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Blockade of HMGB1 Attenuates 
Diabetic Nephropathy in Mice
Xiaochen Chen1, Jin Ma1, Tony Kwan1, Elisabeth G. D. Stribos1, A. Lianne Messchendorp1,  
Yik W. Loh1, Xiaoyu Wang1, Moumita Paul3, Eithne C. Cunningham3, Miriam Habib3,  
Ian E. Alexander4,5, Alexandra F. Sharland3, Steven J. Chadban   1,2 & Huiling Wu1,2

Activation of TLR2 or TLR4 by endogenous ligands such as high mobility group box 1 (HMGB1) may 
mediate inflammation causing diabetic kidney injury. We determined whether blockade of HMGB1 
signaling by: (1) supra-physiological production of endogenous secretory Receptor for Advanced 
Glycation End-products (esRAGE), a receptor for HMGB1; (2) administration of HMGB1 A Box, a specific 
competitive antagonist, would inhibit development of streptozotocin induced diabetic nephropathy 
(DN). Wild-type diabetic mice developed albuminuria, glomerular injuries, interstitial fibrosis and renal 
inflammation. Using an adeno-associated virus vector, systemic over-expression of esRAGE afforded 
significant protection from all parameters. No protection was achieved by a control vector which 
expressed human serum albumin. Administration of A Box was similarly protective against development 
of DN. To determine the mechanism(s) of protection, we found that whilst deficiency of TLR2, TLR4 
or RAGE afforded partial protection from development of DN, over-expression of esRAGE provided 
additional protection in TLR2−/−, modest protection against podocyte damage only in TLR4−/− and 
no protection in RAGE−/− diabetic mice, suggesting the protection provided by esRAGE was primarily 
through interruption of RAGE and TLR4 pathways. We conclude that strategies to block the interaction 
between HMGB1 and its receptors may be effective in preventing the development of DN.

Diabetic nephropathy (DN) develops in 30–40% of people with Type 1 or 2 diabetes and consequently has 
become the most frequent cause of end-stage renal disease1,2. New therapeutic strategies are needed to reduce the 
progression of DN. Evidence from clinical and experimental studies has demonstrated that sterile inflammatory 
processes triggered by innate immune responses via TLRs and RAGE play vital roles in the pathogenesis and 
progression of DN3–7.

TLRs are innate immune receptors that can be activated by exogenous ligands derived from microbes, and 
endogenous ligands derived from injury cells8. TLR2 and 4 activation by endogenous ligands including high 
mobility group box 1 (HMGB1), heat-shock proteins (HSPs) and biglycan, leads to translocation of NF-κB9 with 
consequent upregulation of pro-inflammatory cytokines (TNFα & IL6) and chemokines (CCL2), triggering a 
sterile inflammation as known to participate in the pathogenesis of DN10–13. It is well known that RAGE plays a 
crucial role in the pathogenesis of DN14. Similar to TLR2 and 4, engagement of RAGE by HMGB1, can initiate 
cellular signals that activate NF-κB and trigger pro-inflammatory responses15.

Thus, in the context of diabetes, HMGB1 may potentially mediate inflammation by activating any or all of 
TLR2, 4 or RAGE in DN. Upregulation of TLR4 and HMGB1 expression was evident in the renal tubules of 
human kidneys with DN4. We have found that in vitro, high glucose promotes release of endogenous TLR ligands, 
including HMGB1, by tubular epithelial cells and podocytes, which coupled with upregulation of TLR2 and 4, 
resulted in activation of NF-κB and consequent production of pro-inflammatory cytokines5–7. In support of the in 
vitro findings, we have reported upregulation of TLR2 or 4 and HMGB1 in early diabetic kidneys in STZ-induced 
diabetes5–7. Furthermore we and others have demonstrated that either absence of TLR2 or TLR4 was protective 
against development of DN in mice3–6. Whilst the ligand responsible for TLR activation in DN has not been con-
firmed, HMGB1 was upregulated in diabetic kidneys and is thus a likely candidate5,6.
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Endogenous secretory RAGE (esRAGE) is a soluble decoy receptor for RAGE ligands, which serves to bind 
ligands such as HMGB1 in circulation and prevent their engagement by cell-based receptors16,17. Over-expression 
of esRAGE to generate supra-physiological concentrations in blood therefore has potential to prevent RAGE, but 
also TLR2 and 4, engagement and activation by soluble ligands such as HMGB118,19.

HMGB1 contains two binding domains, termed the HMGB1 A Box and B Box. The B Box can bind to TLR2, 
TLR4 and RAGE, leading to NF-κB activation and subsequent inflammatory responses20, while A Box alone is a 
specific competitive antagonist which attenuates HMGB1 induced production of pro-inflammatory cytokines21. 
Treatment with recombinant A Box inhibiting HMGB1 activity is protective in several inflammatory disease 
models22–24.

