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Abstract

Background: Drug design against proteins to cure various diseases has been studied for several years. Numerous design
techniques were discovered for small organic molecules for specific protein targets. The specificity, toxicity and selectivity of
small molecules are hard problems to solve. The use of peptide drugs enables a partial solution to the toxicity problem.
There has been a wide interest in peptide design, but the design techniques of a specific and selective peptide inhibitor
against a protein target have not yet been established.

Methodology/Principal Findings: A novel de novo peptide design approach is developed to block activities of disease
related protein targets. No prior training, based on known peptides, is necessary. The method sequentially generates the
peptide by docking its residues pair by pair along a chosen path on a protein. The binding site on the protein is determined
via the coarse grained Gaussian Network Model. A binding path is determined. The best fitting peptide is constructed by
generating all possible peptide pairs at each point along the path and determining the binding energies between these
pairs and the specific location on the protein using AutoDock. The Markov based partition function for all possible choices
of the peptides along the path is generated by a matrix multiplication scheme. The best fitting peptide for the given surface
is obtained by a Hidden Markov model using Viterbi decoding. The suitability of the conformations of the peptides that
result upon binding on the surface are included in the algorithm by considering the intrinsic Ramachandran potentials.

Conclusions/Significance: The model is tested on known protein-peptide inhibitor complexes. The present algorithm
predicts peptides that have better binding energies than those of the existing ones. Finally, a heptapeptide is designed for a
protein that has excellent binding affinity according to AutoDock results.

Citation: Unal EB, Gursoy A, Erman B (2010) VitAL: Viterbi Algorithm for de novo Peptide Design. PLoS ONE 5(6): e10926. doi:10.1371/journal.pone.0010926

Editor: Joel S. Bader, Johns Hopkins University, United States of America

Received March 12, 2010; Accepted May 7, 2010; Published June 2, 2010

Copyright: � 2010 Unal et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: berman@ku.edu.tr

Introduction

The determination of a specific peptide sequence with affinity to

a particular protein surface is a problem of high degree of

complexity arising from the fact that each residue of the peptide

could be chosen from a pool of twenty natural amino acids. Even

for a peptide with three amino acid residues, there exist 86103

possible peptide sequences. Screening of such a large number of

molecules is complicated with both experimental and computa-

tional techniques. A rational methodology for specific and selective

peptide sequence prediction is required. The necessary method-

ology should be time-efficient and be able to design peptides for

given locations on a given set of proteins. A fast and global

computational tool is desired. The importance, computational and

experimental difficulties and the present state of the art of finding

new peptides have recently been discussed and reviewed by

Petsalaki et al. [1].

The complete peptide binding problem can be visualized as a

three step process: (i) finding a path on the surface of the protein

which defines a suitable region for the peptide to bind, (ii) finding

the appropriate peptide for this path, and (iii) improving the

peptide for a more stable binding required for inhibition. In some

cases, the binding surface is known, and a peptide must be

designed de novo. In other cases, a peptide is given and the best

region on the surface that gives the optimum binding conditions is

searched. The method of Petsalaki et al., based on a knowledge

based bioinformatics approach addressed this problem and could

successfully find the binding sites for the peptides. A similar

‘indirect’ design approach has been adopted by Frenkel et al. [2],

using their de novo molecular design computational tool Pro_

Ligand. Known peptides were docked to unknown locations on

given proteins by Hetenyi and Spoel [3] using AutoDock. There

have been successful attempts for computational peptide design

that use knowledge-based search strategies and use diverse sets of

statistical descriptors, different training databases, hydrophobicity

scales, motif regularities, etc. [4]. Also, automated peptide binding

search techniques [5,6,7] from known epitopes or protein libraries

have been successfully used as bioinformatics tools. There have

been applications of bioinformatics computational binding tools

such as the sequence moment concept, artificial neural networks,

fuzzy neural networks and Hidden Markov Model for checking

the suitability of inhibitory peptides for binding on MHC class II

proteins [4,8,9,10,11,12,13,14,15,16]. Along similar lines, the

suitability of a ligand as a drug was tested using Bayesian neural

network analysis [17]. Application of genetic algorithms to the

design of peptides has been an important line of research,

examples of which are: in silico peptide screening and application of

genetic algorithm to determine inhibitory peptide against

Parkinson’s-disease-related protein a-Synuclein [18]; peptides as

thrombin inhibitors [19,20]; evaluation of energies for peptide
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binding to a user-defined protein surface patch via Genetic

algorithm for p53, oligopeptidase and DNA gyrase [21]; integer

linear programming [22]; design of hexapeptides against strome-

lysin protein by Singh et al. [23], and a peptide buildup approach

together with a genetic algorithm [24,25,26]. We have imple-

mented genetic algorithm and a Markov model for de novo

heptapeptide design in our recent study [27]. Most of the methods

cited in this paragraph use models that depend on structural

properties of the peptides and the peptide-protein complex. The

prior knowledge of the structural basis of peptide-protein binding

strategies is extremely important. The recent paper by London

et al. [28], that reviews these strategies is important for

understanding the basis of the works cited here. Important points

that should be taken into consideration in the sequential

generation of ligand molecules concerning the placement of

fragments on the surface are discussed by Pegg et al. [29].

Our method offers a novel procedure for de novo peptide design

that sequentially generates the peptide by docking its residues pair

by pair along a chosen path on a protein. We adopt three novel

approaches in our design: (i) The first one is the determination of

the binding site on a given protein which we determine using the

coarse grained Gaussian Network Model (GNM). Recently, we

showed that the GNM identifies the surface residues that are

suitable binding sites [30,31,32]. Once the binding region is

determined, we obtain the binding path on it by docking an

arbitrarily chosen peptide using AutoDock [33]. As will be

described below, this path is flexible and not very restrictive. (ii)

The second novel aspect of the model is the choice of the best

fitting peptide to this path. We generate all possible amino acid

pairs at each point along the path, calculate the binding energies

between these pairs and the specific location on the protein via

AutoDock, and form the statistical weight of each pair of amino

acids. Once all possible pairs are determined for the full path, we

form the Markov based partition function for all possible choices

of the peptides using the Ising model matrix multiplication scheme

[34]. We evaluate the transition probabilities based on this

partition function, and select the best peptide for the given surface

employing a Hidden Markov model (HMM) using Viterbi

decoding [35]. The types of amino acids are the hidden variables

of the algorithm to be obtained as the solution of the problem. (iii)

The third novel feature of our approach is the consideration of the

suitability of the conformations of the peptides that result upon

binding on the surface by including the intrinsic Ramachandran

potentials of the w2y angles [36]. These are the observables of the

Viterbi algorithm. As in the choice of the peptides, we assume that

the Ramachandran torsion angles obey Markov statistics accord-

ing to which a given torsion angle depends on the choice of the

preceding torsion angle.

The Viterbi algorithm is an efficient way of determining the best

state solution of a hidden Markov model based on a given

observation sequence [37,38] and is being used widely in the

analysis of biological data and in bioinformatics area [39]. Protein

structure prediction, where proteins are represented as Markov

states, utilizes the Viterbi algorithm. The methodologies are

summarized by Bystroff et al. [40]. Analysis of protein, RNA or

DNA sequences were also achieved by the Viterbi algorithm as

illustrated by a study on gene finding from DNA sequence by

Sramek et al. [41]. The prediction of the topology of all-beta

membrane proteins combining Viterbi and posterior algorithms

was proposed [42] as a modified Viterbi algorithm. Mirabeau

et al. determined novel peptide hormones by the Viterbi algorithm

by training their algorithm with known receptor protein peptide

hormone interactions and testing the model on peptide sequences

in databases [43]. A similar Viterbi algorithm was adopted by

Sonmez et al., [44]. Noguchi et al. employed the Viterbi algorithm

on 3 different studies for peptide design against MHC class II

proteins. Training was achieved by non-binding and binding

peptides of the target proteins and tests applied to different data-

set indicated that the method is able to predict binder peptide

sequences [11,14,16].

