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Abstract: Wine metabolomics constitutes a powerful discipline towards wine authenticity assess-
ment through the simultaneous exploration of multiple classes of compounds in the wine matrix.
Over the last decades, wines from autochthonous Greek grape varieties have become increasingly
popular among wine connoisseurs, attracting great interest for their authentication and chemical
characterization. In this work, 46 red wine samples from Agiorgitiko and Xinomavro grape varieties
were collected from wineries in two important winemaking regions of Greece during two consecutive
vintages and analyzed using ultra-high performance liquid chromatography-quadrupole time-of-
flight mass spectrometry (UHPLC-QToF-MS). A targeted metabolomics methodology was developed,
including the determination and quantification of 28 phenolic compounds from different classes
(hydroxycinnamic acids, hydroxybenzoic acids, stilbenes and flavonoids). Moreover, 86 compounds
were detected and tentatively identified via a robust suspect screening workflow using an in-house
database of 420 wine related compounds. Supervised chemometric techniques were employed to
build an accurate and robust model to discriminate between two varieties.

Keywords: red wine; metabolomics; HRMS; chemometrics; biomarkers

1. Introduction

Viticulture and winemaking have been practiced in Greece since antiquity [1]. Nowa-
days, wine trade is a highly competitive area demanding intriguing and authentic wines.
The plethora of autochthonous red and white Greek grape varieties are undoubtedly the
spearheads towards this direction. Agiorgitiko and Xinomavro are considered the two most
important Greek red grape varieties, producing high quality wines that attract the attention
of wine connoisseurs [2]. Agiorgitiko is a polydynamic red grape variety cultivated almost
exclusively in Nemea Peloponnese, the largest Protected Designation of Origin (PDO) zone
for red wines, consisting of vineyards in altitudes ranging from 200–850 m. Xinomavro
is regarded as the predominant red variety of Northern Greece, used exclusively for the
production of PDO Naoussa wines as well as participating in wines from other important
PDO regions.

Quality wines have become an inseparable part of contemporary culture, frequently
considered as a sign of social status and well-being, and as such, have gained significant
commercial value. Consumers’ perceptions of wine quality often rely on the specific at-
tributes of one or more grape varieties, geographical origin, and vintage year [3]. However,
due to its economic importance, multiple instances of wine fraud and mislabeling are
frequently reported [3,4], often raising pricing uncertainty issues [5]. Consequently, the
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development of robust methodologies is required to verify wine identity, thus protecting
against fraudulent practices and maintaining consumer confidence.

Authenticity control can become a challenging task due to the presence of multiple
viti-vinicultural factors involved in the wine production [6]. Authenticity assessment was
traditionally conducted through sensory evaluation, and this approach still applies since it
is part of the official controls for the certification of wines from protected regions (Reg EU
34/2019). However, as wine is an easily falsified beverage, thorough chemical investigation
is also needed to verify its identity. The wine matrix is of complex nature, containing
diverse chemicals which demand sensitive analytical techniques to make the chemical
characterization efforts successful [7]. The traditional applications of wet chemistry often
provided limited information about the wine chemical constituents. In current days, the
emergence of analytical instruments of high separation efficiency, high resolution, and
exceptional sensitivity coupled to advanced chemometric techniques [8] has provided
a new perspective in wine analysis and authentication. The use of such cutting edge
tools has promoted the swift development of the wine metabolomics field, being the
comprehensive quantitative and qualitative study of small metabolites (<1 kDa) within
the wine matrix [9]. Analytical platforms including Gas Chromatography coupled to
mass spectrometry (GC-MS), ultrahigh-performance liquid chromatography-quadrupole
time-of-flight high resolution mass spectrometry (UHPLC/Q-ToF-MS), Fourier transform
ion cyclotron resonance mass spectrometry (FT-ICR-MS), and 1H NMR have been used for
novel compound discovery [10,11], wine group characterization and discrimination [12–16]
as well storage and ageing process monitoring [17–20].

The use of UHPLC/Q-ToF-MS instrumentation has proven to be particularly po-
tent in wine characterization and varietal and geographical origin discrimination [21–23].
For instance, Arapitsas et al. (2020) recently provided a comprehensive study of the
metabolome of eleven monovarietal Italian red wines using an untargeted UHPLC/Q-
ToF-MS methodology. Undoubtably, untargeted analysis presents an holistic approach
on the wine metabolome with multiple applications reported [14,20,24,25]. However the
numerous non-reported compounds in LC databases that often complicate the identifica-
tion process is still considered one of the main challenges of this approach [26]. On the
other hand, the application of target [27,28] and suspect screening strategies [21,29] have
also been successfully employed to seek for patterns or characteristic markers verifying
various aspects of grape/wine identity. Flamini et al. monitored the polyphenol content
of thirty-four hybrid grape varieties through suspect screening analysis [29]. In another
study, Rosso and co-workers presented a targeted metabolomics workflow based on the
calculation of secondary metabolite indexes, to identify the unauthorized use of Primitivo
and Negro Amaro grapes in the production of Valpolicella wines [30].

The composition of Greek wines from selected autochthonous cultivars has been
partially reported using diverse methodologies. Studies included a characterization of
their chemical profile [14–16] or authenticity assessment [17–19], often focusing on specific
classes of compounds. To the best of our knowledge, no wide scope chemical screening
strategies, employing LC-HRMS metabolomics, have been previously reported concerning
red Greek varietal wines and their authenticity issues.