Whilst activation of TLR2, 4, and RAGE have been shown to contribute to DN, the mechanism(s) of receptor 
activation in DN has not been confirmed. Targeting interactions between TLRs or RAGE and their shared ligand 
(HMGB1) may be a clinically relevant strategy to prevent or treat kidney injury but also confirm the mechanism 
by which TLRs and RAGE are activated in DN. In this study, we utilized two therapeutic strategies to inhibit 
endogenous HMGB1 activity, by systemic overexpression of esRAGE or administration of recombinant HMGB1 
A Box, and determined the impact on the development of experimental DN and the underlying mechanisms.

Results
Recombinant adeno-associated virus (rAAV)-mediated expression of esRAGE in vivo.  esRAGE 
was not detectable in the serum of normal mice, whereas serum esRAGE concentration increased in a dose-de-
pendent manner in mice who received the rAAV-esRAGE vector at 10 days post-injection (Fig. 1a), and was 
highest in those receiving 5 × 1011 vector genome copies (VGC) (7.8 ± 0.7 µg/ml). Mice that received control 
vector encoding human albumin (rAAV-HSA), 5 × 1011 VGC, at 10 days post-injection had a mean serum human 
albumin concentration of 88 ± 13 µg/ml. Total serum albumin levels in mice were not significantly altered by 
the vector-mediated expression of human albumin (32.2 ± 1.4 mg/ml, n = 8 over a dose range of albumin vector 
1 × 1010 VGC, 5 × 1010 VGC, 1 × 1011 VGC and 5 × 1011 VGC, n = 2 per dosage vs 33 ± 2.3 mg/ml, n = 3 normal 
mice). Intraperitoneal injection of rAAV-esRAGE was well tolerated at all doses; no signs of morbidity were 
detected following injection, and both alanine aminotransferase levels (27 U/L for rAAV-treated, 33 U/L for con-
trols) and histological appearances in the treated mice were comparable to those in controls, with normal liver 
morphology and no periportal or lobular inflammatory infiltrates in any animals. Using a dose of 5 × 1011 VGC, 
robust expression of esRAGE was already evident on day 2 post-injection. Expression levels reached a peak at 6 
weeks, and remained high at three months post-injection (Fig. 1b). Declining levels seen between 6 weeks and 
three months are most likely the inevitable consequence of continuing hepatocyte turnover. esRAGE construct 
binding to HMGB1 was confirmed by co-immuno-precipitation and western blot (Fig. 1c).

Figure 1.  rAAV-mediated expression of esRAGE in vivo. (a) esRAGE concentration at 10 days post-injection 
increased in a dose-dependent manner in mice treated with the rAAV-esRAGE vector and was highest in 
those receiving 5 × 1011 VGC (7.8 ± 0.7 µg/ml) (n = 2 per group). (b) Timecourse for rAAV-esRAGE at 5 × 1011 
VGC. The highest expression levels reached at week 6 and remained high at 3 months post-injection (n = 2 per 
group). (c) Confirmation of esRAGE binding to HMGB1 by Co-immunoprecipitation (Co-IP) and Western blot 
(WB). esRAGE (51 kDa) and rHMGB1 (31 kDa) complex pulled down with anti-RAGE antibody by Co-IP was 
detected by either anti-HMGB1 or anti-RAGE antibody by WB. Cropped image of blots exposed for 30 seconds, 
is shown. Multiple exposures of full-length blots are presented in Supplementary Figure S1. (d) High levels 
of esRAGE in serum was detected in DN + esRAGE group four weeks after the injection of rAAV-esRAGE 
(41.4 ± 8.3 µg/ml, n = 6), while the levels of esRAGE in diabetic mice serum treated with rAAV-HSA (n = 2) 
or no-rAAV (n = 2) were undetectable. (e) esRAGE levels (233.1 ± 31.2 ng/ml) in urine were also detected 
from these diabetic mice in DN + esRAGE group while esRAGE were undetectable in urine from both diabetic 
control groups (DN + HSA and DN + No rAAV). Data are presented as mean ± SD.
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Four weeks after the injection of rAAV-HSA or rAAV-esRAGE, high levels of esRAGE were detected in serum 
from diabetic mice treated with rAAV-esRAGE (DN + esRAGE) but neither in mice treated with rAAV-HSA 
(DN + HSA) nor in DN + No-rAAV controls (Fig. 1d). esRAGE was also readily detected in urine obtained from 
DN + esRAGE group mice (Fig. 1e) but was undetectable in urine from both diabetic control groups (DN + HSA 
and DN + No-rAAV).

Diabetic mice that received either rAAV-esRAGE or rAAV-HSA developed equivalent degrees of 
hyperglycaemia.  Diabetic BALB/c mice received rAAV vectors encoding either esRAGE (DN + esRAGE) 
or HSA (DN + HSA) developed equivalent levels of hyperglycaemia and changes in body weight (Fig. 2a,b) over 
a 12 week period as did control diabetic mice (DN) that did not receive rAAV vectors.