The plan of the paper is as follows: In the first part, we define

the methods needed for the Viterbi algorithm to run properly.

Firstly, we define the binding site and path selection procedure.

We then explain how the selected binding-path is partitioned into

n number of overlapping grids, where n is the desired peptide

length. Subsequently, the docking procedure of the 20 amino acids

for the first site and 400 dipeptides each of the succeeding n grids

on the binding-path are explained. The calculated binding energy

scores from the docking procedure are used to obtain the statistical

weights for the pair wise dependent choice of amino acids.

Knowing the weights, the partition function for a given sequence is

calculated using a matrix multiplication scheme and the transition

probabilities for each n grid are obtained. We define the various

regions on a Ramachandran map as the torsion states of the

residues. We then construct the probabilities of the torsion states of

a pair of neighboring residues using information from the Protein

Data Bank. Inasmuch as we are interested in the denatured

conformations of peptides, we construct a coil library from which

we obtain the probabilities of the torsion angles [45]. The bound

(docked) conformations of each dipeptide on each n grid are used

to obtain the torsion angle state of the dipeptide of interest which is

used to define the emission probabilities. In the second part of the

paper, implementation of the Viterbi algorithm to the peptide

binding problem is defined. In the final part, several examples are

given.

Methods

The Model
The model consists of five parts: (i) Determining the binding site

and the sequence of residues on the surface of the target protein on

which the peptide will be docked, (ii) determining the chiral

carbon positions of the n residue peptide that will be interacting

with the sequence of residues on the target protein surface, (iii)

partitioning the path of the n points into a sequence of grids, (iv)

docking, by using AutoDock, all 20 peptides to the first grid, and

all 400 dipeptides to the succeeding pairs of grids and evaluating

their binding affinities, (v) characterizing the w2y propensities of

the dipeptides. We then use the outcome of these five steps for the

implementation of the Viterbi algorithm.

Determining the binding site and the sequence of

residues on the target protein. The Gaussian network

model (GNM) has been shown to predict the protein residues

located at specific sites for drug binding [30,31,32]. We employed

GNM to predict ‘binding site residues’ that play major role in

peptide binding.

Having identified a site by the GNM, we then need a sequence

of residues on the protein that will be in contact with the binding

peptide. We choose this sequence of residues using either of the

following two approaches: (i) If the protein exists in complex with

other proteins, and if the site determined by the GNM lies in an

interface in the complex, then the complex is used to determine

this sequence of residues on the surface. Recently, two studies

indicated that protein-protein interactions, Tuncbag et al. [46]

and protein-peptide interactions, Vanhee et al. [47] adopt the

same structural motifs as monomeric protein folds. The existence

of specific folds at the interaction site increases the stability of the

formed protein-peptide complex. The counterpart fold of the
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target protein can be safely used as the fold of designed peptide.

The protein crystal structure of the target protein is given as input

to the web-server HotPoint [48] which predicts the residues of

interest on the surface. In Figure 1 an example obtained from the

HotPoint server is given. In this specific example the target protein

Human Growth Hormone (HGH) is formed by helices and the

counterpart protein Human Growth Hormone Receptor (HGHR)

is formed by beta-strands. The binding site of HGH, determined

by the GNM, is depicted in pink and the residues that interact with

the HGH binding-site, determined by HotPoint, are in green. The

region shown in pink will contain the residues to which the peptide

will bind. The chiral carbons of the residues shown in green are

used as grid-centers for the peptide to be designed, which will be

explained in the next section. (ii) If an interacting partner of the

protein does not exist, a probe peptide made up of all alanine

residues, equal in number to the residues of the peptide to be

designed, is docked to the binding site using AutoDock. The

specific aim of docking an all alanine peptide is to obtain a path

which may well be approximated by the backbone contour.

Deviations from this path, due to the forces imposed by placing

bulky side groups as the peptide grows on the surface for example,

are accounted for as described below. The details of AutoDock

parameters are given in Appendix S1. Chiral carbon coordinates

of the docked peptide are essential for further steps.

Partitioning the Path into Grids. Our aim is to design a

peptide of n amino acids. For this purpose, we need n points –one

for the center of each amino acid of the peptide- that is close to the

sequence of residues on the binding surface. We choose these n

points as the spatial coordinates of the chiral carbons of either the

docked probe peptide or the interacting protein portion

determined by HotPoint. Once this path of n points is defined,

n contiguous grid boxes are constructed, each centered around

one of the n points. The first grid contains the first amino acid.

The first and the second grids along the path contain the first and

the second amino acids. The tth and t+1st grids contain the tth and

t+1st residues. The n chiral carbon atoms of the path define the

centers of the n grid boxes.

Docking of amino acids & dipeptides to the binding

site. The AutoDock program [33] is used as the docking tool to

quantify the binding affinity between the dipeptides and the

selected protein surface. Python scripts are written to automate the

docking, the probability calculation and the peptide sequence

determination procedures. The binding affinity of a given peptide

to the surface is determined via AutoDock which gives the affinity

in terms of binding energy in kcal/mol.

All 20 amino acids are docked to the 1st grid of the pre-defined

path, such that their chiral carbon atoms are forced to coincide

with the first grid center. All 400 possible dipeptides are docked to

the first and second grid boxes, with the successive chiral carbons

located at the grid centers. The pair wise docking of the dipeptides

is continued in this way up to the last dipeptide along the path.

Pair wise docking rests on the assumption of the Markov property.

The amino acids and dipeptides are prepared by the HyperChem

software [49]. The dipeptides have Ace-cap on their N-termini.

The grid map is determined by the ADT subprogram of

AutoDock. The pre-determined spatial coordinates of the chiral

carbon atoms on the path are used as the AutoDock grid box

centers. The optimum grid box size is found by trial and error as

2.5 times the length of the distance between the first nitrogen and

the last carbon along the backbone of the amino acids. The grids

are set such that the chiral carbon atoms of the amino acid

coincide with the grid box centers but with a freedom to rotate and

translate in the box. This freedom, while keeping the dipeptides to

be constrained to the neighborhood of the chosen grids is

necessary to account for the side chain differences of the different

amino acids. It also decreases the entropy penalty of constraining a

peptide to a certain region. The parameters of AutoDock are given

in Appendix S2.

Docking the dipeptide on a given grid pair leads to a set of 400

binding affinities, one set for each dipeptide, which are used to

determine the probability of binding of each dipeptide to the

protein binding site as explained in the following section.

Calculation of transition probabilities. The 20 types of

amino acids and the peptide length n determine the number of

states in our model; there exists 20n states for the problem. For the

Markov model adopted here, one needs the transition

probabilities, i.e., the probability of an amino acid occupying the

t+1st position, given the amino acid at the tth location. The binding

energies of dipeptides obtained by AutoDock are used as the

statistical weights for determining the transition probabilities. We

adopt the Rotational Isomeric States (RIS) approach of polymer

physics which is well suited for this purpose [34,50,51]. For each

grid the probabilities are calculated via the formulation given

below by Eqs. 1, 2, 3, and 4. For the 1st grid 20 binding energies

are available, while for the remaining grid pairs 400 binding

energies are available; the corresponding statistical weight matrix

is given in Eq.1 and 2, respectively. The RIS matrix multiplication

scheme [34] is used to determine probabilities from the energies.

The statistical weight matrix U1 for the amino acid bound to the

1st grid box is

U1~exp bE1;i

� �
ð1Þ

where b~1=kT , k being the Boltzmann constant and T the

temperature, i is any of the 20 amino acids; alanine, cysteine, aspartic

Figure 1. Selection of path by HotPoint server. HGHR (on the left)
interacts with HGH (on the right): HotPoint predicts that the regions
indicated with green and pink colors interact. The green-colored HGHR
residues are selected as binding-sites. The pink-colored HGH residues
are selected as binding peptide path.
doi:10.1371/journal.pone.0010926.g001
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acid, glutamic acid, phenylalanine, glycine, histidine, isoleucine,

lysine, leucine, methionine, asparagine, proline, glutamine, arginine,

serine, threonine, valine, tryptophan, tyrosine.

