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Background
RNA is a kind of biological macromolecule composed of nucleotides, which mainly con-
tains four kinds of nucleotide: A  (Adenine), U  (Uracil), G  (Guanine), and C  (Cytosine) 
[1]. There are many ways for RNA to participate in life activities. According to its differ-
ent ways, RNA can be classified into two types: coding RNAs and non-coding RNAs. To 
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be specific, coding RNAs are translated into protein by translation rules. Since protein 
undertakes most of the life activities, coding RNAs have been the focus of research for 
decades, while non-coding RNAs  (ncRNAs) are functional RNAs that are transcribed 
from ncRNA genes but do not encode proteins [2], which play important roles in vari-
ous cellular processes [3] and diseases [4] by means of replication, transcription, or gene 
expression regulation [5, 6]. According to transcriptomic and bioinformatics studies, 
there are thousands of ncRNAs classified into different categories based on their func-
tions and lengths [2] including microRNA, rRNA, ribozymes, snRNA (snoRNA), tRNA, 
Intron_RNA, IRES, leader, and riboswitch. microRNA is ∼ 22 nt RNA molecule, which 
can affect protein expression by targeting other molecules and then regulate life activ-
ity [7]. rRNA is the basic material of life, which is involved in protein transcription and 
plays a regulatory role in the cell [8]. ribozymes is a kind of RNA enzyme in the organ-
ism, which plays the role of connecting amino acids in protein synthesis [9]. snRNA  
(snoRNA) refers to a class of RNA molecules with a length of ∼150 nt, and its main func-
tion consists of processing the pre-messenger RNA  (hnRNA) in the nucleus, regulating 
transcription factors, and maintaining telomeres [8]. tRNA is a class of RNA molecules 
with a length of about 76–90 nt, which can act as a physical link between mRNA and 
amino acid sequences [10]. As for Intron_RNA, it is a kind of RNA that is transcribed 
from the intron gene. After being transcribed into RNA, they carry out extensive inter-
nal interaction and help exons to join together in the right order [11]. IRES can assist in 
ribosome binding with messenger RNA to initiate protein translation and synthesis [12]. 
In terms of the leader, it is the upstream segment of the start codon in mRNA, and plays 
an important role in regulating the transcription of mRNA [13]. riboswitch is a regula-
tory fragment of mRNA, which can regulate the process of mRNA transcription by fold-
ing into a certain conformation [14].

