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Microglia and astrocyte responses to neuropathogenic protozoan 
parasites
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Abstract

Cerebral toxoplasmosis and cerebral malaria are two important neurological diseases caused by protozoan parasites. In this review, 
we discuss recent findings regarding the innate immune responses of microglia and astrocytes to Toxoplasma and Plasmodium 
infection. In both infections, these tissue-resident glial cells perform a sentinel function mediated by alarmin crosstalk that licenses 
adaptive type 1 immunity in the central nervous system. Divergent protective or pathogenic effects of type 1 activation of these 
astrocytes and microglia are revealed depending on the inherent lytic potential of the protozoan parasite.
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Introduction
Neurological diseases associated with neuroinflammation have 
an autoimmune, neurodegenerative, or infectious etiology1.  
Although central nervous system (CNS) infections caused 
by viral and bacterial pathogens have been better studied,  
neurotropic protozoan parasites also cause two major  
diseases, namely cerebral toxoplasmosis (CT) and cerebral  
malaria (CM). CT arises as a result of invasion of the CNS 
cells by Toxoplasma gondii parasites that exist in both lytic  
(tachyzoites) and latent (bradyzoites) forms. In immuno-
compromised patients, life-threatening necrotic encephalitis  
stems from a failure to control the lytic stage of the parasite.  
In immunocompetent individuals, T. gondii establishes a 
chronic infection that has been linked to several neuropsy-
chiatric disorders such as anxiety, suicidal behaviors, and  
schizophrenia2–4. Unlike in CT, there is no threat of para-
site replication in neural cells in CM, and neuropathological  
symptoms occur acutely. It is thought that occlusion of cer-
ebral microvasculature by Plasmodium-infected red blood  
cells (iRBCs) causes increased blood–brain barrier (BBB)  
permeability, hemorrhage, and induction of cerebral hypoxia5.  
In a mouse model of experimental CM (ECM), inflamma-
tion caused by sequestered inflammatory leukocytes, including  
monocytes and CD8+ T cells, also contributed to the devel-
opment of secondary neurological symptoms6,7. CM often 
appears as a severe and lethal neurological complication, but  
even after recovery, long-term neurological deficits such 
as cognitive and behavioral disorders persist in children  
with complicated malaria8.

Here, we discuss the most recent findings regarding the 
immune responses of two major CNS glial cells—microglia 
and astrocytes—during Toxoplasma and Plasmodium infection.  
In both CT and CM, microglia and astrocytes mount a 
shared T helper 1 (T

H
1) program of pro-inflammatory and  

anti-inflammatory cytokine cascades that have divergent pro-
tective and pathogenic effects largely dictated by the inher-
ent lytic threat posed by the pathogen to the tissue integrity  
of the CNS. The mechanistic studies discussed in this short 
review largely use established mouse models to CT and CM 
that recapitulate key pathogenetic and clinical features of  
their respective human diseases.

Microglia responses in cerebral toxoplasmosis and 
cerebral malaria
Microglia are CNS-resident immune cells originating from yolk 
sac myeloid progenitors with multifaceted functions during  
physiological and pathological conditions9. Microglia con-
stantly monitor their microenvironment and respond to patho-
genic infections exhibiting reactive phenotypes and immune  
responses10. Moreover, engagement of microglia and astro-
cytes in the neurovascular unit allows the initiation of glial 
effector functions in response to BBB injury11. Several lines of  
evidence demonstrated microglia activation during Toxoplasma  
and Plasmodium infection. In vitro studies showed that upon 
exposure to T. gondii tachyzoites and Plasmodium-iRBCs,  
microglia underwent morphological changes and upregulated  

the expression of inflammatory markers12,13. An important  
question is whether the microglial phenotype is modulated  
through direct effects of the parasites or exposure to 
inflammatory mediators. Bhandage et al. revealed that  
T. gondii–infected microglia displayed a hypermotile phe-
notype dependent on the presence of live parasites in the  
cells14. Microglial hypermigratory behavior is mediated by  
autocrine GABAergic signaling in T. gondii–infected cells14. 
However, these data were derived from in vitro studies, 
and the behavior of infected microglia in vivo needs to be  
investigated.