The statistical weight matrix Utz1 for the dipeptide formed by

the tth and t+1st residues along the peptide is

Utz1~ exp bEt,tz1;i,j

� �
ð2Þ

where t, 1ƒtƒn{1ð Þ, represents the amino acid position number

(or the grid box number along the path). The i, j values represent

any of the 20 amino acids.

The partition function, Z, of the peptide is obtained according

to [34].

Z~J� P
n

t~2
Ut J ð3Þ

where J* = U1 ; J = column 1 1 1 . . . 1½ �. (It is to be noted that in the

Flory notation, the J* matrix is given as J �~t1 0 0 . . . 0s that

would assign alanine to the first residue of peptide. In the present

formulation, the choice of the J* matrix allows for the

acknowledgement of all of the 20 amino acids to be the first

residue).

The probability of having residue i at the tth position and

residue j at the t+1st position is determined by:

pt,tz1;i,j~
J�U2 . . . UtU

0
tz1 . . . UnJ

Z
ð4Þ

Here, U 0tz1 is the matrix obtained by equating all elements of

Utz1 to zero except the ijth. The formula given above in Eq. 4 is

used to calculate the probabilities of transition states. Here, we

keep the indices t and t+1, but they will be dropped in the

application to the Viterbi algorithm for simplicity of representation

with the understanding that each pair of sites has its own pij .

Determining the emission probabilities of the w2y
torsion angles. A fundamental requisite for favorable binding

of a peptide to the surface is that the torsion angles of the peptide

in the bound conformation should not be forced to have

energetically unfavorable w2y torsion angle values. The apriori

probabilities of the torsion angles are needed for this purpose. In

this section we explain the formation of these probabilities, called

the emission probabilities, and their incorporation into the Viterbi

algorithm as the observable variables.

Two sets of probabilities are needed for specifying the

conformation of the peptide. The first set gives the probabilities

of the torsion states determined by the angles wt2yt of the residue

at the tth grid. The second set gives the probabilities for the torsion

angles yt2wt+1 of the dipeptide formed by residues at tth and t+1st

grids. The representation of the defined torsion angles are shown

in Figure 2. The wt2yt torsion angles of the residue at grid t can

select any of eleven regions, as explained below and shown in

Figure 3. The torsion angles yt2wt+1 of the succeeding residue can

choose the eleven torsion angles as explained below and shown in

Figure 4. Each dipeptide is capped at its N-terminus by an acetyl

group in order to define the wt angle.

The w and y angles of a residue cannot adopt all values due to

backbone intrinsic torsion propensities and attractive and repulsive

interactions of atoms that are in close proximity for certain

combinations of these two angles. Among the repulsive interac-

tions, steric hindrances resulting from the side groups are the most

pronounced. Hydrogen bonds are the most pronounced favorable

interactions. Depending on the type of the residue, these angles

show preferences for different regions on the Ramachandran map.

The frequency of occurrence of these regions for the twenty amino

acids can be obtained from the Protein Data Bank, PDB. An

examination of the frequency of occurrence of the regions for

neighboring units shows that there is strong dependence on

residue type [50,51].

Figure 2. Schematic representation of torsion angles of a
dipeptide. Only the backbone atoms of dipeptide are given and the
acetyl cap on the N-terminal is shown as ACE, for simplicity.
doi:10.1371/journal.pone.0010926.g002

Figure 3. The representation of eleven states on Ramachan-
dran map.
doi:10.1371/journal.pone.0010926.g003

Figure 4. The probability distribution of Yt2Wtz1 angles on
Ramachandran map.
doi:10.1371/journal.pone.0010926.g004
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Plotting the wt2yt angles on a Ramachandran map from PDB

data, irrespective of residue type shows that there are eleven major

isomeric torsion angle states. These are shown in Figure 3. We

number the regions from 1 to eleven according to the notation of

Reference [52] shown in Table 1.

In obtaining Figure 3, the non-redundant PDB Select database

of native proteins was used. There are 197,458 points on the

Ramachandran map obtained from the database. 96% of these

points fell on the eleven regions shown in Figure 3. The

remaining 4% of points were outside of these regions which are

known to correspond to strained conformations of the residues

resulting from long range perturbations. We ignored this set of

4%.

The probability of occurrence of a residue in any of the eleven

regions given above depends on the type of the library used. Since

we are interested in the denatured conformations of peptides, we

calculated the probabilities over a coil library that we constructed.

The coil library was downloaded from the website: http://www.

roselab.jhu.edu/coil/. The library contains fragments selected by

Dunbrack’s PISCES server according to the following criteria: less

than 20% sequence identity, better than 1.6 angstrom resolution,

and a refinement factor of 0.25 or better [51].

A given residue may be of type i 1ƒiƒ20ð Þ at the tth grid, and

may be in torsion-state m, which is one of the eleven regions shown

in Figure 3. The frequency of occurrence of wt2yt in torsion-states

m for the ith type of residue was collected in a two dimensional

array, f i,mð Þ which is the normalized frequency that an amino

acid is of residue type i in torsion-state m. The singlet probability

bi,m that the a residue along the peptide is of type i having the

torsion-state m is

bi,m~
f i,mð Þ
P

m0
f i,m0ð Þ ð5Þ

For a given i, bi,m is a column vector of eleven entries. In Figure 5,

bi,m values are given for GLY as an example.

The choice of the torsion state of the tth residue places

restrictions on the choice of the torsion state of residue t+1 due to

the dependence of the torsion angle wt+1 on yt. The extent of this

dependence for all pairs of residues in the coil library is depicted in

Figure 4 where the joint probability distribution of yt2wt+1 is

presented. For uniformity of representation, we keep the same

eleven regions of yt2wt+1. In obtaining Figure 4, the non-

redundant PDB Select database of native proteins was used. There

are 955,679 points on the Ramachandran map obtained from the

database. 91% of these points fell on the eleven regions shown in

Figure 3. The remaining 9% of points were outside of these

regions. We ignored this set of 9%. The probabilities are

calculated over the coil library of http://www.roselab.jhu.edu/

coil/.

The probability bi,j,m that the residue j is in state m of yt2wt+1

space when the preceding residue is of type i is

bi,j,m~
f i,j,mð Þ
P

m0
f i,j,m0ð Þ ð6Þ

For a given ij, bi,j,m is a column vector of eleven entries.

For each n grid box, the docked conformation of the dipeptides

is determined by AutoDock. Knowing the conformation leads to

the wt2yt and yt2wt+1 angles. Thus, the torsion-state of the angles

is determined. Equations 5 and 6 give the apriori probability of

observing the torsion-states. The product of the two probabilities,

bi,m and bi,j,m, is called the emission probability for the torsion

state of residue j when the preceding residue i is already

prescribed. In the Viterbi algorithm below, this is indicated as

bi,j . The index m will be removed for simplicity.

Implementation of the Viterbi Algorithm
We follow the notation of Reference [39] in our application of

the Viterbi algorithm.

We need the following definitions:

n: Number of residues of the peptide.

t: Grid number, 1ƒtƒn

m: Index identifying the torsion state, 1ƒmƒ11

S~ S1,S2, . . . ,S20f g The 20 natural amino acids set.

A~ a1,a2, . . . ,a11f g: The eleven torsion angle regions.

qt: The state of the tth grid. For example qt~Si means that

the state of the tth grid is the amino acid Si.

at: The torsion-state of the amino acid at the tth grid.

P~ pij

� �
: The transition probability, pij~Pr qtz1~Sj D

�

qt~SiÞ.
b~ bi,j

� �
: The emission probability, bi,j~ Pr atz1~Aj D

�

at~AiÞ

Table 1. Notation for the eleven states.