The study novelty lies on the evaluation, for the first time, of the potential of LC-HRMS-
based wine metabolomics in the chemical characterization and discrimination of wines
from Agiogitiko and Xinomavro grape varieties using both targeted and suspect screening
methodologies. In this context, the first objective was to characterize industrial samples
from these two emblematic Greek grape varieties for the presence of 28 phenolic com-
pounds using authentic standards. The second objective was to screen the wines samples
through a previously developed in-house database and subsequently detect and identify as
much compounds as possible. The third objective was to explore the dataset generated us-
ing multivariate methods of statistical analysis, seek for characteristic marker compounds
and build accurate classification and prediction models resulting in varietal discrimination.
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2. Results and Discussion
2.1. Method Validation Results

Method linearity was evaluated providing satisfactory results in all cases, allowing a
regression coefficient of determination (R2) greater than 0.990.

Regarding intraday precision, the majority of the target metabolites (more than 83%)
exhibited %RSD values lower than 10% (Table S3). Moreover, relatively low matrix effects
were observed in 26 out of 29 metabolites which displayed matrix effects lower than ±40%.
LOQ values ranged from 0.0325 mg/L (quercetin) to 0.283 mg/L (vanillic Acid). All the
results of the method validation are presented in Table S3 of the ESM.

2.2. Target Screening

The concentrations of the target compounds detected in red wines from Agiorgitiko
and Xinomavro grape varieties is presented in Table 1.

Table 1. Concentrations of target compounds detected in the red wine samples.

Group Agiorgitiko (n = 27) Xinomavro (n = 19) All Samples (n = 46)

Concentration (mg/L)

mean range Mean range mean range

4-Hydroxybenzoic acid 0.52 a 0.14–1.8 0.34 a 0.13–0.71 0.44 0.13–1.8

Caffeic acid 2.4 a 0.98–5.4 2.4 a 0.79–5.1 2.4 0.79–5.4

Catechin 27 a 18–38 65 b 44–83 43 18–83

Epicatechin 15 a 8.0–26 38 b 18–59 24 8.0–59

Eriodictyol traces traces traces

Ferulic acid 0.22 a <LOD–0.66 0.34 a 0.24–0.47 0.27 <LOD–0.66

Gallic acid 26.4 a 11.1–46 43 b 27–64 33 11–64

Gentisic acid 0.481 a 0.12–0.92 0.43 a 0.11–0.71 0.46 0.11–0.90

Hydroxytyrosol 0.992 a 0.72–1.4 2.7 b 1.7–3.9 1.7 0.72–3.9

Luteolin traces traces traces

Myricetin 2.4 a 0.86–4.5 4.5 b 1.1–10 3.3 0.86–10

Naringenin 0.10 a <LOD–0.16 0.072 b <LOD–0.13 0.091 <LOD–0.16

p-Coumaric acid 1.80 a 0.65–5.45 1.02 b <LOD–4.0 1.48 <LOD–5. 5

Protocatechuic acid 3.0 a 1.0–7.7 1.3 b 0.28–2.4 2.4 0.28–7.7

Quercetin 2.7 a 1.1–5.3 6.2 b 0.29–10 4.2 0.29–10

Resveratrol 1.4 a 0.21–2.6 0.78 a 0.41–1.7 1.1 0.21–2.6

Salicylic acid 0.67 a 0.13–1.5 0.26 b 0.17–0.51 0.50 0.13–1.5

Syringic acid 4.7 a 0.98–7.4 2.1 b 1.2–3.7 3.6 0.98–7.4

Taxifolin 0.10 a <LOQ–0.17 0.11 a 0.060–0.20 0.11 <LOQ–0.20

Tyrosol 28 a 13–43 43 b 17–74 34 12–74

Vanillic acid 1.9 a 0.81–3.8 0.99 b 0.6–1.8 1.5 0.60–3.8

Vanillin traces traces traces

Different letters on the mean values of each compound denote significant differences between the varieties (Wilcoxon–Mann–Whitney test,
p.adj < 0.05). traces: concentrations between LOD and LOQ values in random samples.

Shapiro and Levene tests were conducted to evaluate normality assumptions for
univariate analysis (Table S4 of the ESM). These criteria were met in only three cases (gallic,
gentisic, and taxifolin). Therefore, Wilcoxon–Mann–Whitney non-parametric tests were
used to compare metabolite concentrations between the wines from the two varieties. A
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correction for multiple tests (Bonferroni adjustment) was applied to adjust the p-value of
the target compounds evaluated in the analysis. Differences were considered as significant
when p_adj < 0.05. Values reported herein are in a general accordance with ranges reported
in phenol explorer (www.phenol-explorer.eu; accessed on 10 April 2021) and previously
published literature regarding Greek wines [31–33].

2.3. Suspect Screening Results

A total of 86 compounds from the in-house suspect screening database were detected
and tentatively identified in the samples. High mass accuracy was observed (mass error
less than 1.5 mDa) and acceptable isotopic pattern fit values (below 100 mSigma). Peak
score values (peak area to peak intensity ratio) ranged from 6.2 to 19.9 for all compounds.
All the identified compounds were also evaluated based on MS/MS data and retention time
plausibility. Moreover, 78 out of the 86 detected compounds were inside the applicability
domain of the model and the difference between predicted and experimental retention times
did not exceed 1 min for the 65.4% and 2 min for the 93.6% of the suspected compounds.
An overview of all compounds (target and suspect) found present in the wine samples
(presence in at least 80% of red samples of each variety) is given in Table S5 of the ESM.

