterized members of the Rho
GTPases, implying that E-cadherin may regulate transcription through
regulating GTPase signalling activity.

Rac activation was observed as an early-immediate response
of E-cadherin adhesion formation [42, 48–50], and PI3K seemed
to play a critical role in the E-cadherin-mediated activation of Rac
[51]. Furthermore, inhibition of PIK3 activity prevented the E-cadh-
erin-mediated activation of Rac [49]. As mentioned earlier, E-
cadherin recruits and activates PI3K at sites of cell–cell contact
[42–44]. Guanine nucleotide exchange factors (GEFs), which acti-
vate Rho GTPases by promoting the exchange of GDP for GTP,
were found to recognize activated PI3K through their pleckstrin
homology (PH) domains [52]. These results suggest that PI3K
may be an upstream activator of Rac in E-cadherin-mediated cell
signalling.

In addition to Rac, E-cadherin-mediated cell–cell contact also
activated Cdc42 and Rho [53, 54]. Interestingly, activation of Rac
and Cdc42 appears critical for inducing the formation of AJs in
cooperation with E-cadherin [42, 55, 56]. E-cadherin is known to
undergo endocytosis upon disruption of AJs. Notably, the activation
of Rac and Cdc42 GTPases was demonstrated to inhibit the endo-
cytosis of trans-interacting E-cadherin in epithelial cells [57, 58].
Rac and Cdc42 were also necessary to correctly regulate the post-
Golgi transport of E-cadherin and the maintenance of cell polarity
[59]. Recently, Cdc42 was reported to promote ubiquitination and
lysosomal degradation of E-cadherin through the up-regulation of
EGFR signalling and subsequent activation of Rac in breast cancer
cells [60]. Furthermore, the activation of RhoA or RhoC inhibited
the expression of E-cadherin in metastatic prostate cancer cells
[61]. Collectively, these data suggest that the complex bilateral
regulation of E-cadherin and Rho GTPases may be affected by a
number of factors (Fig. 3).

Effects of E-cadherin on the NF-jB signalling
pathway

In most cases, E-cadherin negatively regulates NF-jB activation.
Studies showed that the loss of E-cadherin and the loss of cadherin-
mediated cell–cell contacts activated NF-jB signalling, while the over-
expression of E-cadherin suppressed its activity [62, 63]. In mela-
noma cells, the loss of E-cadherin promoted the activation of
cytoplasmic b-catenin, which subsequently induced P38-mediated
NF-jB activation [63]. In epithelial cells, the dissociation of cell–cell
contacts led to the activation of RhoA, which subsequently activated
protein kinase D1 (PKD1), a downstream target of RhoA, ultimately
inducing the activation of NF-jB [62]. Furthermore, it was demon-
strated that restoring E-cadherin expression in colon cancer cells
decreased the expression of mesenchymal genes, such as those
encoding fibronectin and LEF1, through the inhibition of b-catenin
and NF-jB signalling [19] (Fig. 4). However, E-cadherin activity also
leads to the expression of tumour suppressors through the up-regula-
tion of NF-jB activity. For example, the decrease of E-cadherin as a
result of the activation of MAPK signalling resulted in the down-regu-
lation of neutrophil gelatinase-associated lipocalin (NGAL), a tumour
metastasis suppressor that blocks invasion and angiogenesis,
through inhibition of NF-jB activation in pancreatic cancer cells.
Overexpressing E-cadherin subsequently elevated NF-jB activity and
restored the expression of NGAL [64]. Notably, activated NF-jB inhib-
ited the expression of E-cadherin by elevating transcriptional repres-
sors of E-cadherin, such as Snail and ZEB1/2, in multiple cancer
types [65–68]. These data suggest the existence of feedback regula-
tion between E-cadherin and NF-jB signalling.

Mediation of cross-talk between signalling
pathways by E-cadherin and p120

p120 catenin (p120ctn or p120), a member of the catenin family,
binds to the cytoplasmic region of E-cadherin and helps to maintain

Fig. 3 Effects of E-cadherin on the GTPase signalling. E-cadherin-medi-

ated cell–cell contacts activate Rac through activating PI3K, and the

activated Rac prevents endocytosis of E-cadherin and promotes the

post-Golgi transport of E-cadherin.
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cell–cell contact by preventing the endocytosis of E-cadherin and sta-
bilizing the cadherin–catenin complex [69]. p120 has been found to
play an important role in the cross-talk between members of E-cadh-
erin-mediated cell signalling. On the one hand, certain signalling path-
ways have been shown to regulate the expression and function of
E-cadherin through p120. For example, EGF promoted the endocytosis
of E-cadherin through regulating p120 activity and, thus, decreasing
E-cadherin levels in the cell membrane [34]. Additionally, Wnt signal-
ling pathway activation resulted in Frodo-mediated stabilization of
p120 [70]. These results suggest that diverse signalling pathways
might affect E-cadherin-mediated signalling through regulating the
activity of p120. On the other hand, E-cadherin also affected the
distribution and function of p120 [4, 71]; thus, E-cadherin itself may
regulate other signalling activity through p120. Indeed, p120 has been
documented to regulate both GTPase and b-catenin activity (Fig. 5).