State Notation Desrcription

1 e9 Mirror image of the extended region e

2 e The extended regions, Q.0, y, 2+180u

3 aR Right-handed alpha helix

4 c Tight turn region

5 dR The right handed bridge region between two b-strands

6 dL Mirror image of the dR region

7 f Region observed mostly in residues preceding PRO

8 c9 Inverse tight turn region

9 aL Mirror image of aR

10 bs Extended beta sheet forming region

11 bp Region with extended polyproline-like helices

doi:10.1371/journal.pone.0010926.t001

Figure 5. The probability distribution of GLY Wt2Yt angles,
derived from coil library. The dipeptide is mostly observed in the 6th

state; and the least observation occurs for state 7.
doi:10.1371/journal.pone.0010926.g005
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p~ pið Þ: The initial distribution vector, where pi~Pr
q1~Sið Þ.

The sets S and A describe the structure of the model, P, b and p
describe the parameters.

Our intention is to determine arg max
S

Pr q1,q2, . . . ,qnDa1,ð
a2, . . . ,anÞ, meaning a peptide sequence made up of preferable

torsion angles and with high affinity to protein binding-site. The

algorithm is divided into two parts. Firstly, in the forward tracking

step, the algorithm finds max Pr q1,q2, . . . ,qnDa1,a2, . . . ,anð Þ. The

forward tracking employs emission and transition probabilities.

Then the algorithm backtracks to determine an a1,a2, . . . ,an that

realizes this maximum.

For an arbitrary position t and amino acid type i:

dt ið Þ: The maximum probability of all ways to end in state Si

at grid t and have observed the torsion states a1,a2, . . . ,at.

dt(i)~ max
q1,q2 :::qt{1

Pr q1,q2, . . . ,qt{1,qt~Si and a1,a2, . . . ,atð Þ ð7Þ

where

d1(i)~ Pr q1~S1 and a1ð Þ ð8Þ

then,

max
q1,q2,...,qn

Pr q1,q2, . . . ,qn and a1,a2, . . . ,anð Þ ð9Þ

is determined.

Initialization step.

d1 ið Þ~pibi a1ð Þ, 1ƒiƒ20 ð10Þ

d1 is 1620 array, keeping the binding affinity probabilities of each

amino acid for the 1st grid box. pi is the initial probability of

binding of any 20 amino acids to the 1st grid box and is a 1620

array. All entries of pi are chosen as unity to give equal chance for

selection of any 20 amino acids as the initial residue of the peptide.

The binding affinity and the corresponding torsion states are

determined by AutoDock. The choice of the first residue will

contain the information of its torsion angles from AutoDock,

leading to the knowledge of the emission probability bi a1ð Þ which

is accounted for in Eq. 10.

Induction step.

dtz1 jð Þ~ max
1ƒiƒ20

dt ið Þpijbi,j atz1Datð Þ, 1ƒtƒn{1,1ƒi,jƒ20 ð11Þ

dtz1 is 1620 array, keeping the binding affinity and torsion angle

preference probabilities of each dipeptide for t+1st grid.

Backtracking. For each grid box, the maximum probabilities

are kept in dt ið Þ arrays, as defined in the previous section by Eq.

11. Backtracking of those arrays leads to the determination of a

peptide sequence with a possible affinity to protein binding-site.

Initially, the last residue of the peptide sequence is determined

from the 20 entries of dn, the array of the last grid box. The

maximum entry of dn is selected, which determines the amino acid

residue qn.

We let

Jn~ arg max
1ƒiƒ20

dn ið Þ ð12Þ

and choose qn~SJn . Thus, qn is the final state of the last residue of

the peptide.

The remaining qi, that is the amino acid types, for 1ƒtƒn{1
are found recursively by determining:

Jt~ arg max
1ƒiƒ20

dt ið ÞpiJtz1
ð13Þ

and then putting qt~SJt . The backtracking method leads to a

peptide sequence with high affinity to the target protein surface.

Quantifying the peptide – Target protein Interaction.

The AutoDock software is used for validating the accuracy of the

solutions. The tertiary structure of the designed peptide is prepared

using HyperChem. The details of the procedures are given in Appendix

S2. The binding affinity calculation between the target protein and the

designed peptide was carried out by AutoDock.

Test of the Algorithm
Protein-tripeptide case studies. As a proof of concept, the

Viterbi algorithm is tested on five known protein-tripeptide

complexes. The aim is to demonstrate the feasibility and the

reliability of the algorithm.

The binding energy between the target protein and the peptide

designed by Viterbi are determined by the AutoDock program.

The inhibition constant Ki is also calculated by AutoDock. The

visualization of complexes is achieved by Accelerys Discovery

Studio 2.5 program [53].

The first complex is HIV-1 protease interacting with the

tripeptide Glu-Asp-Leu. The PDB accession number of this

complex is 1A30 [54]. This tripeptide is the smallest analogue of

HIV-1 transframe octapeptide (TFP) Phe-Leu-Arg-Glu-Asp-Leu-

Ala-Phe, which is known to be the most potent inhibitor of the

target protein. The inhibition of the protein with this peptide is

selective and specific.

The second complex is scytalidocarboxyl peptidase B protein

interacting with the tripeptide Ala-Ile-His (1S2K) [55]. The

protein is pepstatin-insensitive carboxyl peptidase from the

organism Scytalidium lignicolum. The crystal structure contains the

protein and the cleaved angiotensin II peptide: Ala-Ile-His. The

tripeptide is bound to the catalytic residues Gln-53 and Glu-136 of

the protein.

The other complex chosen is the signaling protein from goat

mammary gland (SPG-40) and the tripeptide Trp-Pro-Trp

(1ZBW) [56]. The protein plays role in signaling for reductive

remodeling of mammary gland. The remodeling is necessary after

cessation of lactation in female mammals. The protein is known to

interact with oligosaccharides; the binding enhances protein-

protein interactions. The tripeptide Trp-Pro-Trp sits at the active

site, to which oligosaccharides bind.

The peptide deformylase (PDF) from Enterococcus faecium

organism with Met-Ala-Ser tripeptide is another selected complex

(3G6N), to which the peptide design algorithm is applied [57]. E.

faecium are found in normal flora of the intestinal track, but the

Vancomycin (an antibiotic) resistant types of bacteria cause

infection commonly in hospitals and the strain is resistant to all

commercially available antibiotics. The PDF protein is essential

for bacterial growth, making it a potential drug target. The Met-

Ala-Ser motif is recognized by the active site of the protein.

The last test case for tripeptides is concanavalin A (Con A)

protein with Tyr-Pro-Tyr peptide (1HQW) [58,59]. The peptide is

determined to the best binding part out of ,1.46109 octapeptides.

A highly diverse phage library procedure is used to determine this

(7)
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sequence. Con A is a carbohydrate-binding protein; the literature

indicates the importance of carbohydrate binding in various

biological processes. Consequently, inhibition of carbohydrate-

specific proteins is important for novel drug development. The

chemical synthesis of oligosaccharides is a sophisticated procedure

since protection of sugar monomers is complicated; peptides can

be used as ligands for such protein targets. The Tyr-Pro-Tyr

peptide is shown to inhibit binding of known monosaccharide

ligands to Con A.

Protein-heptapeptide case studies. In the second step of

our test, we applied the method to the design of heptapeptides

against Proteinase K, and HLA-B*2705 proteins. Both of these

proteins have known peptide ligands in the literature.

Proteinase K is a serine protease with broad specificity. The

PDB accession number of the inhibitor peptide Pro-Ala-Pro-Phe-

Ala-Ala-Ala in complex with the protein is 1P7V from the

organism Engyodontium album. The article about the crystal

structure and interaction details of this protein-peptide complex

has not yet been published.

HLA-B*2705 is a disease-associated human MHC class I allele

HLA-B27 subtype protein. The protein is the target for

nonapeptides. The self peptide sequence of this protein is Arg-

Arg-Lys-Trp-Arg-Arg-Trp-His-Leu. The copy number of this

peptide in ankylosing spondylitis patients is observed to increase

[60]. Viral peptide Arg-Arg-Arg-Trp-Arg-Arg-Leu-Thr-Val de-

rived from Epstein-Barr virus membrane has shown to have

affinity to HLA-B*2705 [61]. The glucagon receptor-derived

peptide Arg-Arg-Arg-Trp-His-Arg-Trp-Arg-Leu has also proven

to interact with HLA-B*2705 [62]. The PDB accession codes of

those 3 peptides in complex with HLA-B*2705 are 1OGT,

1UXS, 2A83.