Systemic overexpression of esRAGE attenuated albuminuria in DN.  12 weeks after the injection 
of STZ, DN and DN + HSA mice displayed significant albuminuria compared to non-diabetic mice (urine albu-
min to creatinine ratio (UACR) 183.4 ± 50.7 and 184.6 ± 9.7 mg/mmol vs 55.0 ± 10.0 mg/mmol, p < 0.001), while 
DN + esRAGE mice were partially protected (UACR: 117.8 ± 41.8 mg/mmol) compared to both diabetic control 
groups (Fig. 2c).

Overexpression of esRAGE reduced glomerular hypertrophy and injury.  DN and DN + HSA 
kidneys displayed glomerular hypertrophy with a progressive increase in glomerular volume, which was signif-
icantly diminished in DN + esRAGE kidneys (Fig. 3a,b). Glomerular hypercellularity was detected in both dia-
betic control groups, but significantly attenuated in DN + esRAGE kidneys (Fig. 3c). Mesangial matrix expansion, 
as assessed by computerised morphometric analysis, was evident in both diabetic controls but was also attenuated 
in DN + esRAGE mice (Fig. 3d).

To evaluate podocyte injury, immunofluorescent staining for podocin and immunostaining for Wilms’ Tumor 
1 (WT1) was performed. Depletion of podocin staining was evident in both diabetic control groups as com-
pared to non-diabetic controls, but this reduction was significantly attenuated in DN + esRAGE mice (Fig. 3e,f). 
Similarly, significant preservation of WT1+ podocytes was evident in DN + esRAGE kidneys as compared to DN 
and DN + HSA groups (Fig. 3g,h).

Overexpression of esRAGE attenuated interstitial fibrosis and CD68+ cell accumulation in dia-
betic kidney.  Accumulation of extracellular matrix components, including collagen, is a feature of progres-
sive DN25. Significant increases in collagen deposition were observed in both diabetic control groups, whilst these 
changes were attenuated in DN + esRAGE group (Fig. 4a,b). Macrophage accumulation in kidney is an early 
feature of DN26. Accumulation of CD68+ macrophages/monocytes in glomeruli and interstitium was significantly 
increased in diabetic control groups, while esRAGE treated diabetic kidneys (DN + esRAGE) manifested a signif-
icantly less accumulation compared to diabetic control groups (Fig. 4c–e).

Pro-inflammatory molecule expression in DN.  mRNA expression of TLRs and RAGE downstream 
molecules: cytokine (TNFα), and chemokines (CCL2 and CXCL10) was significantly up-regulated in both dia-
betic control groups versus non-diabetic mice, whilst esRAGE treated diabetic mice (DN + esRAGE) displayed 
significantly less up-regulation of these proinflammatory molecules compared to DN and DN + HSA groups 
(Fig. 5a–c).

Protective effects of esRAGE involve TLR4 and RAGE signaling.  We previously reported that 
TLR2−/− or TLR4−/− BALB/c mice were partially protected against diabetic kidney injury and that several endog-
enous ligands, including HMGB1, were upregulated in diabetic kidney5,6. TLR2 and 4 are likely activated by 
endogenous ligands released or expressed within the diabetic milieu. To determine whether the protective effects 
of esRAGE are attributable to interruption of signaling via the TLR2, TLR4 or RAGE pathways, we studied the 

Figure 2.  (a,b) STZ-induced diabetic mice that received rAAV-esRAGE, rAAV-HSA or no virus developed 
equivalent levels of hyperglycaemia and changes in body weight. (c) A significant increase in albuminuria was 
detected in diabetic mice as compared to controls (UACR for DN:183.4 ± 50.7 and DN + HSA:184.6 ± 9.7 mg/
mmol vs Non-DN:55.0 ± 10.0 mg/mmol). rAAV-esRAGE treated diabetic mice, however, had a significantly 
lower production of albuminuria (UACR: 117.8 ± 41.8 mg/mmol) compared to both diabetic control groups. 
Data are presented as mean ± SD; *p < 0.05; **p < 0.01; ***p < 0.001.
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effects of rAAV-esRAGE administration to mice deficient in each of these receptors. WT, TLR4−/−, TLR2−/− or 
RAGE−/− mice received an IP injection of 5 × 1011 VGC rAAV encoding either esRAGE or HSA two weeks after 
STZ or vehicle injection. Knock-out and WT mice received STZ injection developed equivalent levels of hyperg-
lycaemia and changes in body weight over a 12-week period.

WT diabetic mice treated with rAAV-HSA displayed significant albuminuria at week 12 post-induction of dia-
betes and this was attenuated in WT mice treated with rAAV-esRAGE (Fig. 6a). TLR2−/−, TLR4−/− or RAGE−/− 
mice treated with rAAV-HSA exhibited less albuminuria with no further protection provided by overexpression 
of esRAGE (Fig. 6a,b).