The emergence of high-throughput technology reduces the time and labor cost of 
gene sequencing to a great extent [15]. Researchers have discovered a large number of 
unknown ncRNA sequences by adopting high-throughput technology. The functional 
research of these sequences has brought great pressure to biologists, and studies have 
shown that the same family of ncRNAs have similar functions, and thus, the identifica-
tion of ncRNAs family can preliminarily determine their function, and then promote the 
functional research of ncRNAs. It is time-consuming and laborious to identify ncRNAs 
family by biological experiments, which cannot meet the needs of high-throughput data. 
Therefore, computational methods are required to quickly realize ncRNAs family rec-
ognition. The existing methods for predicting ncRNAs family can be divided into two 
categories: the first type is to predict ncRNAs family by learning the features of sequence 
or secondary structure, and the other type is to predict ncRNAs family by the alignment 
among homologs sequences. In the first type, some methods (GraPPLE [16], RNAcon 
[17], and nRC [18]) predict ncRNAs family by learning predicted secondary structure 
features. In these methods, various RNA secondary structure prediction tools [19, 20] 
are used to obtain ncRNAs secondary structure, and then design calculation methods 
based on predicted secondary structure features to classify ncRNAs. At present, the 
performance of secondary structure prediction tools is not perfect, which leads to large 
errors of secondary structure prediction. These methods use predicted structural fea-
tures with large errors to classify ncRNAs will make the performance is low. The other 
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is prediction method “ncRFP” [21] proposed by our team. In this method, deep learning 
is employed to directly extract the features of ncRNA sequences and classify ncRNAs. 
Compared with those methods based on the features of secondary structure, ncRFP sim-
plifies the prediction process, reduces the errors, and improves the prediction efficiency. 
Due to the static deep learning model adopted in ncRFP, ncRNA sequences should be 
preprocessed into the same length. During the data preprocessing, ncRNA sequences of 
different lengths will be padded/truncated to the same length sequences, which results 
in the loss of the features. Hence, there is room for improvement in ncRFP performance. 
In the secondary type, Infernal [22] is the representative of the homologous sequence 
alignment method, which based on the structurally annotated multiple sequence align-
ment to identify ncRNAs family. Rfam [23] is a ncRNAs database of multiple families, 
which contains not only the ncRNA sequences, but also the aligned sequences with 
consensus secondary structure annotation. Therefore, Infernal can adopt the structural 
annotation data in Rfam to create covariance models (CMs) based on the stochastic 
context-free grammars (SCFGs) [24]. Then Infernal use those CMs to accurately identify 
ncRNAs family. In some families with complete secondary structure annotation data, 
the accuracy of Infernal is very high, which makes Infernal widely used. Although Infer-
nal can achieve high performance, it still has some defects. Due to the need for consen-
sus secondary structure annotation data, when some families only have sequence data 
or inaccurate secondary structure annotation data, the performance of Infernal will be 
low in those families due to the lack of necessary data. At the same time, the pseudo-
knots in RNA secondary structure can not be modeled by Infernal, which will reduce 
the accuracy of some families with pseudoknots. Based on the advantages and disad-
vantages of those existing methods, it is necessary to propose a novel method to predict 
ncRNAs family. The new method not only needs to improve the performance compared 
with those methods based on the features of sequence or secondary structure, but also 
reduces the demand for data to expand the application scope compared with Infernal.

Results
In this paper, a novel method “ncDLRES” is proposed to predict ncRNAs family based 
on a dynamic deep learning model. ncRNAs have a three-hierarchy structure: primary 
structure, secondary structure, and tertiary structure, which are corresponding to ncR-
NAs sequence, two-dimensional plane structure, and three-dimensional spatial struc-
ture respectively. Each hierarchy structure of ncRNAs contains family characteristics, 
which can be used as the input of the deep learning model. Because of the primary struc-
ture obtained accurately according to the high-throughput technology, ncDLRES adopts 
ncRNA sequences as input data to classify ncRNAs according to their primary structural 
features, which can effectively extract the most accurate family features and improve the 
prediction performance. In the static deep learning model, the input data should be pad-
ded or truncated into the same format, which will increase noise or loss features. Hence, 
ncDLRES adopts a dynamic deep learning model, which can take ncRNA sequences of 
different lengths as input data and preserve the complete features of ncRNA sequences. 
ncDLRES includes Dynamic LSTM [25] and ResNet [26]. As for Dynamic LSTM, it is 
responsible for encoding ncRNAs of different lengths into the same format data, while 
the ResNet tends to classify the encoded data. In order to improve the performance, 
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ncDLRES also employs the Attention Mechanism [27] to focus algorithm attention on 
important segments. Compared with the method by learning to the secondary structure 
features, ncDLRES simplifies the prediction process, while different from ncRFP, this 
method preserves the integrity of input data. Compared with the homologous sequence 
alignment method, ncDLRES only needs the primary structure to identity ncRNAs fam-
ily, reduces the data requirement and expands the application scope.

Learning results and presentation

In the model learning process, all of the ncRNAs data is processed into ten-fold cross-
validation train and test sets, and ncDLRES is trained and tested 100 epochs in each 
fold of train and test sets. Figure 1 is the average accuracy and loss of ten-fold cross-val-
idation in each epoch of training and testing.The loss is calculated by the cross-entropy 
loss function  (Eq. 1). It can be seen from the figure that although the curve fluctuates, 
which may be caused by the higher learning rate, there is no phenomenon of over-fitting 
or under-fitting, and the accuracy and loss of the test set are stable in the final epochs, 
which shows that the model can be competent for the task of ncRNAs family prediction.