Predicting a peptide for a protein with no known peptide

ligand. The Human Growth Hormone (HGH) is responsible for

linear growth in vertebrates via stimulation of skeletal and visceral

growth. The protein also plays a role in carbohydrate metabolism

and fat mobilization from tissues [63]. The PDB accession code of

the protein is 1HGU [64]. A crystal structure of the protein-

peptide complex is not available in PDB. Consequently, the most

possible binding site of the protein is determined by GNM.

Results

HIV-1 protease peptide
The Viterbi program designed the Trp-Tyr-Val tripeptide with

high binding affinity for the HIV-1 protease. The binding affinity

was calculated as 29.59 kcal/mol by AutoDock; the Ki value was

94.12 nanomolar. The binding affinity of the known inhibitor Glu-

Asp-Leu was determined by AutoDock as 27.66 kcal/mol; the Ki

value was 2.43 micromolar. The affinity terms are summarized in

the Table 2. The binding region of the peptides is shown in

Figure 6. Figure 6A indicates the complex formed by the HIV-1

protease with Glu-Asp-Leu, while Figure 6B indicates the complex

formed by the HIV-1 protease with Trp-Tyr-Val. As the figures

imply, both of the peptides bind to the same active-site on the

protein.

The HIV-1 protease is formed by 2 identical chains: chain A

and chain B. Glu-Asp-Leu interacts with the chain A residues Asp-

25, Gly-27 Ala-28, Asp-29, Asp-30, Met-46, Gly-48; and with the

chain B residues Arg-8, Asp-25, Val-82. The peptide makes five

Hydrogen bonds with Gly-27, Asp-29, Asp-30 and Gly-48 shown

in Figure 7A. A salt bridge is present between Asp-29 of the chain

A and Glu residue of the peptide. The sulfide atom of Met-46 from

the chain A makes a bond with the oxygen atom of Asp.

Trp-Tyr-Val interacts with the chain A residues Asp-25, Gly-27,

Ala-28, Asp-29, Asp-30, Gly-48, Pro-81, Val-82, Ile-84; and with

the chain B residues Asp-25, Gly-27, Ala-28, Ile-50, Thr-80, Pro-

81, Val-82, Ile-84. The peptide makes nine Hydrogen bonds with

Asp-25 of the both chains, Ile-50, Thr-80 and Val-82 as shown in

Figure 7B. There are 2 salt bridges between Asp-25 of the chain A

and the Trp residue of the peptide. Another 2 salt bridges are

present between Asp-25 of the chain B and Trp residue of the

peptide.

Scytalidocarboxyl peptidase B peptide
The Viterbi program designed the tripeptide Arg-Arg-Arg as

potential binder peptide for the scytalidocarboxyl peptidase B

protein. The binding affinity of this peptide was calculated as

212.96 kcal/mol; the Ki value was 315.78 picomolar. The known

inhibitor Ala-Ile-His binding affinity for the target protein was

determined as 25.33 kcal/mol; the Ki value was 124.38

Table 2. Binding energy; Ki values of HIV-1 protease peptides.

Peptide Binding Energy (kcal/mol) Ki

Glu-Asp-Leu 27.66 2.43 mM

Trp-Tyr-Val 29.59 94.12 nM

doi:10.1371/journal.pone.0010926.t002

Figure 6. HIV-1 protease peptide complexes. (A) Glu-Asp-Leu and HIV-1 protease. (B) Trp-Tyr-Val and HIV-1 protease.
doi:10.1371/journal.pone.0010926.g006
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micromolar. The affinity terms are summarized in Table 3. The

binding region of the peptides is shown in Figure 8; Figure 8A

indicates the complex formed by the scytalidocarboxyl peptidase B

with Ala-Ile-His, while Figure 8B indicates the complex formed by

the scytalidocarboxyl peptidase B with Arg-Arg-Arg. As the figures

imply, both of the peptides bind to the same active-site.

Ala-Ile-His interacts with the residues Gln-53, Asp-57, Trp-67,

Glu-136, Phe-138, Glu-139, Glu-140, Cys-141, and Cys-148. The

peptide makes two Hydrogen bonds with Glu-139 as shown in

Figure 9A. p{p stacking between Trp-67 and His residues of the

peptide is present. There is a salt bridge between Glu-139 and Ala

residue of the peptide. Sulfide atom and aromatic ring interaction

is present between residues Cys-141 and His; Cys-148 and His. S-

O bonding is present between the residues: Cys-141 and Ala; Cys-

148 and Ala.

Arg-Arg-Arg interacts with the residues Trp-6, Trp-39, Gln-53,

Asp-57, Tyr-59, Asp-65, Trp-67, Glu-69, Glu-73, Glu-136, Phe-

138, Glu-139, Glu-140, and Cys-141. The peptide makes fifteen

Hydrogen bonds with the residues Asp-57, Tyr-59, Glu-69, Glu-

73, Glu-136, Glu-139, and Glu-140 as indicated in Figure 9B. p-

cation interactions are observed between Phe-138 and Arg-1

residue of the peptide; Trp-39 and Arg-3 residues. There are salt

bridges Glu-69 and Arg-1; Glu-140 and Arg-1; Glu-136 and Arg-

3; Asp-65 and Arg-3; also an internal salt bridge between Arg-1

and Arg-3 residues of the peptide. Arg-1 interacts with Cys-141

through S-O bonding.

SPG-40 peptide
The Viterbi program designed the tripeptide Trp-Tyr-Tyr as

the sequence with possible binding affinity to SPG-40. The

binding affinity of this peptide was calculated as 210.97 kcal/mol;

the Ki value was 9.04 nanomolar. The known inhibitor Trp-Pro-

Trp binding affinity for the target protein was determined by

AutoDock as 29.10 kcal/mol; the Ki value was 215.27 nanomo-

lar. The affinity terms are summarized in Table 4. The binding

region of the peptides is shown in Figure 10. Figure 10A indicates

the complex formed by SPG-40 with Trp-Pro-Trp, while

Figure 10B indicates the complex formed by SPG-40 with Trp-

Tyr-Tyr. As the figures imply, both of the peptides bind to the

active-site of the protein. Trp-Pro-Trp interacts with the residues

Trp-10, Arg-14, Asn-79, Thr-267, and Glu-269. The peptide

makes two Hydrogen bonds with Asn-79 shown in Figure 11A.

There is a salt bridge between Glu-139 and Ala residue of the

peptide.

Trp-Tyr-Tyr interacts with the residues Trp-10, Arg-14, Cys-

20, Phe-37, Trp-78, Asn-79, Asp-186, Arg-242, Glu-269, Ile-272,

Trp-331, Asp-334, and Leu-335. The peptide makes six Hydrogen

bonds with the residues Arg-14, Arg-242, and Glu-269 shown in

Figure 11B. p{p stacking is observed between Trp-10 and Trp-1

residue of the peptide and Phe-37 and Trp-1 residues. p- cation

interactions are observed between Trp-78 and Tyr-2; Trp-10 and

Trp-1; also between Tyr-2 and Trp-1 residues of the peptides;

Tyr-2 and Tyr-3 residues of the peptides. There are salt bridges

between Glu-269 and Trp-1. There exists aromatic ring and

sulfide interaction between Cys-20 and Tyr-2.

PDF peptide
The Viterbi program designed Val-Trp-Trp as peptide with

possible binding affinity to PDF. The binding affinity of this

peptide was calculated as 29.52 kcal/mol and the Ki value was

105.71 nanomolar. The known inhibitor Met-Ala-Ser binding

affinity for the target protein was determined as 28.07 kcal/mol.

The Ki value was 1.21 micromolar. The affinity terms are

summarized in Table 5. The binding region of the peptides is

shown in Figure 12. Figure 12A indicates the complex formed by

the PDF with Met-Ala-Ser, while Figure 12B indicates the

complex formed by the PDF with Val-Trp-Trp. As the figures

imply, both peptides bind to the active-site on the protein. The

Fe+2 ion in the active site is shown with CPK representation.