HRMS metabolomics provide new perspectives and limit the boundaries in wine
analysis [8]. Recent works focus on either targeted or comprehensive characterization ap-
proaches of the wine metabolome and its related processes [34]. Nevertheless, a significant
number of the global varietal wealth has not been yet characterized in detail. To the best of
our knowledge, this is the first time that a thorough characterization of Greek red wines
from Agiorgitiko and Xinomavro varieties, employing HRMS metabolomics, is reported
indicating their high quality and nutritional value.

2.4. Statistical Analysis
2.4.1. Data Processing

A dataset containing peak areas of both target and suspect screening variables nor-
malized to the IS peak area for overall 108 compounds in 46 samples was built. A heatmap
of the relative abundances for each compound detected in the wine samples for the two
vintages examined is presented in Figure 1. In this case, row-wise normalization (range
scaling) was used to aid in the visualization process.

Regarding to the selection of the appropriate scaling method for the subsequent
classification and prediction model construction, Pareto scaling showed the highest score
(0.891) among the other scaling methods according to ranking score described in Section 3.8
(Figure 2). Table S6 of the ESM presents the complete evaluation results.

www.phenol-explorer.eu
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2.4.2. Chemometrics

Initially, a Principal Components Analysis (PCA) was performed including all vari-
ables in order to reduce the dimensionality of the data and show how they distribute in
reduced new variables so called principal components. Although the main purpose of
using PCA was to control QC distribution, it was also used to assess whether the choice of
supervised classification methods based on singular vector decomposition (SVD) would be
successful or not. Figure 3 shows the PCA score plot of red wines. As observed, the first
two principal components account for the 74.6% of the model total variance. QC samples
are center to the plot and closely clustered demonstrating the good analytical stability
maintained. Complete separation among the groups was not achieved as all the variables
were considered, including the noisy ones. Moreover, the accumulative value of 74.6% in
two latent variables is an indication that methods like PLS-DA or OPLS-DA can be selected
for supervised classification.
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Figure 3. Principal Components Analysis (PCA) score plot showing the unsupervised clustering of red wine samples and
QC distribution.

In order to classify the samples according to grape variety, a removal of certain
compounds from the variable list was deemed necessary. Specifically, m/z ratios of common
organic acids including malic, lactic, tartaric, and citric acids were removed from the
variable list because seasonal variation, vineyard practices and winemaking protocols have
been found to carry a noticeable weight on their abundance [35]. Secondary metabolites,
including tyrosol and resveratrol derivatives, were also removed as their variation in
the samples was not considered variety driven. The presence of tyrosol derivatives is
fermentation induced [36] and can be influenced by different yeast strains while resveratrol
derivatives are triggered as a defense response to common vine pathogens [37]. As a
consequence, the dataset was reduced to a matrix of 46 samples and 91 variables.

Subsequently, an OPLS-DA model was constructed using 37 out of the 46 samples as
a training set, implementing the Kennard stone algorithm for the division. Classification
orthogonalization using OPLS-DA was preferred against the classical PLS-DA approach
since it provided a better separation of the groups in the score plot even though the models
constructed featured the same performance characteristics (Figure S1A,B). The remaining
nine samples were used as an external validation test set. Using the Q2Y metric and in
view of retaining model simplicity, two latent variables were selected, explaining 75.6% of
the modeled variance (Figure S1C). The OPLS-DA score plot, shown in Figure 4A, shows
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that the samples from the two varieties are very well separated. A significant variability
was observed within groups. This was attributed to seasonal variation as the two vintages
were conducted under contrasting climatic conditions.
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below the plot; (B) Permutation test: Plot depicting the comparison of the cumulative R2Y and Q2 values of the model
compared with the corresponding values obtained after random permutation of the y response; (C) Receiver Operating
Characteristics (ROC) curve for the developed OPLS-DA model.
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Both the training and test set samples were 100% accurately predicted both internally
and externally. The values of RMSEE and RMSEP were found to be as low as 0.124 and
0.0838%, respectively. Additionally, a ROC curve (Plot of Sensitivity versus 1—Specificity)
was generated for each class, where the area under the curve was calculated as 1.00. More-
over, as seen from the permutation test in Figure 4B, after 20 random permutations, the
values of R2Y and Q2Y did not exceed the ones achieved for the actual model, demonstrat-
ing the very high reliability and predictability of the classification model.

Figure 5 shows a Vplot depicting the most important metabolites contributing to class
separation. Variables with VIP values greater than 1 and positive values of p1 are more
associated with Xinomavro wines while variables with VIP > 1 and negative p1 values are
more expressed in Agiorgitiko wines. Based on the methodology described in 2.8, seventeen
mass features were considered important for the classification model and are presented
in Table 2.
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Figure 5. Vplot combining the modeled covariance (p1) and the VIP values of the OPLS DA model. Datapoints in
purple are more associated with Agiorgitiko wines while the ones in red are more expressed in Xinomavro wines. Ab-
breviations Sal:Salicylic acid; Bal_Glu: Benzyl O-[arabinofuranosyl-(1->6)-glucoside]; Cou: Coutaric acid; Que_Gln:
Quercetin.3.glucuronide; Et_coum: Ethyl.coumarate; Et_Prot: Protocatechuic acid ethyl ester; Cat: Catechin; Ecat: Epicate-
chin, pHB: p-Hydroxybenzaldehyde; Et_Gal: Ethyl.gallate; PrD_1: Procyanidin dimer 1, GCat: Gallocatechin; Pro: L-Proline,
Ila_Glu: Indolelactic acid glucoside, Qdme_glu: Quercetin 3,3′-dimethyl ether 4′-glucoside; Leu: (Iso)-Leucine; Mal_Glu:
Malvidin 3-O glucoside; IQR50% Optional threshold based on the application of the IQR method to reduce the number of
important markers by 50% while retaining model accuracy.

