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Background: Recently, the Turing test has been used to investigate whether machines
have intelligence similar to humans. Our study aimed to assess the ability of an artificial
intelligence (AI) system for spine tumor detection using the Turing test.

Methods: Our retrospective study data included 12179 images from 321 patients for
developing AI detection systems and 6635 images from 187 patients for the Turing test.
We utilized a deep learning-based tumor detection system with Faster R-CNN
architecture, which generates region proposals by Region Proposal Network in the first
stage and corrects the position and the size of the bounding box of the lesion area in the
second stage. Each choice question featured four bounding boxes enclosing an identical
tumor. Three were detected by the proposed deep learning model, whereas the other was
annotated by a doctor; the results were shown to six doctors as respondents. If the
respondent did not correctly identify the image annotated by a human, his answer was
considered a misclassification. If all misclassification rates were >30%, the respondents
were considered unable to distinguish the AI-detected tumor from the human-annotated
one, which indicated that the AI system passed the Turing test.

Results: The average misclassification rates in the Turing test were 51.2% (95% CI:
45.7%–57.5%) in the axial view (maximum of 62%, minimum of 44%) and 44.5% (95% CI:
38.2%–51.8%) in the sagittal view (maximum of 59%, minimum of 36%). The
misclassification rates of all six respondents were >30%; therefore, our AI system
passed the Turing test.

Conclusion: Our proposed intelligent spine tumor detection system has a similar
detection ability to annotation doctors and may be an efficient tool to assist radiologists
or orthopedists in primary spine tumor detection.
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INTRODUCTION

Magnetic resonance imaging (MRI) is commonly used to
diagnose spine disorders (e.g., myelopathy, spine canal
stenosis, and traumatic injury). Spine tumors may cause spine
fractures, instability, neurological deficits, or even paralysis.
However, they are rarely observed because of their low
incidence. Thus, it is difficult for junior radiologists or
orthopedists to accumulate diagnostic experience, and they
may not be capable of detecting different spine tumors on
MRI. Deep learning (DL)—a class of artificial intelligence (AI)
—is now prevalent in computer vision tasks. For spine imaging,
especially MRI, DL, and other AI systems are being applied as
diagnostic imaging technologies (1–5). Hallinan et al. (6) used a
DL model for automated detection of the central canal, lateral
recess, and neural foraminal stenosis in lumbar spine MRI;
Huang et al. (7) utilized a DL-based fully automated program
for vertebrae and disc quantifications on lumbar spine MRI;
Merali et al. (8) developed a DL model for the detection of
cervical spinal cord compression in MRI scans, and Ito et al. (9)
developed the DL-based automated detection of spinal
schwannomas in MRI. However, evaluation measures for AI
methods are lacking because conventional radiology assessment
systems do not meet the requirements of DL models. Thus, in
this study, we applied the Turing test, a classical evaluation
method in AI, on primary spine tumor DL detection on
MR images.

Alan Turing, a British mathematician and theoretical
computer scientist, is widely regarded as the founding father of
AI. Alan Turing’s paper in 1950 entitled “Computing Machinery
and Intelligence” had considered the question ‘‘Can machines
think?’’ (10). Subsequently, he replaced the question with a
significantly more practical scenario, namely, the Turing
imitation game. The game has now become widely known,
particularly in the clinical domain, as the Turing test. The
Turing test (11, 12) is proposed to assess if a machine can
think like a human, which reframed his question as follows: Can
a machine display intelligence via imitation? Although this
proposal is complex, a common operation of the Turing test
requires an interrogator to communicate electronically with a
subject to judge whether the subject is a human or machine (13,
14). The machine performed well if the interrogator makes an
incorrect identification as often as a correct one. When
evaluating the automated detection ability of a DL model, the
gold standard is a comparison with the manual annotation of the
same images by radiologists or orthopedists. However, the use of
manual spine tumor annotations as the gold standard has been
questioned because annotations themselves are subjective. For
example, when a patient’s spine tumor is annotated by two
different doctors, their annotations will hardly denote the same
exact square, thereby reflecting inter- and intra-observer
variability. Thus, the first purpose of using the Turing test was
to confirm whether the automated detection ability of our DL
models could achieve a clinically applicable standard compared
with that of manual annotations at a tertiary university hospital.
To this end, we proposed a simple interface program with choice
questions to assess automated detection versus manual
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annotation based on position, shape, and area overlap. We
hypothesized that if a clinical respondent is unable to
distinguish the different bounding boxes drawn by an
automated detection system and those produced manually by a
spine expert, then it is likely that this DL model will be
considered adequate for clinical application, which may assist
orthopedists to find the primary spine tumors efficiently in the
future. The second aim of this study was to assess the accuracy
rate, false-positive, and false-negative results of the manual
annotations from radiologists and orthopedists. It’s important
to note that in this study, we mostly focused on the primary
tumors located in the skeletal spine structures, thus we did not
collect the intradural or intramedullary nervous system tumors.
METHODS