Met-Ala-Ser interacts with the residues Gly-57, Val-59, Gly-60,

His-76, Gly-113, Leu-115, Tyr-150, His-157, His-161, and Phe-

167. The peptide makes no Hydrogen bonds with the protein,

Figure 13A. A sulfide atom and aromatic ring interaction occurs

between the residues His-76 and Met; Tyr-150 and Met; His-157

and Met; His-161 and Met; Phe-167 and Met.

Val-Trp-Trp interacts with the residues Met-4, Gln-45, Gly-57,

Gly-58, Gly-60, Leu-108, Glu-110, Gly-111, Glu-112, Gly-113,

Figure 7. Detailed analysis of HIV-protease peptide complexes. Hydrogen bonds are indicated with green lines. (A) Glu-Asp-Leu and HIV-1
protease. (B) Trp-Tyr-Val and HIV-1 protease.
doi:10.1371/journal.pone.0010926.g007

Table 3. Binding energy; Ki values of scytalidocarboxyl
peptidase B peptides.

Peptide Binding Energy (kcal/mol) Ki

Ala-Ile-His 25.33 124.38 mM

Arg-Arg-Arg 212.96 315.78 pM

doi:10.1371/journal.pone.0010926.t003
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Cys-114, Leu-115, Tyr-150, His-157, Glu-158, Met-166, and Glu-

187. The peptide makes four Hydrogen bonds with Gly-111, Gly-

113 and Tyr-150 as shown in Figure 13B. There are internal salt

bridges between Val-1 and Trp-3 residues of the peptide. There is

an aromatic ring and sulfide atom interaction between the residue

pairs Cys-114 and Trp-3, Met-4 and Trp-3, Met-166 and Trp-3.

Con A peptide
The Viterbi program designed the tripeptide Gly-Ala-Tyr for Con

A. The binding affinity of this peptide was calculated as 25.70 kcal/

mol; the Ki value was 65.83 micromolar. The known inhibitor Tyr-

Pro-Tyr binding affinity for the target protein was determined as

25.70 kcal/mol. The Ki value was 144.38 micromolar. The affinity

terms are summarized in Table 6. The binding region of the peptides is

shown in Figure 14; Figure 14a indicates the complex formed by the Con

A with Tyr-Pro-Tyr, while Figure 14b indicates the complex formed by

the Con A with Gly-Ala-Tyr. As the figures imply, both peptides bind

to the active-site of the protein. Tyr-Pro-Tyr interacts with the residues

Thr-15, Ser-21. The peptide makes one Hydrogen bond with

Thr-15.

Gly-Ala-Tyr interacts with the residues Thr-11, Tyr-12, Pro-13,

Thr-15, Asp-16, His-205, Pro-206, and Arg-228. The peptide

makes seven Hydrogen bonds with Thr-11, Tyr-12, Asp-16,

Pro-206 and Arg-228. p{p stacking is probable between Tyr-12

and Tyr residues.

Proteinase K peptide
The Viterbi program designed the Trp-Tyr-Tyr-Tyr-Tyr-

Tyr-Tyr heptapeptide with possible binding affinity to Protein-

ase K. The binding affinity of this peptide was calculated as

211.59 kcal/mol. The Ki value was 3.22 nanomolar. The

known inhibitor Pro-Ala-Pro-Phe-Ala-Ala-Ala binding affinity

for the target protein was determined as 28.52 kcal/mol; the Ki

value was 569.86 nanomolar. The affinity terms are summa-

rized in Table 7. Both peptides bind to the active-site on the

protein.

Pro-Ala-Pro-Phe-Ala-Ala-Ala interacts with the residues Asn-

67, His-69, Asn-99, Gly-100, Tyr-104, Leu-133, Gly-134, Gly-

135, Gly-136, Ala-158, Gly-160, Asn-161, Asn-162, Trp-212, Ile-

220, Ser-221, Thr-223, Ser-224, and Met-225. The peptide makes

one Hydrogen bond with Gly-102. There exist a pi-cation

interaction between Tyr-104 and Pro-1. A sulfide atom and

aromatic ring interaction is observed between Cys-73, Met-225

residues and Phe-4. The sulfide atom oxygen interaction is present

between Cys-73 and Ala-7. The stacking of ring structures is

observed for His-69 and Phe-4.

Figure 8. Scytalidocarboxyl peptidase B peptide complexes. (A) Ala-Ile-His and scytalidocarboxyl peptidase B. (B) Arg-Arg-Arg and
scytalidocarboxyl peptidase B.
doi:10.1371/journal.pone.0010926.g008

Figure 9. Detailed analysis of scytalidocarboxyl peptidase B peptide complexes. Hydrogen bonds are indicated with green lines. (A) Ala-
Ile-His and scytalidocarboxyl peptidase B. (B) Arg-Arg-Arg and scytalidocarboxyl peptidase B.
doi:10.1371/journal.pone.0010926.g009
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Trp-Tyr-Tyr-Tyr-Tyr-Tyr-Tyr interacts with the residues Asn-

67, His-69, Asn-99, Ser-101, Gly-102, Gln-103, Tyr-104, Leu-

133, Gly-134, Ala-158, Gly-160, Asn-161, Asn-162, Tyr-169, Ser-

170, Ala-172, Trp-212, Ile-220, and Ser-224. The peptide makes

three Hydrogen bonds with Gln-103, Ser-170 and Asn-161. A

sulfide atom and aromatic ring interaction is observed between

Cys-73, Met-225 residues and Trp-1, Tyr-2, Tyr3 residues of the

peptide. p{p stacking is observed between His-69, Trp-212 and

Trp-1; His-69 and Tyr-2; Tyr-169 and Tyr-3; Phe-192 and Tyr-4;

Tyr-104 and Tyr-6; also between Tyr-5 and Tyr-6 of the peptide.

A pi-cation interaction is present between His-69 and Trp-1.

HLA-B*2705 peptide
The Viterbi program designed the Trp-Arg-Trp-Trp-Lys-Tyr-

Tyr heptapeptide for HLA-B*2705. The binding affinity of this

peptide was calculated as 28.97 kcal/mol; the Ki value was

265.82 nanomolar. The known inhibitors Lys-Trp-Arg-Arg-Trp-

His-Leu, Arg-Trp-His-Arg-Trp-Arg-Leu, Arg-Trp-Arg-Arg-Leu-

Thr-Val binding affinity for the target protein were determined by

AutoDock as 26.84, 27.21, and 28.52 kcal/mol, respectively.

The affinity terms are summarized in Table 8. Both peptides bind

to the active-site on the protein.

Lys-Trp-Arg-Arg-Trp-His-Leu interacts with residues Arg-62,

Ile-66, Lys-70, Thr-73, Asp-77, Tyr-99, His-114, Lys-146, Trp-

147, Val-152, Gln-155, Lue-156, and Tyr-159. The peptide makes

nine Hydrogen bonds with Ile-66, Lys-70, Asp-77, Tyr-84, Tyr-99,

Thr-143, Trp-147, and Gln-155. There exist pi-cation interactions

between Lys-146 and His-6; Lys-1 and Trp-2; Tyr-159 and Lys-1;

and Tyr-99 and Lys-1. A salt-bridge is present between Asp-77

and Arg-3. A sulfide atom and aromatic ring interaction is

observed between Cys-164, Met-5 residues and Trp-2. Stacking of

ring structures is observed for Tyr-99 and Trp-2; Tyr-159 and

Trp-2; Trp-2 and Trp- 7 in the peptide; Trp-147 and Trp-5; Trp-

133 and Trp-5; Trp-147 and His-6.