An attempt was made to reduce the number of significant mass features using the
interquartile range (IQR) method. The application of a 25% cut off and the subsequent
evaluation of the models resulted in a lower overall score (Table S8). The reduction of
the variables by 50% led to a marginal increase of the initial score (0.871 versus 0.864)
and eight significant mass features (Table S7). Although, this approach was not finally
adopted in view of not improving the accuracy of classification model, for routine analysis
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and authenticity problems, it found to be extremely helpful, because it keeps the models
accurate, and the quantification and identification task gets simpler.

Table 2. List of discriminant VIP markers detected in red wines from different grape varieties.

Molecular
Formula Proposed Compound Class p1 pcorr1 VIP

1 C15H14O6 Catechin Flavan-3-ols 20.44 0.51 3.67
2 C9H10O5 Ethyl gallate Benzoates 16.17 0.31 2.90
3 C15H14O6 Epicatechin Flavan-3-ols 15.98 0.54 2.87
4 C17H21NO8 Indolelactic acid glycoside Amines 15.53 0.79 2.79
5 C11H12O3 Ethyl coumarate Cinnamates −15.30 −0.64 2.75
6 C5H9NO2 L-Proline Amino acids 14.17 0.32 2.54
7 C23H26O13 Quercetin 3,3′-dimethyl ether 4′-glucoside Flavonols −11.79 −0.70 2.12
8 C13H12O8 Coutaric acid Cinnamates −9.50 −0.53 1.71
9 C6H13NO2 (Iso)leucine Amino acids −8.02 −0.45 1.44

10 C7H6O3 Salicylic acid Benzoates −7.75 −0.50 1.39
11 C30H26O12 Procyanidin dimer 1 Flavan-3-ols 7.67 0.35 1.38
12 C21H18O13 Quercetin 3-glucuronide Flavonols −7.33 −0.48 1.32
13 C23H24O12 Malvidin 3-0 Glucoside [M-2H] Anthocyanins −7.30 −0.66 1.31

14 C18H26O10 Benzyl O-[arabinofuranosyl-(1->6)-glucoside] Benzyl alcohol
derivatives −7.19 −0.44 1.29

15 C9H10O4 Protocatechuic acid ethyl ester Benzoates −7.13 −0.45 1.28
16 C15H14O7 Gallocatechin Flavan-3-ols 6.90 0.48 1.24
17 C7H6O2 p-Hydroxybenzaldehyde Benzaldehydes 5.78 0.55 1.04

2.4.3. Identification of Markers

The identification of m/z values, the selected prioritization method described above,
which sought to play a crucial role for the discrimination of Xinomavro and Agiorgi-
tiko wines were followed. All the compounds were identified successfully at given
acceptable levels.

One of the most important markers, highly expressed in Xinomavro wines, was m/z
366.1195, tR = 3.48 min. The presence of the fragment ion with m/z 204.0670 indicated the
loss of a hexose moiety (162.0530 mDa) while the fragments with m/z values at 186.0560
and 142.0635 were consistent with the fragmentation pattern of indole-3-lactic acid in –ESI
mode (Metlin ID: 71). This feature was included in our suspect database as it has been
previously reported to exist in wines [38,39]. In the absence of a reference spectrum, the
compound was tentatively identified as indolelactic glucoside (Level of Identification of 3).
Identification data are provided in Figure 6. Indole-3-lactic acid as well as its glucoside are
secondary metabolites produced from tryptophan and their abundance is dependent upon
both varietal and climatic conditions [38]. Here for both vintages examined, wines from
the Xinomavro variety exhibited higher mean values for both compounds in contrast to
Agiorgitiko wines.

Moreover, selected m/z ratios belonging to flavan-3-ols monomers and oligomers
were found among the important biomarkers and were more associated with Xinomavro
than Agiorgitiko wines. (−)-Epicatechin (Figure S2) was identified and quantified using
a reference standard (target screening results). (−)-Gallocatechin (Figure S3) (Level 2a)
was identified based on reference spectrum match (MoNA ID: MetaboBASE0907) and
was distinguished from its isomer (−)-epigallocatechin on the basis of the elution order
previously reported under reversed phase chromatographic conditions [40]. Regarding
the important mass feature with m/z 577.1346 eluting at 3.31 min, a molecular formula
of C30H26O12 was assigned with a mass accuracy of −0.58 mDa and an isotopic fit of
43.7 mSigma. The compounds fragmentation pattern matched to those of procyanidin
dimer. Our suspect database included procyanidin type A and B dimers, however, in
the absence of a reference standard, and in order not to speculate between the different
procyanidins found in wine [29], the feature was annotated as Procyanidin dimer 1 (Level of
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identification 3). An isomer with similar fragmentation pattern was also detected at 3.8 min
but was not considered important from the classification model. As recently suggested [41],
grape variety may have a strong influence on wine proanthocyanidin composition due to
the fact that it greatly affects the proportion of skin and seed proanthocyanidins extracted
in wine.
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Malvidin 3-O Glucoside was found to be a significant marker for the classification
model since it was more expressed in Agiorgitiko than Xinomavro wines as it has been
previously reported [31,41,42]. The tentantive identification of malvidin 3-O glucoside
(Figure S4) was based on the characteristic presence of the [M − 2H]− and [M − 2H +
H2O]− base ions in the MS spectra as suggested earlier [43]. Anthocyanins have an essential
role in red wines as they contribute significantly to wine color as well as to reactions
affecting the stability and longevity of red wines [34]. In addition, anthocyanins are
considered effective varietal markers and malvidin 3-O glucoside is frequently considered
the most abundant wine anthocyanin.