Figure 3.  Glomerular injury was reduced in rAAV-esRAGE treated diabetic mice. Both diabetic control mice 
(no virus and rAAV-HSA) demonstrated significant glomerular injury, including glomerular hypertrophy (a,b), 
glomerular hypercellularity (c), glomerular mesangial matrix expansion (d), podocin injury (e,f) and WT1+ 
podocyte injury (g,h) compared to non-diabetic controls. These changes were reduced in rAAV-esRAGE treated 
diabetic mice. Bars = 50 µm. Data are presented as mean ± SD; **p < 0.01; ***p < 0.001.
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WT BALB/c (Fig. 6c–i) and C57BL/6 (Fig. 7a–g) diabetic mice treated with rAAV-HSA developed signifi-
cant renal pathology including glomerular hypertrophy and hypercellularity, podocyte loss, mesangial expan-
sion, interstitial fibrosis and macrophage accumulation, all of which were attenuated in WT DN + esRAGE mice. 
TLR2−/−, TLR4−/− diabetic mice treated with rAAV-HSA were also partially protected against these diabetic kid-
ney injuries compared to WT DN + HSA controls (Fig. 6c–i), which is consistent with our previous studies that 
TLR2−/− or TLR4−/− diabetic mice were protected from the progression of DN5,6. We also observed that kidney 
injuries in RAGE−/− diabetic mice treated with rAAV-HSA were also attenuated compared to WT DN + HSA 
control group (Fig. 7a–g). Treatment with rAAV-esRAGE provided a modest but significant degree of addi-
tional protection against kidney damage including glomerular hypertrophy and hypercellularity, podocyte loss, 

Figure 4.  (a,b) Significant interstitial collagen accumulation was evident in both diabetic control groups (no 
virus or rAAV-HSA) versus non-diabetic controls, whilst the deposition was significantly attenuated in rAAV-
esRAGE treated diabetic mice. (c–f) Both diabetic control mice (no virus or rAAV-HSA) showed a significant 
accumulation of CD68+ macrophages in both the interstitial (c,e) and glomerular (d,f) versus non-diabetic 
controls, while rAAV-esRAGE treated diabetic mice showed significantly less macrophage accumulation in both 
the interstitial and glomerular compartments compared to two control diabetic groups. Bars = 50 µm. Data are 
presented as mean ± SD; *p < 0.05, ***p < 0.001.
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mesangial cells expansion, interstitial fibrosis and macrophage accumulation in TLR2−/− mice (Fig. 6c–e,g-i), 
but not in TLR4−/− (Fig. 6c,d,g–i) or RAGE−/− (Fig. 7a–g) diabetic mice. Additional protection against podocin 
injury was also evident in rAAV-esRAGE treated TLR4−/− diabetic mice (Fig. 6e,f).

Administration of recombinant HMGB1 A Box attenuates diabetic kidney injury.  To confirm 
that HMGB1 contributes to the development of DN in our model, we administrated recombinant HMGB1 A Box, 
a specific antagonist of HMGB1 to WT BALB/c mice.

WT diabetic mice that received rHMGB1 A Box or saline as controls demonstrated similar patterns of hyper-
glycaemia and body weight at week 12 post-induction of diabetes. Control diabetic-mice developed significant 
albuminuria versus non-diabetic mice (UACR: 165.3 ± 56.3 versus 51.1 ± 9.7 mg/mmol, p < 0.001), whilst dia-
betic mice treated with A Box were protected with significantly less albuminuria (110.8 ± 29.6 mg/mmol, p < 0.05, 
Fig. 8a) compared to control diabetic mice.

Saline-treated diabetic-mice developed histological damage including glomerular hypertrophy, glomerular 
hypercellularity, podocin and podocyte injury, macrophage accumulation and interstitial fibrosis. These changes 
were significantly attenuated by A Box treatment (p < 0.001) (Fig. 8b–h).

mRNA expression of cytokine (TGF-β and CXCL10), chemokine (CCL2) and pro-fibrotic (fibronectin) genes 
were significantly up-regulated in saline-treated diabetic kidney versus non-diabetic controls but significantly 
attenuated in diabetic mice treated with A Box versus saline-treated diabetic mice (Fig. 8i). mRNA expression of 
TNFα was not significantly different between diabetic mice treated with A Box versus saline (data not shown).

Discussion
In this study, we tested the hypothesis that blocking the interaction between HMGB1 and its receptors would 
prevent the development of DN. We utilized two novel strategies to block HMGB1 signaling via its receptors, and 
were thereby able to attenuate development of DN in mice with STZ-induced diabetes, indicating a pathogenic 
role for HMGB1. The mechanism by which HMGB1 promotes kidney damage in this setting appears to involve 
inflammation caused by activation of the innate immune system. Activation of the innate immune system by 
endogenous HMGB1 required TLR4 or RAGE signaling, consistent with previous observations that TLR4−/− 
mice or RAGE−/− were partially protected against DN. Moreover, the capacity of rHMGB1 A Box to attenuate 
diabetic nephropathy when given after induction of diabetes, indicates significant therapeutic potential.