Trp-Arg-Trp-Trp-Lys-Tyr-Tyr interacts with the residues Ala-

69, Thr-73, Glu-76, Thr-80, Arg-83, His-114, Lys-146, Trp-147,

Ala-150, Val-152, Gln-155 and Leu-156. The peptide makes three

Hydrogen bonds with Thr-80, Arg-83 and Gln-155. A sulfide atom

and aromatic ring interaction is observed between Cys-67 and Trp-

4 residue of the peptide. p{p stacking is observed between Trp-147

and Trp-1; His-114 and Trp-3; Trp-147 and Trp-3; Tyr-99 and

Trp-3; Trp-133 and Trp-3; Trp-147 and Tyr-6.

HGH peptide
The Viterbi program designed Trp-Glu-Leu-Met-Phe-Phe-Tyr

heptapeptide for HGH. The binding affinity of this peptide was

calculated as 28.05 kcal/mol; the Ki value was 1.25 micromolar.

The affinity terms are summarized in Table 9.

Trp-Glu-Leu-Met-Phe-Phe-Tyr interacts with the residues Met-

14, His-21, Gln-22, Phe-25, Arg-64, Glu-65, Gln-66, Thr-175,

Arg-178, Cys-182, and Cys-189. The peptide makes five

Hydrogen bonds with Arg-64 and Arg-178. There exist a pi-

cation interaction between Arg-178 and Tyr-7. A sulfide atom and

aromatic ring interaction is observed between Met-170 and Trp-1;

His-18 and Met-4; Met-14, Cys-182, Cys-189 and Phe-5; Met-14,

Cys-182, Cys-189 and Phe-6; Cys-182, Cys-189, Met-14 and Tyr-

7. Sulfur – oxygen interactions exist between Ser-188 and Met-4;

Cys-189 and Met-4; Cys-182, Cys-189 and Phe5; Cys-182, Cys-

189 and Phe-6; Cys-182 and Tyr-7. Stacking of ring structures is

observed for His-21 and Trp1; Phe-25 and Trp-1; His-18 and

Trp-1; His-18 and Phe-5.

Discussion

The Viterbi algorithm is successful in predicting tripeptides to

the five proteins. The binding affinities of the designed tripeptides

are all superior to the binding affinities of their known tripeptide

ligands. The comparison is made by using the affinities given by

the AutoDock. The method is also successful in predicting

heptapeptides to the two proteins, proteinase K and HLA*B2705.

The method was able to determine a better potential binding

peptide for these two proteins.

The ability of our algorithm for de novo peptide design is proven

for the HGH protein case-study. The binding affinity of the

peptide is comparably better than some known peptide inhibitor

affinities for their own target proteins.

The binding surfaces of all target proteins, except Con A, have

both hydrophilic and hydrophobic residues. The Con A binding

Table 4. Binding energy; Ki values of SPG-40 peptides.

Peptide Binding Energy (kcal/mol) Ki

Trp-Pro-Trp 29.10 215.27 nM

Trp-Tyr-Tyr 210.97 9.04 nM

doi:10.1371/journal.pone.0010926.t004

Figure 10. SPG-40 peptide complexes. (A) Trp-Pro-Trp and SPG-40. (B) Trp-Tyr-Tyr and SPG-40.
doi:10.1371/journal.pone.0010926.g010
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surface is made up of only hydrophilic residues. The results imply

that a binding surface with both hydrophilic and hydrophobic

residues could lead to a potential binder peptide design by our

method. A surface exposed to water, with all hydrophilic residues,

may not lead to very potent peptide designed by the Viterbi

algorithm. This may be due to low number of residues in each grid

box, since there is no cavity on the Con A surface. All other

protein targets described in this paper have specific cavities as the

binding surfaces. Consequently, the number of protein residues

interacting with amino acids/dipeptides is low for the binding

surfaces that are highly exposed to solvent. Balanced number of

hydrophilic-hydrophobic residues in a grid box leads to more

specific interactions. The specific interactions lead to design of a

specific peptide with affinity to the selected protein surface.

The HIV-1 protease binding surface has 24 net charges, 50%

of residues that form the surface is hydrophobic; the Trp-Tyr-Val

peptide designed for this surface has two hydrophobic and one

hydrophilic residues. The hydrophobic residue number is in

harmony with the number of hydrophobic residues of the protein

(chain A: Ile-50, Pro-81, Val-82, Ile-84; chain B: Pro-81, Val-82,

Ile-84). The hydrophilic residue Tyr, which sits in the middle of

the peptide, is in close proximity to the polar and basic residues of

the protein surface. The known peptide of this protein has one

hydrophobic and two basic residues; the only hydrophobic residue

is close to Val-82 of chain B. The known peptide Glu-Asp-Leu

makes interactions with only the hydrophilic and the charged

residues; while the designed peptide also interacts with the

hydrophobic residues of the binding pocket. Although the number

of the intermolecular hydrogen bonds and the salt-bridges are the

same for the protein-known peptide and the protein-designed

peptide; the electrostatic compatibility between the protein and the

designed peptide is more appropriate.

The Scytalidocarboxyl peptidase B binding surface has 24 net

charges, 25% of residues is hydrophobic; the designed peptide

Arg-Arg-Arg has +3 net charges. There are seven basic residues in

the binding pocket; so the designed peptide stabilizes itself by

electrostatic complementarity and the salt bridge formation. The

known peptide Ala-Ile-His has two hydrophobic and one acidic

residues; this peptide can interact with only 50% of the basic

residues of the binding region. The designed peptide size is larger

than that of the Ala-Ile-His peptide and the designed peptide also

contains more positive charge. The tripeptide Arg-Arg-Arg makes

a fine interaction with protein surface. The designed peptide

makes three times more hydrogen bonds with the protein, when

compared to the known peptide-protein interaction. The p
interactions and the sulfur atom bonds are observed in both the

protein-known peptide and the protein-designed peptide systems.

The electrostatic compatibility between the protein and the

designed peptide is more appropriate.

The SPG-40 protein binding region has no net charge, since it

contains one acidic and one basic residues. 20% of residues is

hydrophobic; the designed Trp-Tyr-Tyr peptide has two hydro-

philic and one hydrophobic residues. The only hydrophobic

residue Trp is surrounded by six hydrophobic residues; four of

those hydrophobic amino acids have aromatic ring in their side

chains enabling the p interactions. Our method designed a peptide

with two Tyr residues, which are similar to saccharide monomers.

Also Trp residue of the designed peptide has aromatic ring

structure that is also observed in saccharides. The similarity is

important since the binding molecule of the target protein is

oligosaccharides. The known peptide is made up of all

hydrophobic residues. The designed peptide makes more hydro-

gen bonds with the protein, compared to the known peptide. The

p interactions and the sulfur atom bonds are observed only in the

protein-designed peptide.

The peptide deformylase binding surface has no charge, 33% of

residues is hydrophobic; the designed Val-Trp-Trp peptide is

made up of all hydrophobic residues. The known peptide consists

of two hydrophobic and one hydrophilic residues. The known

peptide makes five sulfide – aromatic ring interactions; while the

designed peptide makes five sulfide – aromatic ring interactions

and four Hydrogen bonds.

The Con A binding surface is exposed to water with no charge;

the peptide Gly-Ala-Tyr has two hydrophilic and one small

hydrophobic residues. The known peptide is also made up of two

hydrophilic and one hydrophobic residues. Both of the peptides

have their hydrophilic residue as the 2nd amino acid. The designed

Figure 11. Detailed analysis of SPG-40 and peptide complexes. Hydrogen bonds are indicated with green lines. (A) Trp-Pro-Trp and SPG-40.
(B) Trp-Tyr-Tyr and SPG-40.
doi:10.1371/journal.pone.0010926.g011

Table 5. Binding energy; Ki values of PDF peptides.

Peptide Binding Energy (kcal/mol) Ki

Met-Ala-Ser 28.07 1.21 mM

Val-Trp-Trp 29.52 105.71 nM

doi:10.1371/journal.pone.0010926.t005
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peptide perfectly covers the binding surface, while the known

peptide is more distant to the surface. The Ala and Gly residues

give flexibility to the peptide with their small side-chains. Our

method kept the Tyr residue, which is similar to saccharide

monomers. As stated in the case of SPG-40, the similarity to

saccharides is important since the binding molecule of this target

protein is also oligosaccharides.