In contrast to T. gondii infection, Plasmodium-iRBCs do not 
directly interact with microglia. Instead, hemodynamic altera-
tions resulting from adherence of inflammatory leukocytes  
to postcapillary venule endothelium lead to leakage of plasma 
into the postcapillary space15. Exposure of microglia to  
inflammatory milieu in the postcapillary space may lead to 
their activation15. In addition, oxygen deprivation may pro-
vide additional cues for microglial activation16. Collectively, 
microglial activation can stem from direct interaction with 
the parasites or changes in the microenvironment surrounding  
the tissue harboring parasitic lesions.

A hallmark of microglial activation is their acquisition of  
a pro-inflammatory phenotype. The interleukin 1 (IL-1)  
family is one of the important groups of pro-inflammatory  
cytokines upregulated in reactive microglia during several 
neurodegenerative diseases17,18. The role of microglial IL-1  
expression has been investigated in CT and CM. A recent 
study from the Harris lab indicates that IL-1α signaling is 
critical for the interplay between CNS cells during CT19.  
Using RNA sequencing, transgenic mice, and ex vivo cytokine 
assays, the authors showed that microglia was the major 
source of IL-1α in T. gondii–infected brain19. Moreover,  
IL-1α plays a critical role in the recruitment of immune cells 
and consequently restriction of parasite growth. The protec-
tive effect of microglial IL-1α is mediated by upregulating  
expression of adhesion molecules on endothelial cells19.

Though clearly protective in CT, microglial IL-1 has poten-
tial adverse effects on neuronal function in ECM. Reverchon 
et al. showed that induction of microglial IL-1β during ECM 
was associated with impairment of memory and learning20,21.  
Interestingly, this microglial IL-1 response appears to be driven 
by IL-33 produced by astrocytes and oligodendrocytes20,21.  
IL-1 itself enhanced IL-33 production by oligodendrocytes, 
suggesting a potent synergistic crosstalk between micro-
glia and oligodendrocytes mediated by alarmins that may  
augment the neuroinflammatory responses and neurological  
symptoms during ECM. Although these results suggest  
that the reduction of endogenous IL-33 may be a therapeu-
tic target for ECM and alleviates neuronal damage, other  
studies show that exogenous administration of IL-33 in the  
early stages of ECM has protective outcomes. IL-33 treat-
ment with or without coadministration of antimalaria drugs  
results in a reduction of cerebral lesions and amelioration of 
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neuropathological symptoms22,23. The protective effects of  
exogenous IL-33 were associated with T

H
2 cell polarization,  

regulatory T-cell response and decreased inflammasome  
activation in microglia, and most likely a reduction in destructive 
T

H
1 response22,23.

Tumor necrosis factor alpha (TNF-α) is another major  
pro-inflammatory cytokine contributing to the development 
of CT and CM pathogenesis. In CT, TNF-α signaling has a 
protective role as it is crucial for microglial production of 
nitric oxide and restriction of parasite growth24,25. Conversely  
in ECM, it appears that TNF-α signaling is detrimental as it 
mediates intercellular adhesion molecule 1 (ICAM-1) upregu-
lation in brain endothelial cells and leukocyte sequestration26.  
In vitro studies showed that TNF-α was upregulated in micro-
glia during T. gondii infection and Plasmodium-derived  
extracellular vesicle/iRBC stimulation13,27,28. In addition, micro-
glial TNF-α level is increased in T. gondii- and P. berghei  
ANKA (PbA)-infected mice29,30. Deckert-Schlüter et al. reported 
that TNF-α induction in microglia during CT was depend-
ent on signals downstream of the interferon gamma (IFN-γ)  
receptor31. Depletion of CD8+ T cells, a major source of  
IFN-γ, results in impaired production of microglial cytokines, 
including TNF-α in T. gondii–infected brain, highlighting  
a regulatory role for T cells and IFN-γ signaling on  
microglia cytokine production32. Furthermore, production of  
IFN-γ by microglia themselves33 may serve as an autocrine  
signal for TNF-α production.