Experimental studies have provided compelling evidence that TLRs are actively involved in the development 
of acute and chronic kidney diseases in a sterile environment. TLR4 and/or 2 are required for the development 
of kidney damage in response to kidney ischemia reperfusion injury27,28, nephrotoxicity29 and glomerulonephri-
tis30,31. There is increasing clinical and experimental evidence demonstrating that inflammatory processes medi-
ated by innate immunity play a significant role in the pathogenesis of DN. We and others have documented that 
expression of TLR2, TLR4 and the TLR ligand HMGB1 were upregulated in both human and mouse diabetic 
kidney, primarily in tubular epithelial cells5,7 and that activation of TLR2 and TLR4 contributes to the develop-
ment of DN3–5. Similar to TLRs, aberrant activation of RAGE is involved in the pathogenesis of DN via binding a 
variety of ligands including HMGB114.

HMGB1 is one of the key endogenous ligands for TLR2, TLR4 and RAGE. Extracellular HMGB1 acts on its 
target receptors (TLRs and RAGE) leading to nuclear translocation of transcription factors (e.g. NF-κB) and 
subsequent activation of innate immune responses which have been implicated in mediating several pathologi-
cal conditions including sepsis32, liver33 and kidney ischemia reperfusion injury (IRI)34, acute lung injury35 and 
diabetes36. In experimental kidney IRI, we found that HMGB1 blockade afforded protection from kidney IRI, 
suggesting that endogenous HMGB1 plays a pathogenic role in kidney IRI34. In the current study, we examined 
whether the blockade of interaction between HMGB1 and its receptors retards the development of DN by inhib-
iting TLR activation.

Firstly, we used a novel strategy of rAAV-mediated systemic overexpression of esRAGE which could be applied 
therapeutically. esRAGE is a decoy receptor and can interfere with signalling through RAGE, TLR4 and TLR2 

Figure 5.  mRNA expression of TLR and RAGE downstream molecules: TNFα (a), CCL2 (b) and CXCL10 (c) 
were significantly up-regulated in diabetic control groups (no virus or rAAV-HSA) versus non diabetic mice, 
but were significantly reduced by esRAGE treatment. Results are expressed as a ratio normalised to GAPDH 
expression. Data are presented as mean ± SD; *p < 0.05, **p < 0.01; ***p < 0.001.
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by binding to their shared ligands. Systemic administration of a sufficient quantity of esRAGE can block binding 
of HMGB1 to both RAGE and TLR2 and 4. Accordingly, deficiency of TLR4, antibody blockade of HMGB1 or 
administration of 100 µg of recombinant esRAGE daily are all effective in protecting mice against lethal hepatic 
IRI37. In diabetic mice, both the administration of soluble RAGE and adenoviral over-expression of esRAGE 
have been shown to normalise vascular dysfunction38,39. A recent clinical study described an inverse association 
between esRAGE levels and early kidney injury, suggesting a potential protective role of esRAGE in DN40. As 
human esRAGE is functional in mice, we transduced mouse livers with an AAV vector encoding human esRAGE 
to achieve systemic overexpression of esRAGE in our model of STZ induced DN. We found that overexpres-
sion of esRAGE afforded significant protection against diabetic kidney injury with less albuminuria, glomerular 

Figure 6.  rAAV-esRAGE treated TLR2−/− diabetic kidney displayed a further protection against the 
progression of DN. (a,b) TLR2−/−, TLR4−/− or RAGE−/− mice treated with either rAAV-HSA or rAAV-esRAGE 
exhibited less albuminuria compared to WT DN + HSA group, whilst no further protection was observed 
in diabetic knockout mice treated with esRAGE compared to those treated with HSA. (c–i) WT diabetic 
mice treated with rAAV-HSA developed significant renal pathology, including glomerular hypertrophy and 
hypercellularity, podocyte loss, mesangial expansion, interstitial fibrosis and macrophage accumulation, 
all of which were attenuated in WT DN + esRAGE mice. TLR2−/− and TLR4−/− diabetic mice treated with 
rAAV-HSA were partially protected against these diabetic kidney injuries (c–i), which is consistent with our 
previous studies. Treatment with rAAV-esRAGE provided further protection against kidney damage including 
glomerular hypertrophy (c) and hypercellularity (d), mesangial cells expansion (g), interstitial fibrosis (h) and 
macrophage accumulation (i) in TLR2−/− mice, but not in TLR4−/− diabetic mice (c,d,g–i). Both TLR2−/− and 
TLR4−/− diabetic mice treated with rAAV-esRAGE exhibited further protection against podocyte injury (e). 
Additional protection against podocin depletion was evident in rAAV-esRAGE TLR4−/− diabetic mice (f). Data 
are presented as mean ± SD; *p < 0.05, **p < 0.01, ***p < 0.001.
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hypertrophy, podocyte injury, macrophage accumulation and interstitial fibrosis. This result suggests that block-
ade of the interaction between receptors (TLRs and RAGE) and their ligands including HMGB1 attenuated the 
development of DN.