The proteinase K binding surface has +1 net charge, 20% of

residues that form the surface is hydrophobic; the 14% of residues

of the designed peptide Trp-Tyr-Tyr-Tyr-Tyr-Tyr-Tyr is hydro-

phobic. The Asn-161 residue of protein plays role in formation of

hydrogen bond with both the known and the designed peptides.

The residues Cys-73, Met-225 form stable sulfide aromatic ring

interactions with both the known and the designed peptides; but

the number of interactions formed are higher for the Viterbi

designed peptide. The aromatic ring stacking number is superior

for the designed peptide, since it has more residues with side-

chains containing ring structures when compared to the known

peptide sequence Pro-Ala-Pro-Phe-Ala-Ala-Ala.

The HLA-B*2705 protein binding surface is made up of 44%

by hydrophobic residues. Both the designed and the self-peptide

have 3 hydrophobic residues, which are able to make interactions

with the hydrophobic residues of binding surface. The self-peptide

net charge is +3; the designed peptide charge is +2. The algorithm

is successful to keep Lys and Arg residues, which are known to play

major role in HLA-B*2705 binding. The residue Gln-55 is

observed to play a role in hydrogen bonding for both the known

and the designed peptide. The designed peptide makes three net

hydrogen bonds, while the known peptide makes only two bonds.

The HGH binding region is made up of hydrophobic residues

by 18%. The net charge of the surface is +2 and the net charge of

the designed peptide is 21. Consequently, there exist an

electrostatic complementarity between the target protein and the

designed peptide. There exist two Cys and one Met residues on

protein binding site, which are potential stabilizing residues of

peptide binding. The designed peptide also has a Met residue,

which makes interactions with the sulfur atom on its side-chain.

Numerous sulfur - aromatic ring, sulfur – oxygen interactions are

observed due to the Cys and Met residues of both the peptide and

the protein. The Trp and Phe residues of the peptide enable

stacking of aromatic rings.

The detailed analysis of the designed peptide interactions and

comparison of those peptides with the known peptides indicate

that our method is able to detect the requirements of binding

surface; such as hydrophilicity, electrostatic compatibility, aromat-

ic interactions, sulfur atom and its interactions.

The residues Trp, Tyr and Val are highly favored on the

designed peptides. The binding energy of dipeptides containing

Figure 12. PDF peptide complexes. (A) Met-Ala-Ser and PDF. (B) Val-Trp-Trp and PDF.
doi:10.1371/journal.pone.0010926.g012

Figure 13. Detailed analysis of PDF and peptide complexes. Hydrogen bonds are indicated with green lines. (A) Met-Ala-Ser and PDF. (B) Val-
Trp-Trp and PDF.
doi:10.1371/journal.pone.0010926.g013
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Trp and Tyr are observed to be superior to other dipeptides.

Consequently the transition probabilities of those dipeptides are

favored. This may be the reason for high occurrence of those

residues in the designed peptide sequences. The conservation of

Trp may also be due to the formation of stacking and consequent

stabilization. When the protein – designed peptide complexes are

analyzed in detail, it is obvious that Trp residues form high

number of stacking due to its aromatic ring; this stabilizes the

formed complex. The same observation applies to Val for

hydrophobic regions; since it has a smaller side-chain compared

to other hydrophobic residues - except Ala -; the amino acid is able

to interact with small hydrophobic cavities. The HIV-1 protease,

SPG-40, HLA-B*2705 and Con A proteins have Trp and Tyr

residues on their own inhibitory peptides; and proteinase K

protein binding surface contains Trp, Phe and His residues on its

binding surface. Nature seems to protect interactions containing

amino acids with aromatic side-chains; our methodology also

conserves those residues. A recent study of London et al. [28]

reveals that few hot-spots on the peptide are responsible of the

protein binding. The hot-spot residues are enriched in Phe, Leu,

Trp, Tyr and Ile. Out of 36 amino acids of the peptides

determined by VitAL, the 21 are Trp and Tyr residues. Also the

peptide for the HGH protein has two Phe and one Leu residues.

Our algorithm designed a positively charged peptide for the

negatively charged scytalidocarboxyl peptidase B protein surface.

The method also conserved the Lys and Arg residues for HLA-

B*2705 protein, which are known the play major role in peptide

binding to this surface. This proves that our method not only

favors the aromatic and the hydrophobic interactions, but also the

electrostatic complementarity.

The only case that the method failed to determine an

outstanding binder peptide is for the Con A protein case. The

surface of this protein is highly exposed to water, as stated before.

Consequently, we may state that our algorithm works best for

cavities on protein surfaces, with both hydrophilic and hydropho-

bic residues present.

The study of 103 protein-peptide complexes by London et al.

[28] showed that most peptides do not alter the target protein

conformation minimizing the entropic cost of binding. This

statement is supportive for our studies, since the protein

conformation is kept rigid and the peptide is relaxed free to

change conformation in AutoDock runs. London et al. also

indicates that peptides of length 6–11 are observed to have coiled

conformation generally. The peptides designed by VitAL are

observed to have coiled conformation when bound to their target

protein.

The peptide design based on a pre-determined binding surface

is shown to be successful on the case-studies. Peptides are modeled

as sequences of Markov chains where the states defined for each

residue are dependent on the states of the neighboring residues

along the chain. This assumption allows for the application of the

RIS formalism to calculate the binding probability and confor-

mational properties of the peptides. Here, we used a knowledge-

based approach to determine the statistical weights of the torsion

angle states of the 20 amino acids and the dependences of the

statistical weights on the neighboring residues. The partition

function for a given peptide is determined using the RIS

multiplication of the statistical weight matrices. The Viterbi

algorithm is implemented to our method in order to determine a

potential binding peptide using the probability values from RIS

multiplication scheme. For the Viterbi Algorithm, the binding

probabilities are set as the transition state probabilities, while the

torsion state probabilities are set as the emission probabilities. The

peptide design; the binding affinity of the designed peptide; the

peptide – protein interactions are analyzed in detail. The

importance of the binding surface selection is highlighted; a

binding path with no cavity and made up of all hydrophilic

residues was shown to be not very suitable for determination of a

Figure 14. Con A peptide complexes. (A) Tyr-Pro-Tyr and Con A. (B) Gly-Ala-Tyr and Con A.
doi:10.1371/journal.pone.0010926.g014

Table 6. Binding energy; Ki values of Con A peptides.

Peptide Binding Energy (kcal/mol) Ki

Tyr-Pro-Tyr 25.24 144.38 mM

Gly-Ala-Tyr 25.70 65.83 mM

doi:10.1371/journal.pone.0010926.t006

Table 7. Binding energy; Ki values of Proteinase K peptides.

Peptide Binding Energy (kcal/mol) Ki

Pro-Ala-Pro-Phe-Ala-Ala-Ala 28.52 569.86 nM

Trp-Tyr-Tyr-Tyr-Tyr-Tyr-Tyr 211.59 3.22 nM

doi:10.1371/journal.pone.0010926.t007
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candidate binder peptide. The method is shown to be successful to

determine peptide according to the specific properties of the

binding surface.

Haack et al. [65] indicated that the introduction of D-amino

acids can significantly increase resistance to proteases and thus

improve the potential use of peptides as therapeutic agents. For

further improvements on VitAL we aim to add D-forms of amino

acids into our library.

The algorithm requires O(mn) memory and O(mn2) time to

run; where n is the peptide length and m is 20 - the number of

states- [39]. The program details are given in Appendix S3. The

time-consuming part for our methodology is the docking process.

The Viterbi algorithm works efficiently to determine a single

peptide is superior to other possible peptides, i.e. the most possible

peptide sequence. The 1-best and posterior algorithms may also be

employed to determine de novo peptide sequences, which have the

same occurrence probability [42].

Supporting Information
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DOC)

Appendix S3 Program details.

Found at: doi:10.1371/journal.pone.0010926.s003 (0.02 MB

DOC)
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