Prediction results and comparison

In this section, the prediction results of ncDLRES will be presented and compared with 
GraPPLE [16], RNAcon [17], nRC [18], and ncRFP [21]. In this paper, the performance 
of ncDLRES is compared with those four methods in two aspects. The first aspect is 
to compare the average performance of the ten-fold test data, while the other aspect 

(1)L(y, f (x)) = − 1

N

N∑

i=1

log[q(ŷi = ck |xi)].

Fig. 1  Average accuracy and loss of train and test sets in cross data. The violet curve, blue curve, red curve 
and green curve indicate training accuracy, testing accuracy, testing loss and training loss respectively
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is to compare the average performance of the single-family in the ten-fold test data. In 
order to make the performance evaluation more perfect, Accuracy, Sensitivity, Preci-
sion, F-score, and MCC are employed to evaluate the performance of multi-methods. 
Accuracy is the ratio of all the correct prediction ncRNA sequences to all the ncRNA 
sequences; Sensitivity is the proportion of the correct prediction data in one whole fam-
ily data; Precision is the proportion of the number of the correct prediction in the whole 
predicted number of one family; F-score is the weighted harmonic mean of Sensitivity 
and Precision, and MCC is an index used to measure the classification performance. 
Their formulas are as follows  (Eqs. 2–6), where TP, TN, FP, and FN are True Positives, 
True Negative, False Positives, and False Negatives respectively.

Table  1 shows the average performance of ten-fold test sets in multiple methods. It 
can be seen from the table that ncDLRES is superior to other methods in all indexes and 
reaches the optimal level. Figure 2 shows the comparison of the single-family in different 
indexes. It can be seen from the figure that ncDLRES is optimal in almost all families, 
only in Intron_GpII, it is slightly lower than ncRFP, and in 5S_rRNA and riboswitch, it is 
lower than GraPPLE.

Discussion
RNAs are important biological macromolecules, which can participate in the regula-
tion of life activities in a variety of ways. They can be mainly divided into two types, 
coding RNAs and non-coding RNAs  (ncRNAs). Coding RNAs regulate life activi-
ties by translating into proteins. Since proteins undertake a variety of life tasks, coding 
RNAs can be studied by researching the function of proteins. In recent years, with the 
in-depth research on ncRNAs, an increasing amount of evidence has shown that ncR-
NAs involved in a variety of life regulation activities. Therefore, studying the function 
of ncRNAs is beneficial to the research of life science. Studies have shown that the same 
family of ncRNAs is featured with similar functions. Therefore, their function can be 
preliminarily determined by predicting the ncRNAs family. In the high-throughput era, 
time-consuming and laborious biological experimental methods cannot meet the needs 

(2)Accuracy = TP + TN

TP + TN + FP + FN

(3)Sensitivity = TP

TP + FN

(4)Precision = TP

TP + FP

(5)F-score = 2 ∗ TP
2 ∗ TP + FP + FN

(6)MCC = TP ∗ TN − FP ∗ FN√
(TP + FP) ∗ (TP + FN ) ∗ (TN + FP) ∗ (TN + FN )

.
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of scientific research. In this case, computational methods are necessary to predict ncR-
NAs family. Since it is difficult to obtain accurate secondary structure, the performance 
of those methods based on secondary structure features is low. Although the perfor-
mance of ncRFP, which based on the primary structure features, is better than those 
methods based on secondary structure, it cannot achieve the best performance due to 
the loss of input features. Infernal can achieve very high accuracy when it has consensus 
secondary structure annotation data. However, due to its high requirements for data, its 
application scope is limited. At the same time, Internal cannot model pseudoknots in the 
secondary structure, which will reduce the accuracy of some families with pseudoknots. 
Therefore, it is necessary to propose a new method to avoid those defects of the existing 
methods. In this paper, a novel method “ncDLRES” is proposed to predict the family of 
ncRNAs based on a dynamic deep learning model. Its input is ncRNA sequences, whose 
features are more accurate than those methods based on secondary structure and ncDL-
RES uses a dynamic deep learning model to avoid the loss of input features compared 
with ncRFP. Furthermore, ncDLRES only needs ncRNA sequences to predict ncRNAs 
family, which reduces the demand for data compared with Infernal. Hence, it not only 
can be applied to families with consensus secondary structure annotation data, but also 