The role of p120 in the regulation of Rho GTPase was extensively
reviewed previously [72, 73]. In summary, p120 was found to directly
interact with and regulate Rho GTPase and indirectly modulate Rho
activity through interacting with and regulating Rho GEFs. Addition-
ally, p120 was able to promote or suppress the activation of Rho
GTPases in different situations. For example, p120 dominantly
inhibited Rho activity, but consistently activated Rac and Cdc42 [73].
Furthermore, GTPase regulation could occur either at the site of
E-cadherin-mediated cell–cell contacts or in the cytoplasm. When
associated with E-cadherin, p120 modulated local GTPases and
affected cytoskeletal structures; once dissociated from E-cadherin,
p120 could diffuse into the cytoplasm and activate GTPases, thereby

affecting the expression of genes involved in a variety of cellular
processes, including cell-cycle regulation [74].

Alternatively, liberated p120 could enter the nucleus to regulate
gene transcription directly. Like b-catenin, p120 has an Arm-repeat
domain, and proteins with this domain may have dual localization at
cell–cell junctions and in the nucleus [75–77]. In the nucleus, p120
was reported to interact with the zinc finger transcriptional repressor
Glis2 and induce its C-terminal cleavage, although the mechanism of
action for this process is unknown [81]. Nuclear p120 was also
shown to interact with the BTB/POZ transcriptional repressor Kaiso,
inhibiting Kaiso transcriptional activity [76–78]. Kaiso is an inhibitor
of the Wnt signalling pathway, directly inhibiting the transcription of
Wnt11 [78] and the expression of Wnt signalling targets, such as
c-Myc, cyclin D1 and matrilysin (MMP-7), through competitive bind-
ing of TCF/LEF with b-catenin [79, 80]. The inhibitory role of Kaiso on
Wnt signalling and Wnt signalling targets can be attenuated by p120,
suggesting that p120 may play a positive role in activation of the Wnt
signalling pathway [78–80]. Interestingly, it was demonstrated that
Wnt signalling activation stabilized p120, which in turn promoted
Kaiso sequestration or removal from the nucleus and elevated Wnt
signalling [70]. These data therefore suggest the existence of a possi-
ble positive feedback circuit between p120 and Wnt signalling activity.

Conclusion and perspectives

Over the past decade, E-cadherin has been reported to function as a
gene transcriptional regulator, but further studies are needed to more
clearly define its likely numerous modes of action in this process. The
well-known associations of E-cadherin-mediated AJs with multiple
signalling pathways leave little room for doubt that altering E-cadherin
would also affect gene transcription through impacting cell signalling.
This hypothesis provides a model that signals originating from
E-cadherin relay ultimately to the nucleus by molecules that play a

Fig. 4 Effects of E-cadherin on the NF-jB signalling. The loss of E-cadh-

erin elevates NF-jB signalling through activating b-catenin and Rho
GTPase.

Fig. 5Mediation of cross-talk between signalling pathways by E-cadher-

in and p120. p120 binds to the cytoplasmic domain of E-cadherin and

helps to maintain cell–cell contact by preventing the endocytosis of
E-cadherin and stabilizing the cadherin–catenin complex. The loss of

E-cadherin and the activation of Wnt signalling stabilize p120 and inhibit

Kaiso translocation to the nucleus by forming a p120–Kaiso complex in

cytoplasm.
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central role in the associated signalling pathways. Given the complexity
of interaction between E-cadherin-mediated AJs and cell signalling
and the existence of cross-talk among different pathways, however,
the discrete contribution of each pathway to E-cadherin-mediated
gene transcriptional modulation is currently difficult to ascertain. The
combined knockdown of E-cadherin and relevant pathway-related
molecules may be a useful strategy for tackling this issue.

Nuclear translocation of E-cadherin has also been observed in
numerous cancer cell lines and tissues [82–86], which raises the fol-
lowing questions: What is the function of nuclear E-cadherin, and
does it directly regulate gene transcription? Ferber et al. reported that
a cleaved cytoplasmic domain of E-cadherin could enter the nucleus,
form a complex with DNA via p120 and regulate gene transcription
[87]. These data imply the possibility that E-cadherin itself may func-

tion in the nucleus as a novel transcriptional regulator, which is defi-
nitely an interesting topic and deserving of further systematic study.
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