Mass features attributed to two amino acids were found to be important biochemical
markers. Amino acids have been previously employed in chemotaxonomical studies of
Greek varietal wines [44]. In our study, the m/z ratio of 130.0874 eluting at tR = 1.92 min,
which is putatively identified as (Iso)Leucine (Figure S5) (Level 3), was expressed at high
amount in Agiorgitiko wines while the opposite was the case for m/z ratio of 114.0559
eluting at tR = 1.38 min, putatively identified as Proline (Level 2a, Metlin ID: 29).

Specific m/z’s attributed to phenolic acids and derivatives had a high impact on the
classification model. Salicylic acid was identified based on a reference standard. The mass
feature detected at m/z 295.0456_tR = 1.75 min that exhibited fragments corresponding
to tartaric (149.0091 mDa) and p-coumaric acid (163.0395) was tentatively identified as
the hydroxyl cinnamoyl tartaric acid coutaric acid as previously suggested [39]. Pseudo-
molecular ions with m/z’s at 181.0506, 191.0716 and 197.0455 that created [M – H − 28]−,
[M − H − 72]−, and [M − H − 73]− product ions corresponding to the loss of ethylene,
ethylene + CO2 and –CO-OCH2CH3 groups were tentatively identified as ethyl esters of
protocatechuic, coumaric and gallic acids, respectively [45].

Two mass features attributed to flavonol derivatives were considered important for
the classification model. The mass feature with m/z 477.0678, tR = 5.00 min was tentatively
identified as quercetin 3-glucuronide (Figure S6) (Level 2a). Due to the presence of the
fragment ion with m/z 301.0352 indicating the quercetin aglycon and the presence of m/z
178.9991 product ion indicating the presence of a glucuronide group. Regarding the mass
feature with m/z 509.1303, tR = 3.3 min, it was tentatively identified as the [M + H20 −
H]− ion of Quercetin 3,3′-dimethyl ether 4′-glucoside (Level 2a) as recently suggested from
our group [46].

For the mass feature detected at m/z 401.1439, tR = 4.48 min and expressed high
in Agiorgitiko wines, the molecular formula of C18H26O10 was assigned with a mass ac-
curacy and isotopic pattern fit of −1.46 mDa and 50.5 mSigma, respectively. This mass
feature was included in the in-house database and was putatively identified as benzyl
O-[arabinofuranosyl-(1->6)-glucoside]. As a further confirmation step and in the absence
of an authentic standard a non-target workflow was implemented in order to verify its
tentative identification. 207 candidates sharing the same molecular formula were retrieved
from Pubchem [47] and were processed using Metfrag. The list of compounds was further
filtered with the use of the QSRR-based retention time prediction model excluding the
compounds with retention time error greater than 2 min. This reduced the number of
plausible compounds with a Metfrag score above 0.5 to 69. Based on the literature review
and in accordance with the predicted retention time the compound was annotated as ben-
zyl 6-O-alpha-L-arabinofuranosyl-beta-D-glucopyranoside (2b) (Pubchem ID: 14682806)
which received a Metfrag score of 0.9349 and 6 out of 7 peaks explained. The selected
feature shares the same structure with compound with Pubchem ID: 14682805 named as
benzyl O-[arabinofuranosyl-(1->6)-glucoside] which was included in our database. The
benzyl alcohol derivative has been previously reported present in grapes and alcoholic
beverages [48].
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3. Materials and Methods
3.1. Sample Collections

In this study, 46 fresh monovarietal red wine samples from the native Hellenic Vitis
vinifera cv. Agiorgitiko and Xinomavro grape varieties were collected. The wines were
produced in an industrial scale from wineries that were situated in two important PDO
regions, in Southern and Northern Greece (Nemea and Naoussa, respectively) in two suc-
cessive vintages 2017–2018 (Table S1). The samples were both tank samples bottled under
nitrogen atmosphere in 0.75 L bottles and commercially available wines. A table depicting
sample origin and vintage year can be found in Table S1 of the Electronic Supplementary
Material (ESM).