Patient and Image Acquisition
We reviewed consecutive spinal tumor patients histologically
diagnosed with primary spine tumors at our hospital between
January 2012 and December 2020. Although primary spine
tumors are rarely observed because of their low incidence,
Peking University Third Hospital (PUTH) is a famous spine
center in North China, and we can collect enough primary spine
tumors patients in this study. The MR images of intradural or
intramedullary nervous system tumors and ones acquired from
other hospitals were excluded. Our database contained 508
patients, 226 women and 282 men (mean age, 49.0 [range, 3–
84] years), including 19532 MR images with tumors. We used
12179 images from 321 patients to develop AI detection systems
and 6635 images from 187 patients as a test set. For the Turing
test, 100 patients were randomly selected from 187 patients in the
test set. Sagittal and axial images were selected as representatives
for manual annotation and training for the automated detection
model because they span a wider range of spine regions, crucial
for training the DL models for automated detection. Thus, the
remaining 718 coronal images in the database did not participate
in the training and testing process.

Preoperative MRI scans were performed on Discovery
MR750 3.0T or Optima MR360 1.5T (GE Healthcare;
Piscataway, NJ, USA). Conventional MRI scanning sequences
included axial T2-weighted imaging (T2WI), sagittal T2WI,
coronal T2WI, T1-weighted imaging (T1WI), and fat-
suppressed T2WI scans. For axial and sagittal reconstruction,
the scans were performed with the following parameters: field of
view = 320 mm × 320 mm; matrix = 94 × 94; flip angle = 90; slice
thickness = 3.0 mm; slice spacing = 3.3 mm; FS-T2WI turbo spin
echo, repetition time (TR) = 2500–4000 msec, and echo time
(TE) = 50–120 msec; and T1WI, TR = 400–800 msec, and TE =
10–30 msec.

Turing Test of Spine Tumors Detection
The study was approved by the PUTH Medical Science Research
Ethics Committee review board, which waived the need for
informed consent as this was a retrospective review of a
previous prospective study.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Ouyang et al. Turing Test of Spine Tumors
In our case, the Turing test was carried out with a choice
question, each choice question featured four similar MR images
as candidates, and three of the candidates were results predicted
by DL models, one of them was annotated by doctors. Among
them, the results predicted by the DL model were obtained by a
DL-based tumor detection system with Faster Region-
Convolutional Neural Network (Faster R-CNN) (15)
architecture in our study, and only one was manually
annotated by one of the five annotation doctors A-E (four
radiologists and one orthopedist). One hundred patients and
200 choice questions (one axial choice question and one sagittal
choice question for each patient), were randomly selected from
our database for the Turing test. Without knowing which were
human annotations, every choice question was shown to six
respondent doctors F-K (four radiologists and two orthopedists)
to select which one (reasonable candidate) among the four MR
images was annotated by the annotation doctor. Since the DL-
based tumor AI detection system is designed to react similarly to
human intelligence, we considered the doctor’s lesion annotation
as the correct option. Therefore, if the respondent did not
correctly identify the image annotated by a human, his answer
was considered a misclassification. The AI system passed the
Turing test if the misclassification rates of the six respondents
were all >30%. Figure 1 shows the flow of the Turing test, which
introduces the specific steps of the Turing test.