esRAGE may block HMGB1 signaling via TLR2, TLR4 or RAGE, all of which are well known to contribute to 
the pathogenesis of DN. To dissect the contribution of each of these pathways in the pathogenesis of DN, we uti-
lised TLR2, TLR4 or RAGE knockout mice to examine whether the protective effects of systemic overexpression 
of esRAGE would be negated by the absence of individual receptors. Whilst we confirmed previous reports that 
all three pathways are required for full development of STZ induced DN, the overexpression of esRAGE provided 
further protection to TLR2 deficient mice, but not TLR4 or RAGE deficient mice. This suggests the protective 
effect of esRAGE in DN is predominantly mediated via interruption of ligand activation of TLR4 and RAGE, the 
likely ligand being HMGB1. We observed that esRAGE provided additional protection of podocytes in TLR4−/− 
mice, implying that a protective effect on podocytes provided by esRAGE may operate through blocking the 
RAGE pathway, rather than TLR2 or 4. The protective effect of esRAGE may vary by cell type, due to differences 
in cell-specific pathways of damage in DN. esRAGE provided no additional protection to the RAGE−/− mice, 
suggesting some degree of redundancy between TLR4 and RAGE in mediating DN.

To confirm that HMGB1 plays a pathogenic role in DN, we used an efficient and potentially clinically rel-
evant strategy of rHMGB1 A Box administration which competitively antagonizes HMGB1 binding to TLRs 
and RAGE. This strategy appears to be highly specific for HMGB1, as indicated by in vitro work demonstrating 
that HMGB1 A Box can inhibit HMGB1-induced TNF and IL-1β release, but not IL-1β-induced TNF release21. 
Administration of A Box has been shown to afford protection in experimental models of sepsis21, endotoxin 
(LPS)-induced acute lung injury22, myocardial infarction23 and inflammatory arthritis24. Treatment of allograft 
recipients with A-box significantly prolonged cardiac allograft survival, which was associated with reduced 
allograft pro-inflammatory cytokine expression of TNFα and IFNγ, and an impaired Th1 immune response41. 
Consistent with these experimental data, we found that A Box provided significant protection against the devel-
opment of DN. A Box clearly has therapeutic potential for the clinic.

In summary, expression of supra-physiological amounts of esRAGE via administration of rAAV-esRAGE, and 
treatment with recombinant HMGB1 A Box were successful in attenuating kidney inflammation and damage in a 
murine model of DN. Effects were likely mediated by TLR4 and RAGE pathways. Treatment with HMGB1 A Box 
to specifically inhibit HMGB1 activity was protective in DN, confirming a pathogenic role for HMGB1 in DN. 
Our two novel strategies to block HMGB1 signaling via its receptors indicate significant therapeutic potential.

Figure 7.  RAGE−/− diabetic mice were partially protected against DN. RAGE−/− diabetic mice received 
either rAAV-esRAGE or rAAV-HSA treatment were partially protected against DN in terms of glomerular 
hypertrophy (a), hypercellularity (b), mesangial cells expansion (c), podocin injury (d), podocyte injury 
(e), interstitial fibrosis (f) and macrophage accumulation (g) compared to WT DN + HSA mice. No further 
protection was observed in RAGE−/− DN + esRAGE mice. Data are presented as mean ± SD; *p < 0.05, 
***p < 0.001.
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Figure 8.  Diabetic mice were protected by the administration of HMGB1 A Box. (a) Diabetic mice given 
saline developed significant albuminuria versus non-diabetic mice (UACR: 165.3 ± 56.3 versus 51.1 ± 9.7 mg/
mmol), whilst A Box treated-diabetic mice were protected with significantly less production of albuminuria 
(110.8 ± 29.6 mg/mmol). (b–h) WT diabetic mice demonstrated significant glomerular injury including 
glomerular hypertrophy, glomerular hypercellularity, glomerular mesangial matrix expansion, podocin injury, 
WT1+ podocyte injury, interstitial fibrosis and macrophage accumulation compared to non-diabetic controls, 
but changes were attenuated by A Box treatment. (i) mRNA expression of cytokine (TGF-β and CXCL10), 
chemokine (CCL2) and pro-fibrotic (fibronectin) genes were significantly up-regulated in saline-treated 
diabetic kidney versus non-diabetic controls but significantly attenuated in diabetic mice treated with A Box 
versus saline-treated diabetic mice. Data are presented as mean ± SD; *p < 0.05, **p < 0.01, ***p < 0.001.
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Methods
Animals.  WT BALB/c and C57BL/6 mice were obtained from the Animal Resource Centre (Perth, Australia). 
TLR2−/− and TLR4−/− mice on BALB/c background were provided by Animal Service of Australian National 
University with permission from Professor S Akira (Osaka University, Osaka, Japan). RAGE−/− mice on C57BL/6 
background were provided by Prof. Forbes (The University of Queensland, Australia). The mice were bred and 
housed in a specific pathogen-free facility at the University of Sydney. Male mice aged 8–9 weeks were used in 
experiments. All animal experiments were performed with the approval of the animal ethics committee of the 
University of Sydney. The methods were carried out in accordance with the approved guidelines and regulations.

Induction of diabetes.  Mice were fasted for 4 hours and then injected with 55 mg/kg intraperitoneal (IP) 
streptozotocin (STZ) or vehicle for 5 consecutive days. Mice with a blood glucose level over 16 mmol/L were con-
sidered to have developed diabetes. Mice were killed at week 12 post-induction of diabetes.