Fig. 2  Performance comparison of different families. The violet curve, dark blue curve, red curve, green curve, 
and baby blue curve represent the performance of ncDLRES, ncRFP, nRC, RNAcon, and GraPPLE respectively

Table 1  Performance comparison between multiple methods

The bold value is the maximum of each column

Method Accuracy Sensitivity Precision F-score MCC

RNAcon 0.3737 0.3732 0.4497 0.3505 0.3341

nRC 0.6960 0.6889 0.6878 0.6878 0.6627

GraPPLE 0.6487 0.6480 0.7721 0.7050 0.6857

ncRFP 0.7972 0.7878 0.7904 0.7883 0.7714

ncDLRES 0.8479 0.8448 0.8489 0.8451 0.8335
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can be applied to families with only sequence data, inaccurate structure annotation data, 
or pseudoknots data, which expands the scope of application and avoids the defect of 
cannot model pseudoknots.

In this paper, the performance of ncDLRES is compared with that of several excellent 
methods including ncRFP based on primary structure features, and GraPPLE RNA-
con and nRC based on secondary structure features. ncRFP adopts a static deep learn-
ing model to directly learning ncRNAs sequence features to classify ncRNAs. GraPPLE 
adopts SVM to classify the ncRNAs based on the graph properties of the predicted 
secondary structure. RNAcon extracts 20 graph features from the predicted secondary 
structure, and then designs random forest to classify ncRNAs based on the extracted 
features. nRC adopts the Moss [28] to extract and encode the features of predicted sec-
ondary structure, and then designs a convolutional neural network to classify ncRNAs. 
The experimental conditions, which only need ncRNA sequences to predict ncRNAs 
family, of those four methods are the same as ncDLRES. At the same time, these four 
methods are excellent in the prediction methods based on sequence or secondary struc-
ture features. Therefore, those four methods are chosen to compare with ncDLRES. The 
comparison is made from the whole data and the single-family data. Table 1 shows the 
average performance of different methods in the whole data. Then, it is found that the 
performance of ncDLRES is optimal among all indexes. Accuracy, Sensitivity, Precision, 
F-score, and, MCC are improved by 6.35%, 7.23%, 7.4%, 7.2%, and 8.05% respectively 
compared with the suboptimal ncRFP. Figure 2 shows the comparison concerning the 
average performance of the single-family. As precision has the same meaning as accuracy 
in the single-family, accuracy is not included in the single-family performance compari-
son. The diagram shows that ncDLRES in microRNAs, 5.8S_rRNA, ribozymes, CD-
BOX, HACA-BOX, scaRNA, tRNA, Intron_GPI, IRES, and leaders achieves the optimal 
performance, only in Intron_GpII, the performance is slightly lower than ncRFP,and 
in 5S_rRNA and riboswitch, the performance is lower than GraPPLE. Figure  3 shows 
the details of the increase and decrease of different indexes in single-family compared 
between the optimal method ncDLRES and the suboptimal methods ncRFP and GraP-
PLE. The reason why ncDLRES achieves the best performance in the whole data and 
most single-family is that it uses dynamic deep learning model can use complete ncRNA 
sequence as input, which makes the extraction of primary structure features more com-
prehensive and accurate. On the family of Inron_GpII, the performance of ncDLRES is 
slightly lower than that of ncRFP, maybe because that the Inron_GpII family features are 
more significant than other families in the process of data padding and truncation. On 
the family of 5S_rRNA and riboswitch, the performance of ncDLRES is lower than that 
of GraPPLE, maybe because that the secondary structure graph features of those two 
families are remarkable, which makes GraPPLE more suitable to identify them.