3.2. Chemicals and Reagents

All standards and reagents were LC-MS grade and were used without any fur-
ther treatments. Authentic standards of 2,5-Dihydroxybenzoic acid (gentisic acid), 3,4-
dihydroxybenzoic acid (protocatechuic acid), 4-hydroxybenzoic acid, cinnamic acid, epi-
catechin, eriodictyol, ferulic acid, gallic acid, myricetin, p-coumaric acid, pinoresinol,
quercetin, resveratrol, rosmarinic acid, salicylic acid, syringic acid, taxifolin, and vanillic
acid were purchased from Sigma-Aldrich (Stenheim, Germany). Apigenin, caffeic acid,
catechin, ethyl vanillin (internal standard, IS), galangin, genistein, naringenin, tyrosol, and
vanillin were acquired from Alfa Aesar (Karlsruche, Germany), whereas hydroxytyrosol
and luteolin were obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

2-Propanol (LC–MS grade) and methanol (MeOH) (LC–MS grade) were purchased
from Fisher Scientific (Geel, Belgium) and Merck (Darmstadt, Germany), respectively.
Formic acid 99%, ammonium acetate and sodium hydroxide monohydrate for trace
analysis ≥ 99.9995% were all obtained from Fluka (Buchs, Switzerland). Ultrapure wa-
ter (18.2 MΩ resistivity) was provided by a Millipore Direct-Q UV purification System
(Millipore, Bedford, MA, USA). The wine samples were filtered using regenerated cel-
lulose syringe filters (RC filters, pore size 0.2 µm, diameter 15 mm) purchased from
Phenomenex (Torrance, CA, USA).

3.3. Preparation of Standard Stock Solutions

Standard stock solutions were prepared by dissolving appropriate amounts of each
individual analyte in pure MeOH to a final concentration of 1000 µg/mL and were stored
at −20 ◦C in amber glass bottles to prevent photodegradation. Ethyl vanillin, a compound
that is not present in wine, was used as an internal standard (IS) in order to correct
potential drift of the analytical signal throughout the batch. A stock solution of the IS
was also prepared in MeOH at a concentration of 200 µg/mL. Working mix solutions
containing all target analytes were prepared in order to construct standard calibration
curves with concentrations ranging from 0.1 to 20 mg/L. The working solutions were
prepared by gradient dilution of the stock solutions in methanol/water (1:1, v/v). The final
concentration of the IS used in the working solutions was set 2 mg/L.

3.4. Sample Preparation

Before the analysis, each bottle of wine was uncorked under nitrogen atmosphere and
approximately 3 mL of the sample were filtered with 0.22 µm RC syringe filters. An aliquot
of 990 µL of filtered wine was mixed with 10 µL of the IS stock solution and transferred to
2 mL amber autosampler vials and they were kept at 4 ◦C until analysis. The samples were
then directly injected in UHPLC-QToF-MS system.

A quality control (QC) sample was also prepared by mixing same-volume aliquots of
all wine samples (0.5 mL of each). This QC sample was analyzed recurrently throughout the
batch in order to assess sample stability during analysis as well as inter/intra-day variability.
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3.5. UHPLC–QToF-MS Analysis

The analysis of wine samples was conducted using an UHPLC system (Dionex Ulti-
Mate 3000 RSLC, Thermo Fisher Scientific, Germany) equipped with a solvent rack degasser,
a binary pump with solvent selection valve (HPG-3400) and an auto-sampler coupled via
an Electrospray Ionization (ESI) interface to an Ultra high Resolution Quadrupole Time
of Flight Mass spectrometer (Maxis Impact, Bruker Daltonics, Bremen, Germany). The
use of UHPLC systems enhances the chromatographic resolution and peak capacity while
reducing the analysis time by using smaller particles in the stationary phase.

The chromatographic analysis was operated with a reversed phase (RP) separation
method using an Acclaim RSLC 120 C18 column (2.1 × 100 mm, 2.2 µm) from Thermo Fis-
cher Scientific (Dreieich, Germany) preceded by a ACQUITY UPLC BEH C18 1.7 µm, Van-
Guard Pre-Column from Waters (Dublin, Ireland). The column temperature was 30 ◦C. The
mobile phase consisted of solvent A (5 mM ammonium acetate in 90:10, v/v, H2O/MeOH)
and solvent B (5 mM ammonium acetate in MeOH). The gradient elution program started
with 1% of solvent B (flow rate 0.2 mL min−1), which then reached to 39% in the next
3 min with the same flow rate and finally to 99.9% (flow rate of 0.4 mL min−1) in another
11 min. These conditions were kept constant for 2 min with a flow rate of 0.48 mL min−1

and afterwards the column was re-equilibrated restoring the initial conditions.
The MS analyzer was operated in negative electrospray ionization mode with neb-

ulizer gas pressure of 2.0 bar (N2), dry gas flow of 8.0 L/min, dry gas temperature of
200 ◦C, capillary voltage of 3500 V, end plate offset of −500 V. Injection volume was set to
5 µL. MS data were recorded over a range of m/z from 50 to 1000 with a scan rate of 2 Hz
in 2 scan modes; Bruker broadband collision-induced dissociation (bbCID) mode, which
is a data independent acquisition mode (DIA) and AutoMS (data dependent) mode. In
bbCID both the precursor and product ions spectra (MS and MS/MS) are obtained within
a single injection, by using two different collision energies (4 eV and 25 eV, respectively). In
AutoMS, full scan MS spectra are obtained and the five most abundant precursor ions for
each MS scan are isolated and fragmented with a predefined collision energy, providing
compound specific MS/MS spectra. In the case of masses with low intensity in which
no MS/MS information were recorded via AutoMS mode, an inclusion list including the
suspected masses was created.