Given the potent effects of TNF-α on CNS physiology, such as 
the regulation of synaptic activity34, and CNS remyelination35,  
it will be important to interrogate the effects of increased  
levels of TNF-α on neuronal and astroglia functions during  
CT and CM. For example, impairment of neurotransmit-
ter uptake occurs in TNF-α–activated astrocytes36 and may 
result in excessive neuronal excitatory stimulation and death.  
Moreover, neutralization of TNF-α in IL-10–deficient mice 
infected with Plasmodium chabaudi reduces astrocyte  
activation and disease severity37.

The phagocytic function of microglia represents an impor-
tant aspect of the intimate microglia–neuron interaction, as it 
is crucial for elimination of undesired synapses and apoptotic  
neurons38. A recent study by Carrillo et al. showed that 
chronic CT caused the loss of perisomatic inhibitory synapses  
and ensheathment of neurons by activated microglia in  
hippocampus and neocortex39. Li et al. further advanced 
our understanding about molecular mechanisms underlying  
microglia–neuron interaction during CT40. The authors reported 
that degenerating neurons marked by complement proteins 
(C1q and C3) and elevated levels of fractalkine chemok-
ine (CX3CL1) were surrounded by activated microglia. As  
the fractalkine receptor (CX3CR1), among CNS cells, is exclu-
sively expressed on microglia41, fractalkine signaling may  
regulate the recruitment of microglia to the site of tissue 
injury and initiate microglia–neuron communication during  
CT. Furthermore, the presence of complement protein deposits  

on damaged neurons makes them susceptible to clearance  
by surrounding microglia40. Collectively, these findings suggest  
that destruction of inhibitory synapse and neuronal structures  
by phagocytic microglia may cause neuronal dysfunction  
leading to the emergence of neurological problems.

Astrocyte responses in cerebral toxoplasmosis and 
cerebral malaria
Astrocytes, the most abundant glial cell type in the CNS, con-
stitute a heterogenous cell population that maintains neuronal  
homeostasis. Astrocytes perform a plethora of functions,  
including regulation of energy metabolism42, supporting synap-
tic structure and plasticity43,44, and maintenance and regulation  
of the BBB45.

Disruption of the BBB integrity is a critical step in the patho-
genesis of CM leading to brain edema that damages neuronal  
structure46. Medana et al. reported that retinal astrocytes 
exhibited an uneven distribution and ensheathment of reti-
nal blood vessels before the expression of neurological signs47.  
Furthermore, in the late stages of ECM, retinal astrocytes 
lost their contact with the blood–retinal barrier (BRB)47. 
These findings suggest that loss of astrocytic support on BRB 
may be involved in the BRB compromise, hemorrhage, and  
edema.

Astrocytes respond to noxious insults through rapid morpho-
logical changes that contain and restrict the spread of tissue  
injury. Upregulation of the astrocytic cytoskeletal glial 
fibrillary acidic protein (GFAP) and the subsequent reac-
tive astrogliosis limit pathogen distribution in the CNS48.  
Activated astrocytes with increased GFAP levels have been 
observed in the brain during chronic CT49 and ECM13.   
The protective role of GFAP upregulation during CT was 
demonstrated by Stenzel et al.49. The authors showed that  
GFAP knockout (KO) mice infected with T. gondii were 
unable to control parasite growth and confine inflammatory 
lesions caused by the parasite49. These findings emphasize 
that activation of astrocytes is critical for a strong protective  
anti-Toxoplasma response. It is not yet clear whether  
GFAP upregulation is associated with protective or detri-
mental outcomes in CM. Mice lacking both astrocytic inter-
mediate filaments—GFAP and vimentin—have been shown  
to exhibit impaired astrocyte activation and larger infarct size 
after ischemic brain injury50. Given the presence of seques-
tered iRBCs, occlusion of the BBB, and induction of hypoxia 
described in ECM, it is critical to investigate the role of  
astrocyte reactivity in this disease.