Conclusions
In the performance comparison, the performance of ncDLRES has been greatly 
improved, which means that ncRNAs family prediction can be completed based on the 
sequence characteristics. Compared with the existing methods, ncDLRES has many 
advantages. Firstly, the prediction process of ncDLRES does not involve RNA sec-
ondary structure, which not only simplifies the prediction process, but also reduces 
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the loss caused by multi-step error superposition compared with the method based 
on secondary structure feature. Meanwhile, compared with Infernal, it can avoid the 
defect of inferior performance caused by the lack of structure annotation data or the 
pseudoknots data. Secondly, ncDLRES uses the dynamic deep learning model to pro-
cess ncRNA sequences of various lengths, which can avoid feature loss and improve 
performance. Finally, in the field of application, it can not only complete the predic-
tion alone, but also complete the prediction in cooperation with Infernal. ncDLRES can 
further improve the performance reliability of Infernal by predicting the families with 
good performance in Infernal. In the families with the lack of structure annotation data 
or the pseudoknots data, which are not good at by Infernal, ncDLRES can make up for 
the deficiency of Infernal by learning sequence features, so that those two methods can 
be combined to better serve the family prediction of ncRNAs. Although there are many 
advantages of ncDLRES, it still has some defects that need to be solved in the future. 
The performance of ncDLRES is not optimal among the families of Inron_GpII, 5S_
rRNA, and riboswitch, which has room for improvement. The performance of ncDL-
RES in Inron_GpII is lower than that of ncRFP, which indicates that the static model 
still has some advantages that should learn. The performance of ncDLRES in 5S_rRNA 
and riboswitch is lower than that of GraPPLE, which indicates that the secondary struc-
ture features can also recognize some families with high accuracy. In the future, we will 
combine the advantages of ncDLRES, ncRFP, and GraPPLE to create a new ncRNAs 
recognition method with better performance, and establish ncRNAs family recognition 
website to provide services for researchers and contribute to life science research.

Fig. 3  Single-family performance improvement. The violet column, blue column, red column and green 
column represent Sensitivity, Precision, F-score, and MCC respectively
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Materials and method
Data collection and processing

The data employed in this paper comes from two recent pieces of literature [18, 21], 
which is collected from the Rfam database [23]. It contains microRNAs, 5S_rRNA, 
5.8S_rRNA, ribozymes, CD-BOX, HACA-BOX, scaRNA, tRNA, Intron_GpI, Intron_
GpII, IRES, leader, and riboswitch 13 different families of non-redundant ncRNA 
sequences. In this paper, ten-fold cross-validation is used to test the performance 
of ncDLRES. The ncRNA sequences of each family are divided into ten equal parts. 
Among them, one part is randomly selected from each family as the test set and the 
remaining parts as the train set. In this way, all ncRNA sequences fall into ten-fold 
train and test sets. In order to facilitate ncRNA sequences input into ncDLRES, ncDL-
RES encodes each base into a vector. ncDLRES adopts 1×8 and 1×4 methods [21] to 
encode bases and selects the better one as the final encoding method. Table 2 is the 
conversion rule between bases and codes. A  (adenine), U  (uracil), G  (guanine), and 
C  (cytosine) are four common base encoding rules, while “N” represents some rare 
bases. Figure 4 displays the performance comparison in each fold of data under differ-
ent encoding methods. Then, it can be found that in 60% of ten-fold cross, the accu-
racy of 1×8 is higher than that of 1×4, and the average accuracy of 1×8 is also higher 
than that of 1×4. Therefore, ncDLRES selects the 1×8 encoding method to encode 
each ncRNA sequence as L×8  (L is the length of ncRNA sequences) matrixes.