An external calibration of the QToF mass spectrometer was carried out daily by
infusing a sodium formate calibrant solution, consisting of 10 mM sodium formate clusters
in a mixture of water: isopropanol (1:1, v/v) before analysis. Moreover, the same calibrant
solution was injected automatically at the beginning of each chromatographic run and the
segment of 0.1–0.25 min was reserved for internal calibration. The theoretical exact masses
of fourteen calibration ions with formulas Na(NaCOOH)x, where x equals 1 to 14, in the
range of 50–1000 Da were used for calibration. Bruker high-precision calibration algorithm
enabled the calibration of data files. The apparatus provided a typical resolving power
(Full width at half maximum, FWHM) of 19,000–24,000 during calibration at m/z 226.1593,
430.9137, and 702.8636.

3.6. Method Validation

Method linearity, limits of detection (LOD) and quantification (LOQ), precision, and
matrix effects were evaluated. For the assessment of method linearity, 7-point calibration
curves were prepared for all target analytes within the expected concentration range (0.1
to 20 mg/L) with the use of the working solutions of the standard compound mixtures.
The curves were prepared by plotting the ratios of analyte peak area divided to the peak
area of the internal standard versus the concentration of the analyte. Linear regression
analysis was used for the calculation of slope, intercept, and correlation coefficient data.
Simultaneously, matrix matched calibration curves were prepared by spiking one pool
red wine sample with the target analytes in order to evaluate the methods’ matrix effects.
For the compounds already present in the pool samples, the amount of the sample was
subtracted before plotting the matrix-matched calibration curve.
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The matrix factor was calculated by dividing the slope of the matrix matched curve to
the slope of the calibration curves of the analytes in pure solvent. The matrix effect was
calculated according to the following equation:

%Matrix Effect = (Matrix Factor − 1) × 100 (1)

Instrumental precision was determined by repeatedly injecting standard compound
mixtures (n = 5) at two concentration levels (0.5 and 5.0 mg/L) and evaluating the relative
standard deviation (RSD%) of the peak areas of the detected compounds. The method
LODs and LOQs were calculated as the lowest analyte concentrations that could be detected
in wine samples with a signal-to-noise ratio of 3 and 10, respectively. The quantification of
the phenolic compounds in all wine samples was performed using an external standard
calibration method through reference standard calibration curves.

3.7. Screening Strategies
3.7.1. Target Screening

Our study was initially targeted at the determination of specific phenolic compounds
that could potentially act as biomarkers, enabling wine characterization and varietal
discrimination. Hence, a database was constructed containing 28 phenolic compounds
belonging to various chemical classes. Identification and quantification of target com-
pounds was performed using authentic standards of these compounds available at the
lab. The identification workflow for the target compounds was performed according to
Dasenaki et al., 2019 [46]. The information included in the database comprised of the
analyte molecular formula, the m/z value for the main adduct form of [M − H]−, the
experimental retention time (tR) in min and the MS/MS fragments for each target analyte.
The aforementioned information is presented in Table S2 of the ESM.

Following data acquisition, the raw data were processed with Data Analysis 4.4 and
TASQ 1.4 software packages (Bruker Daltonics Bremen, Germany). The target compounds
were evaluated and confirmed after meeting specific criteria regarding mass accuracy
(<2 mDa), retention time tolerance (<0.2 min), isotopic pattern fitting (Bruker’s mSigma
value with values≤ 50), peak area (>800), peak intensity (>200) and MS/MS fragmentation.
Extracted Ion Chromatograms (EICs) of the precursor ions were created for all target
compounds that exceeded peak area and peak intensity values and were evaluated in
all samples.

3.7.2. Suspect Screening Strategy

An in-house suspect screening database, containing 420 compounds putatively present
in grape and wine, was built by employing information retrieved from several open access
databases such as FooDB (http://foodb.ca; accessed on 10 April 2021), Phenol Explorer (
http://phenol-explorer.eu; accessed on 1 April 2021), GrapeCyc (https://www.plantcyc.
org, accessed on 10 April 2021) and from the study of scientific literature. The suspect
database included information necessary for identification of detected compounds such
as the putative molecular formula, MS/MS fragments and predicted retention times.
Five qualifier ions or frequently observed MS/MS fragments across different collision
energies were collected from EU MassBank (www.massbank.eu; accessed on 10 April
2021), mzcloud (https://www.mzcloud.org/; accessed on 10 April 2021), MoNA (https:
//mona.fiehnlab.ucdavis.edu; accessed on 10 April 2021), and Metlin (http://metlin.
scripps.edu; accessed on 10 April 2021). The predicted retention time values were added in
the suspects list using Quantitative Structure-Retention Relationships (QSRR) retention
time prediction models [49]. These models have been used already in foodomics and
HRMS based screening strategies [50,51].