Astrocytes also mount diverse immunological responses, 
including production of specific pro- and anti-inflammatory  
mediators during CT and ECM. IFN-γ plays a critical role 
in the destruction of T. gondii in the host cells through  
different mechanisms51. One of the mechanisms is the activa-
tion of signal transducer STAT1, which induces transcription  
of IFN-γ–dependent genes such as IRF-152. Using trans-
genic mice with specific deletion of STAT1 in astrocytes,  
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Hidano et al. showed that a more severe form of CT devel-
oped with a higher mortality and cerebral parasite load, sug-
gesting that the astrocytic IFN-γ signaling response to the 
parasite has protective outcomes53. Moreover, loss of STAT1 
signaling in astrocytes caused a shift in parasite tropism from 
neurons to astrocytes as higher numbers of parasite cysts  
appeared in STAT1 KO astrocytes53. The protective function of 
astrocytes in response to IFN-γ and clearance of parasites could 
be one explanation of why there are no T. gondii astrocytic  
cysts in wild-type (WT) mice. IFN-γ production during 
ECM, in contrast to CT, contributes to cerebral increase of  
Plasmodium biomass since IFN-γ–deficient mice exhibit 
lower parasite loads and iRBCs in the brain54. Of note,  
IFN-γ produced by CD4+ T cells induces expression of  
CXCL9 and CXCL10 in cerebral endothelial cells, lead-
ing to firm attachment of T cells to brain vasculature and  
ultimately infiltration of cytotoxic CD8+ T cells55–57. Although  
the sources of CXCL9 and CXCL10 during ECM have not 
been completely determined, astrocytes may represent a poten-
tial source for these chemokines as PbA-iRBC–stimulated  
astrocytes displayed increased levels of CXCL1013.

The signaling pathway downstream of glycoprotein 130 
(gp130), the ubiquitous signal transducer for members of the  
IL-6 cytokine family, plays a critical role in the establish-
ment of protective and detrimental responses during CT and  
ECM. IL-6 signaling regulates various functions in astro-
cytes, such as activation of JAK/STAT3 signaling pathway,  
regulation of cell proliferation, and expression of GFAP  
and vimentin58,59. It has been demonstrated that IL-6 is 
required for the restriction of T. gondii proliferation in the 
brain and the development of protective response against CT60.  
In vivo deletion of astrocytic gp130 resulted in reduced astro-
cyte activation leading to impaired parasite confinement and 
ultimately the development of extensive necrotic lesions61.  
Conversely, in ECM, IL-6 production has been associated  
with neurotoxic sequelae. Administration of anti-IL-6 neu-
tralizing antibodies in PbA-infected mice resulted in reduced 
astrocyte activation associated with decreased glial nodules, 
neuronal death, and longer survival62, suggesting neurotoxic  
roles of astrocytes driven by IL-6 signaling in ECM.

IL-33 is released from necrotic cells as a cellular alarmin 
and interacts with its receptor, the orphan IL-1 receptor  
family member ST2. It has been demonstrated that ST2  
is upregulated during CT in the brain, and IL-33/ST2  
signaling is found to prevent T. gondii growth and 
decrease neural tissue destruction63. Still et al. showed that  
oligodendrocytes and astrocytes were the major sources of  
IL-33 in T. gondii–infected brain64. Importantly, IL-33  
signals on astrocytes through ST2 receptor leading to the  
production of inflammatory chemokines such as CCL2 and  
CXCL10 and infiltration of leukocytes which results in the 
control of infection64. As discussed above, astrocytes in addi-
tion to oligodendrocytes also produce IL-33 during ECM20.  
In turn, IL-33 production by astrocytes likely leads to 
enhanced synaptic engulfment by microglia65 and increases 

the formation of excitatory synapses by neurons66. There-
fore, it will be important to know how synapse structure and  
neuronal function are dysregulated by IL-33 produced  
during both CT and ECM, even though IL-33 has a clear  
protective effect by  controlling  Toxoplasma  infection  in  the  brain.