Fig. 4  Performance comparison of each fold data in different encoding methods. The red and violet curves 
are the accuracy of 1×8 and 1×4 encoding methods in different fold data respectively

Table 2  The conversion rules between bases and codes

Base A U C G N

1×8 10000010 00101000 00010100 01000001 00000000

1×4 1000 0010 0001 0100 0000
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Method

In the static deep learning model, the input data should have the same format [21]. It 
is necessary to pad or truncate the input data, which makes the input noise increase or 
features loss. Different from the static model, ncDLRES is a novel dynamic deep learn-
ing model, which directly takes ncRNA sequences with different lengths as input, thus 
further maintaining the integrity of the input data and making the features extracted by 
the method more completely. ncDLRES consists of three parts: Dynamic LSTM [25], 
Attention Mechanism [27], and ResNet [26]. The Dynamic LSTM can record the con-
text information of ncRNAs with different lengths and encode them, so it is selected 
to extract complete ncRNAs sequence features and output the same format data. The 
Attention Mechanism can focus the neural network on the important features of the 
input data, so it is selected to focus the method on the important segments of ncRNAs 
sequence. ResNet can avoid the common gradient disappearance and explosion prob-
lems in the neural network, which is easy to train and has excellent performance. There-
fore, it is selected to classify the output of the other two parts.

Dynamic LSTM and Attention Mechanism: Recurrent neural network is a kind of arti-
ficial neural network, which can record context information. Its neurons are connected 
according to the time sequence and can process variable-length input data. As ncRNA 
sequences are context sensitive text sequences, the recurrent neural network is the 
best network when concerning processing ncRNA sequences. Due to the limited stor-
age space, the traditional recurrent neural network cannot effectively record the long-
distance dependent information. As the length of input data increases, the traditional 
recurrent neural network loses its learning ability because it cannot record the feature 
information in an effective way. LSTM is a kind of special recurrent neural network, 
which can effectively solve the problem of text long-distance dependence through the 
special gate mechanism. LSTM contains three gates: input gate, forget gate, and output 
gate. To be specific, the input gate determines which information is recorded to update 
the LSTM hidden state. The forget gate is used to find out which useless information 
should be discarded at each step, while the output gate identifies output information 
based on the LSTM state. Furthermore, LSTM can learn long-distance dependence 
information at a low cost when those three gates are combined efficiently. LSTM can be 
performed by the following formulas  (Eqs. 7–11):

where σ is the logistic sigmoid function, while i, f, o, and c are the input gate, forget gate, 
output gate, and cell vector, respectively, and all of them are at the same dimension as 

(7)it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)

(8)ft = σ(Wxf xt +Whf ht−1 +Wcf ct−1 + bf )

(9)ct = ft ⊙ ct−1 + it ⊙ tanh(Wxcxt +Whcht−1 + bc)

(10)ot = σ(Wxoxt +Whoht−1 +Wcoct + bo)

(11)ht = ot ⊙ tanh(ct)
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the hidden vector h. Meanwhile, w denotes the weight matrices and b indicates the bias 
vectors. Equation  (7) is the calculation formula of input gate, Eq.  (8) is the calculation 
formula of forget gate, Eq.  (9) is the calculation formula of cell state, Eq.  (10) is the cal-
culation formula of output gate, Eq.  (11) is the calculation formula of hidden state.