After building the database, a robust workflow for the suspect screening of com-
pounds in wine samples was used according to Gago-Ferrero et al. (2015) [52]. A tentative
identification of the compounds was performed according to specific thresholds set regard-
ing: mass accuracy of monoisotopic peak(<5 mDa); peak area (>2000) and ion intensity

http://foodb.ca
http://phenol-explorer.eu
http://phenol-explorer.eu
https://www.plantcyc.org
https://www.plantcyc.org
www.massbank.eu
https://www.mzcloud.org/
https://mona.fiehnlab.ucdavis.edu
https://mona.fiehnlab.ucdavis.edu
http://metlin.scripps.edu
http://metlin.scripps.edu
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(>800 counts); isotopic fit values(mSigma < 100); peak score > 4 (peak score = peak area
to peak intensity ratio >4). Moreover, retention times of all identified compounds inside
the applicability domain of the model should not exceed a 1.8 min window between
the predicted and experimental retention time values [53]; and at least one characteristic
MS/MS fragment (base ion) included in the suspect database should be detected and
interpreted. For compounds where MS/MS data were unavailable, in silico fragmentation
tools CFM-ID [54] was used and MetFrag [55] was applied for ranking candidates based
on their explained MS/MS fragments. To communicate identification confidence level
regarding the suspect screening results, identification levels were assigned according to
the classification proposed by Schymanski et al. (2014) [56]. The presence of false positives
due to contaminations or analytical procedural blank was evaluated by analyzing a pure
solvent sample every 10 sample injections.

3.8. Data Processing and Chemometrics

Data normalization and scaling were necessary prior to higher order statistical analysis.
HRMS peak lists were normalized to the peak area of the IS and then scaled using Pareto
scaling (i.e., mean-centering the variables and dividing by the square root of the standard
deviation). Pareto scaling was selected after comparing different scaling methods and using
a previously developed score [57] from our group based on statistical model performance.
To assess the internal and external accuracy of the supervised classification model, the
datasets were divided by Kennard stone algorithm [58] into a training and a test set with a
ratio of 80% to 20%, respectively.

Multivariate classification methods were then employed to discriminate red wines
based on their variety and reveal characteristic varietal markers. Initially, Principal Com-
ponent Analysis (PCA) was conducted with the use of the R package “factoextra” [59] in
order to evaluate QC distribution. Orthogonal Projection to Latent Structure-Discriminant
Analysis (OPLS-DA) was employed for pairwise markers discovery and discrimination
between wines samples. The analysis was performed with the use of the R package “ro-
pls” [60]. Latent variable selection was performed on the basis of evaluating the change in
the predictive performance of the model estimated by cross-validation (Q2Y metric). An
OPLS-DA score plot was generated to depict class discrimination and Variable Importance
in Projection (VIP) values were also obtained.

The model was validated both internally, using leave-one-seventh-out cross validation,
and externally, using nine samples of both varieties as a test set. Predicted values for the
class membership of each sample were generated using the max dist function from the
“ropls” R package. Consequently, specificity, sensitivity and total accuracy were calculated
and a Receiver Operating Characteristics (ROC) curve was prepared.

Model performance was assessed by R2X (cumulative modeled variation explained by
the two latent variables), R2Y (goodness of fit), Q2Y (predictive performance of the model
estimated by cross-validation) as well as RMSEE (Root Mean Square Error of Estimation
(for training set) and RMSEP (Root Mean Square Error of Prediction (for test set). The
randomness and robustness of the model was also evaluated by a permutation test (n = 20)
of cumulative R2Y and Q2 values [60].

Variables featuring Variable in Projection (VIP) values > 1 were considered as im-
portant [61]. Values of modeled covariance p[1] and modeled correlation p(corr)[1] were
estimated for all variables. The VIP threshold above was applied in order to discover
significant markers. A Vplot combining p[1] values in the abscissa and VIP values in the
ordinate was prepared. Variables with higher absolute p[1] values have a larger contribu-
tion on the variance between the groups. Consequently, data points that fall on the upper
left and upper right corner contributed significantly to the model and may be considered
as important biomarkers separating the classes.
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4. Conclusions

A novel HRMS metabolomics approach was developed for the profiling and authen-
tication of wine samples derived from the emblematic Greek Agiorgitiko and Xinomavro
grape varieties. Target screening strategy was used to determine and quantify 28 wine
metabolites belonging to different classes. The subsequent application of a smart sus-
pect screening workflow was proved efficient in detecting and putatively identifying
86 additional compounds present in the wine samples, providing a thorough chemical
characterization. Mass spectrometric data derived from both target and suspect screening
were used for advanced chemometrics. A smart selection of scaling methods was adopted.
Chemometrics using OPLS-DA led to a robust, accurate and double validated classification
and prediction model, successfully classifying the wine samples according to grape variety.
Seventeen compounds were suggested as characteristic authenticity markers responsible
for the discrimination between the wine samples. The use of the IQR method, though not
finally adopted, and its application on the O-PLS-DA model, showed great potential in
reducing the number of marker compounds to be determined while retaining the model
classification accuracy. This approach can be particularly helpful in future authenticity stud-
ies or routine analysis. This study provides a valuable insight on the profile of wines from
the Agiorgitiko and Xinomavro grape varieties as well as a robust and reliable workflow
which can be employed in wine authentication.

Supplementary Materials: The following are available online. Table S1—Number and origin of wine
samples; Table S2—Target compound information; Table S3—Target screening method validation;
Table S4—Evaluation of Normality Assumptions; Table S5—Identified Compounds; Table S6—Scaling
Methods Evaluation; Table S7—IQR Method Evaluation; Table S8—IQR Compound list; Figure S1—
Comparison of OPLS-DA and PLS-DA models; Figure S2—Epicatechin Identification data; Figure
S3—Gallocatechin Identification data; Figure S4—Malvidin 3-O Glucoside Identification data; Figure
S5—(Iso)Leucine Identification data; Figure S6—Quercetin 3-O Glucuronide Identification data.
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