Transforming growth factor beta 1 (TGF-β1) is a pleio-
tropic cytokine that negatively regulates immunopathological 
responses during neuroinflammatory disorders. Cekanaviciute  
et al. reported that TGF-β1 signaling with anti-inflammatory  
effects was induced in astrocytes in response to T. gondii  
infection67. That study showed that in vivo inhibition of astro-
cytic TGF-β1 signaling did not affect T. gondii burden in 
the brain but did result in increased activation of nuclear  
factor kappa B (NF-κB) pathway and subsequently upregula-
tion of CCL5, accompanied by increased T-cell infiltration 
and neuronal death67. NF-κB activation in astrocytes regulates  
inflammatory responses involved in pathological outcomes 
of neurodegenerative diseases (reviewed in 68). For exam-
ple, activation of astroglia NF-κB leads to overexpression of  
complement protein C3, reduced synaptogenesis, and disrup-
tion of dendrite morphology contributing to impairment of 
neuronal activity69. In vitro inhibition of NF-κB in astrocytes  
exposed to T. gondii antigens consistently decreased the  
levels of neurotoxic markers, including complement protein  
C3, suggesting that astrocytic NF-κB signaling may contrib-
ute to neurological deficits of CT70. However, by inducing  
IL-1, NF-κB signaling itself is critical for instigating  
TGF-β counter-regulation71. Negative feedback regulation by 
TGF-β may represent an important mechanism for minimiz-
ing the detrimental effects of the pro-inflammatory response  
while maintaining its parasite restrictive functions.

In addition to mediating immunoregulatory TGF-β signaling, 
astrocytes perform neuroprotective functions, including main-
tenance of brain water homeostasis and antioxidant defense.  
Expression of the water channel aquaporin-4 (AQP4) by  
astrocytes is critical for preventing excessive brain edema  
during ECM72,73. Upregulation of the antioxidant protein  
neuroglobin by astrocytes during ECM74 may also minimize  
tissue injury.

Concluding remarks
Here, we have discussed the experimental evidence indicat-
ing that microglia and astrocytes are critical regulators of  
CNS immune responses during Toxoplasma and Plasmodium 
infection. Reflecting the distinct cellular tropisms of these  
two infections, these immune responses are primarily protec-
tive in CT because they drive effector mechanisms critical 
for controlling T. gondii replication in the CNS. By contrast,  
in CM, the T

H
1 response is largely detrimental, negatively 

affecting neurological function. However, it is likely that  
collateral neurotoxic effects occur during CT when the 
extent of glial activation exceeds what is required for parasite 
removal. As shown in Figure 1, tissue-resident astrocytes and  
microglia act as sentinel innate cells that trigger the infil-
tration/sequestration of the CNS by the peripheral immune  
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cells. Crosstalk between astrocytes (also oligodendrocytes) 
and microglia is mediated by the alarmins IL-33 and IL-1.  
It will be important to investigate what parasite-derived  
versus endogenous signals drive alarmin upregulation and  
release.

The primary consequence of immune infiltration by type 1  
lymphocytes is the differentiation of microglia and astrocytes 
into M1-like and A1-like type cells75,76, that have antiparasitic  

effector functions but also possess neurotoxic potential.  
As discussed above, immunoregulation by TGF-β is essen-
tial for curtailing this inherently destructive potential. What  
signals trigger the transitioning of astrocyte and microglial 
phenotypes from neurotoxic to reparative is another area  
for future studies. Deployment of single-cell RNA-sequencing  
technology will be helpful in defining the cellular hetero-
geneity, dynamics, and regulatory circuits that govern this  
important transition.

Figure 1. Alarmin-mediated microglia–astrocyte crosstalk during cerebral toxoplasmosis (right) and cerebral malaria (left). Activated 
astrocytes and microglia initiate signaling pathways required for peripheral immune cell infiltration/sequestration. In cerebral toxoplasmosis, 
these immune pathways result in the control of Toxoplasma gondii replication and partial restoration of tissue homeostasis. Conversely, 
in cerebral malaria, immune responses elicited in microglia and astrocytes lead to impairment of neuronal function and exacerbation of 
neurological symptoms. ICAM1, intercellular adhesion molecule 1; IFN-γ, interferon gamma; IL, interleukin; TNF-α, tumor necrosis factor 
alpha.
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