Generation of liver-specific rAAV encoding either esRAGE or HSA.  A cDNA sequence encoding 
human esRAGE (Genbank accession number AB061668) or serum albumin (HSA) was synthesised by GeneArt 
AG (Regensburg, Germany). The esRAGE cDNA was subcloned into the pAM2AA plasmid backbone incorpo-
rating the liver-specific human a-1 antitrypsin promoter and human ApoE enhancer flanked by AAV2 inverted 
terminal repeats to produce the novel vector pAM2AA-esRAGE or pAM2AA-HSA42. After plasmid purifica-
tion and sequence confirmation, pAM2AA-esRAGE or pAM2AA-HSA was used as the expression vector in 
recombinant adeno-associated virus 2/8 (rAAV2/8) vector production. The vector (rAAV2/8) was packaged 
by triple transfection in human embryonic kidney (HEK293) cells with three plasmids: pAM2AA-esRAGE or 
pAM2AA-HSA, pXX6 (helper plasmid) and p5E18VD2/8 (encapsulating plasmid). rAAV virions were purified 
by ammonium sulphate precipitation and ultracentrifugation on a caesium chloride gradient, followed by dialysis 
and concentration. The virion titer was quantified by quantitative real time PCR as previously described43.

Confirmation of binding of esRAGE to HMGB1 by co-immunoprecipitation and western blot.  
HEK293D cells were cultured and transfected using Lipofectamine 2000 (Thermo Fisher Scientific). The superna-
tant was collected and esRAGE in the supernatant was confirmed by ELISA (B-Bridge International K1009-1) and 
Western blot. The supernatant containing esRAGE was mixed in equal parts (100 μl) with recombinant HMGB1 
(0.1 mg/ml, Sigma H4652) and incubated for 1.5 hours at 37 °C. Using Pierce Co-immunoprecipitation Kit 
(Thermo Fisher 26149), the esRAGE-HMGB1 complex is then pulled down with anti-RAGE (Abcam ab37647) 
antibody coupled resins.

The co-immunoprecipitated proteins were then separated by SDS-PAGE and transferred to nitrocellulose 
membranes (Bio-RAD). The membranes were blocked and then incubated either with anti-HMGB1 (Abnova 
H00003146-M08 or Abcam ab18256) or anti-RAGE (Abcam ab37647) antibodies overnight, washed and incu-
bated with horseradish peroxidase-conjugated antibody. Bands were visualized by chemiDoc MP imaging system 
using enhanced chemiluminescence (Amersham Biosciences, Piscataway, NJ).

Confirmation of rAAV mediated esRAGE expression in vivo.  C57BL/6 mice received IP injections 
of rAAV encoding esRAGE at doses ranging from 1010 to 5 × 1011 vector genomes copies (VGC)/mouse. At day 
10 post-injection, mice were sacrificed. Serum and liver were collected for assessment of esRAGE protein expres-
sion. Serum and urine esRAGE was quantitated using a sandwich ELISA, specific for human esRAGE (B-Bridge 
International K1009-1).

Experimental Design.  At two weeks after STZ or citrate buffer injection, both diabetic (DN) and 
non-diabetic (Non-DN) mice received either an IP injection of 5 × 1011 VGC rAAV encoding esRAGE or 5 × 1011 
VGC rAAV encoding HSA (control vector) or no vector treatment in the following groups of Balb/c mice: (1) 
DN + esRAGE n = 10; (2) DN + HSA n = 7; (3) DN n = 4; (4) Non-DN + esRAGE n = 5; (5) Non-DN + HSA 
n = 5; (6) Non-DN n = 5. (7) TLR2−/− DN + esRAGE n = 7; (8) TLR2−/− DN + HSA n = 6; (9) TLR2−/− Non-DN 
n = 4; (10) TLR4−/− DN-esRAGE n = 8; (11) TLR4−/− DN + HSA n = 7; (12) TLR4−/− Non-DN n = 6, and 
C57BL/6 mice: (1) RAGE−/− DN + esRAGE = 10; (2) RAGE−/− DN + HSA = 9; (3) RAGE−/− Non-DN n = 5; (4) 
DN + esRAGE n = 8; (5) DN + HSA n = 8; (6) Non-DN n = 5.

At two weeks after STZ injection, BALB/c mice received an IP injection of recombinant HMGB1 A Box 
(HMGBiotech) 400 µg/animal or saline, three times a week for 10 weeks in the following groups: (1) DN n = 6, (2) 
DN + A Box n = 9, (3) Non-DN, n = 5.

Sample Collection.  Urine, kidney, spleen and pancreas were collected at sacrifice at week 12 post-induction 
of diabetes. Tissue slices were fixed with 10% neutral-buffered formalin for paraffin embedding, frozen in OCT 
compound or snap frozen in liquid nitrogen for mRNA extraction.