Due to the diversity of ncRNA sequence length, two methods are usually used to pre-
process the data when the static deep learning model is adopted to process the data. One 
is padding all the sequences according to the maximum length, which not only increases 
the running time of the method, but also reduces the accuracy because of adding noise to 
the data, while the other is to intercept all the sequences into the same length sequences, 
which will cause the loss of sequence features and affect the prediction accuracy. There-
fore, the static model cannot solve the problem of ncRNAs family prediction in the most 
efficient way. In this paper, one-layer Dynamic LSTM is used to solve the problem of 
sequence diversity. In Dynamic LSTM, all ncRNA sequences are input into the model 
with their real length, so that their features can be completely extracted and learned, 
thus improving the accuracy of family prediction. Besides, each base generates a hidden 
state containing context information, which is the output data of Dynamic LSTM. The 
same family of ncRNAs will have similar key segments. If the method pays more atten-
tion to these important segments, it can predict the ncRNAs family more effectively. The 
attention mechanism proposed by imitating the attention mode of human brains can 
complete this task in an efficient way. Attention mechanism is not a fixed neural network 
structure, but by adjusting the weight of attention to increase the weight of effective 
information, weakens the weight of invalid information. In this paper, attention mech-
anism is employed in ncDLRES. By learning the output of Dynamic LSTM, ncDLRES 
is focused on ncRNAs family segments. Figure 5 is the schematic diagram of Dynamic 
LSTM and Attention Mechanism.

ResNet: ResNet [26] is a special form of deep convolution neural network. Deep 
convolutional neural networks [29] have led to a series of breakthroughs, especially 
in the recognition and classification of two-dimensional data. Researchers have 
found that the number of layers is vital importance for the deep convolutional neural 

Fig. 5  The schematic diagram of dynamic LSTM and attention mechanism. The sequences with different 
lengths are encoded into matrixes as the input of Dynamic LSTM. Attention Mechanism integrates the 
hidden state of important segments into the output with the same format
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Fig. 6  The schematic diagram of ResNet. Conv is the convolutional neural network layer; Relu is the 
activation function, and AvgPool is the global pooling layer
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network [30], which can help to enrich the feature and improve accuracy. Convolu-
tion neural network will gradually reach saturation when the neurons increasing and 
it will have the highest accuracy in the saturation station. Hence, the accuracy of the 
shallow convolutional neural network will increase with the increase of depth before 
reaching saturation and decrease with the increase of depth after reaching saturation. 
When a neural network in the saturation station, if you want to increase the depth of 
the network and maintain the highest accuracy, the newly added layers must be the 
identity mapping layers, or in other words, the network needs to learn H  (x) = x. In 
the backpropagation, the gradient will vanish or explode with the increase of network 
layers. Therefore, it is difficult to complete identity mapping learning. Hence, simply 
improving the depth of the neural network cannot meet the requirement of perfor-
mance improvement. He [26] proposed ResNet in 2015 to solve the problem of neural 
network degradation. ResNet contains many residual blocks, which are composed of 
two layers of convolution neural network. Unlike the traditional convolution neural 
network, the ResNet uses shortcut connection to connect the input layer and the out-
put layer, so that the mapping output of the residual block is H  (x) = F  (x) + x. In the 
residual block, the input data x is not only the input of the input layer, but also com-
bined with the mapping of the output layer to form the output of the residual block. 
Experiments have proved that the newly added layer needs to learn F (x) = 0 after the 
ResNet network reaches saturation, which is much simpler than the traditional con-
volutional layer.

In this paper, a new ResNet that contains three types of residual blocks according to 
the dimension of the convolution kernel is designed and adopted in ncDLRES. As for 
those residual blocks, 3×3 convolution kernels are adopted, and their dimensions are 
16, 32, and 64, respectively. Since the ResNet is suitable for processing two-dimen-
sional data, the output of Dynamic LSTM and Attention Mechanism is first trans-
formed into a matrix as the input of the ResNet. In the network of ResNet, similar to 
the existing ResNet, a convolution layer is used to process the input data. After that, 
six residual blocks are adopted to the network, which dimensions are 16, 16, 32, 32, 
64, and 64 respectively. After residual blocks, the output data is 64-dimension data. 
Then, a global average pooling layer is used to pool the output data into 1×64 vectors. 
In the last, a fully connected layer is employed to classify the pooled data into the 
ncRNAs family. Figure 6 is the schematic diagram of ResNet.
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