Quantifications of albuminuria and urine creatinine.  Mouse urine albumin was quantified using the 
Mouse Albumin ELISA Quantitation Set (Bethyl Laboratories, Montgomery, TX, USA) as described previously5,6. 
BD Falcon ELISA plates (BD Biosciences) were coated with a goat anti-mouse albumin antibody, then rinsed with 
washing buffer and blocked with assay diluent. Diluted urine samples were applied in triplicate to the plate, along 
with a reference mouse serum albumin standard dilution series, and incubated for 1 hour at room temperature. 
The plate was rinsed and incubated with HRP conjugated mouse albumin antibody for 1 hour. Once washed, the 
plate was incubated with substrate solution for 10 minutes before adding the stop solution. Urine albumin con-
centration was analysed by microplate reader software (BMG Labtech).
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Urine creatinine was measured enzymatically by the Biochemistry Department of Royal Prince Alfred 
Hospital, Sydney, Australia.

Histology.  Periodic acid–Schiff (PAS) and Picro-Sirius red (PSR) staining were performed on 3 μm and 5 
μm formalin-fixed kidney sections, respectively. Total glomerular cellularity was determined by tallying nuclei in 
glomerular cross-sections using Image Pro Premier 9.0. Glomerular tuft area (AG) was measured under micros-
copy using DP2-BSW software V2.2, OLYMPUS. Mean glomerular volume (VG) was calculated using the formula 
described by Weibel and Gomez44; VG = (β/κ) × (AG) 3/2, where κ = 1.1 (size distribution coefficient) and β = 1.38 
(shape coefficient for spheres). Glomerular volume was measured in 20 hilar glomerular tuft cross-sections per 
animal45,46. In each glomerular tuft, mesangial area was defined as positive staining with PAS and enumerated by 
image analysis software (Image Pro Premier 9.0), expressed as a percentage of total glomerular area. Interstitial 
collagen on PSR-stained sections was assessed by point counting using an ocular grid as described by McWhinnie 
et al.47 in at least 20 consecutive fields (×400 magnification) and expressed as expressed percentage (%) of positive 
grid points (crosses) per high power field (HPF). Only interstitial collagen was counted, and vessels and glomeruli 
were excluded.

Immunostaining and Quantification.  Immunohistochemistry staining for CD68 was performed on fro-
zen sections while WT1 protein detection was performed on formalin-fixed sections as previously described5,6. 
Sections were then incubated with horse serum followed by incubation with primary antibodies: rat anti-mouse 
CD68 antibody (ABD Serotec Inc., Oxford, UK) or rabbit anti-WT1 antibody (Abcam, Cambridge, UK). 
Endogenous peroxidase activity was blocked and then incubated with biotinylated anti-rat IgG or anti-rabbit IgG 
(BD Biosciences, Pharmingen). A Vectastain ABC kit (Vector Laboratories Inc) was applied to the tissue followed 
by DAB solution (DAKO) according to the manufacturer’s instructions.

Immunofluorescent staining for podocin was performed on 7 μm acetone-fixed frozen sections. After block-
ing with 10% normal horse serum, sections were incubated with a rabbit anti-NPHS2 antibody (Abcam) at 4 °C 
overnight. For detection, sections were incubated with an Alexa Fluor 488-conjugated anti-rabbit antibody for 
1 hour at room temperature in the dark.

Analysis of interstitial CD68+ cells was performed by assessing 20 consecutive high-power fields (HPFs × 400 
magnification) of the cortex in each section. Using an ocular grid, the number of cells stained positive for each 
antibody was counted and expressed as cells per field. WT1+ cells were counted in glomerular-cross sections and 
output expressed as podocytes per glomerular.

Analysis of podocin staining was performed on cross section images that were recorded at the same time 
of 0.01 second exposure time. All exposure settings were kept constant for each sample. The glomerular area 
expressing podocin was assessed in glomerular cross-sections using Image-Pro and expressed as the percentage of 
positive staining of glomerular areas and output expressed as percentage of podocin staining area per glomerular. 
The threshold for positivity was determined by the highest background fluorescence in the non-glomerular area 
for each section.

Real-time PCR.  Total RNA was extracted using TRIzol (Invitrogen). cDNA was synthesised using Oligo 
d(T)16 primers (Applied Biosystems, Foster City, CA) and the SuperScript III reverse transcriptase kit (Invitrogen) 
according to the manufacturer’s instructions. cDNA was amplified in Universal Master Mix (Applied Biosystems) 
with gene-specific primers and probes, using the Rotor-Gene 6000 (Corbett Life Science). Specific TaqMan prim-
ers and probes for TNF-α, CCL2, CXCL10, TGF-β1, fibronectin and GAPDH were used as previously described27. 
All of the results are expressed as a ratio normalised to GAPDH expression.

Statistical analysis.  All data are presented as mean ± SD. Multiple groups were compared using one- or 
two-way ANOVA with post-hoc Bonferroni’s correction (GraphPad Prism 6.0 software). A p value less than 0.05 
was considered statistically significant.

Data availability.  All data generated during and/or analysed during the current study are available from the 
corresponding author upon reasonable request.
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