Misclassification Rate =
F

T + F

where T represented the respondent correctly identifying the
image annotated by a human, and F represented the respondent
did not correctly identify the image annotated by a human.

Manual Annotation Database
Spine MRI data from Digital Imaging and Communications in
Medicine files were exported in Joint Photographic Experts
Group (JPEG) format from the picture archiving and
communication systems of our hospital. These JPEG images
were manually annotated using software Labelme, an image
labeling tool developed in the Computer Science and Artificial
Frontiers in Oncology | www.frontiersin.org 3
Intelligence Laboratory at the Massachusetts Institute of
Technology. Labelme is capable of creating customized labeling
tasks or performing image labeling; we annotated the images by
manually inputting a minimal bounding box containing every
tumor lesion on each sagittal or axial MRI slice to generate JPEG
images for the automated detection training (Figure 2). Taken
together, four radiologists and one orthopedist (doctors A–E)
annotated 19532 MRI slices. To ensure that each tumor was
recognized by the DL model under different conditions, all slices
on T1W1 and T2W1 MR images were annotated.

Manual Annotation Assessment by Doctors
Before testing whether automated detection was sufficiently
similar to manual annotation (namely, indistinguishable when
judged by a blinded respondent), we randomly assessed the
manual annotations to reduce inter- and intra-observer
variability. The other three senior radiologists, except doctor F-
K in our hospital, randomly and independently examined and
verified the annotation images of doctors A–E. Based on the
evaluation of the manual annotations, the computer engineers
calculated the ultimate accuracy rate, false-positive rate, and
false-negative rate of their labels by utilizing the confusion
matrix. Clinical information of patients was not provided for
any of the doctors to ensure a fair comparison between humans
and DL models.

Architecture of Deep Learning-Based
Automated Detection
In this study, we trained the automated DL detection model
using the locations and bounding box labels of spine tumors as
training data. The automated detection model was trained and
validated using a computer equipped with a Quadro P6000
graphics processing unit (NVIDIA; Santa Clara, CA), a Xeon
E5-2667 v4 3.2 GHz CPU (Intel; Santa Clara, CA), and 64 GB
of RAM.

We used PyTorch, a suitable framework for DL, to train a
neural network model applied to the spine tumor dataset of MR
images. A two-stage DL system with Faster R-CNN (15)
architecture was used as the training model and consisted of a
FIGURE 1 | The flow of the Turing test. This figure shows the specific steps of the Turing test.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Ouyang et al. Turing Test of Spine Tumors
region proposal network (RPN) and region regression. The RPN
was used to generate many anchors to get region proposals. It
used SoftMax to recognize whether the anchors were positive or
negative, the lesions are generally considered to be in positive
anchors. Then the region regression could correct the positive
anchors to obtain accurate proposals. Three different backbones
of the proposed model were used to extract MR image feature
maps, like ResNet-50 (16), ResNet-101 (16), and ResNet-152
(16), consisting of 50, 101, and 152 convolutional, pooling, and
activation layers, respectively. These feature maps were shared
for the RPN layer and region regression. And Feature Pyramid
Networks (17) were also used in the model to solve the multi-
scale problem in object detection.

The first-stage inputs were the MRI spine data of the three
different backbones; the outputs were the different regions and
activation maps, which were subsequently used as second-stage
Frontiers in Oncology | www.frontiersin.org 4
inputs. In the second stage, the region of interest (ROI) pooling
layer collected the input feature maps and proposals, combining the
information to extract proposal feature maps. Subsequently, a small
network (i.e., multiple fully connected layers) was constructed with a
regression branch to obtain the final precise positions of the lesion
area. For efficient computing, all-region features were fed to the same
regressor. Finally,weobtained theoutputof the threemodels.Wecall
the Faster R-CNN framework with the backbone ResNet50,
ResNet101, and ResNet152 as CNN1 (convolutional neural
network 1), CNN2, and CNN3, respectively. Figure 3 shows the
automated detection framework of our Turing test.

Evaluation Measurement in
Artificial Intelligence
The tumor detection performance was evaluated from the aspect
of the class label and position accuracy, which could be measured
FIGURE 3 | The framework of automated detection of spine tumors utilizing the Turing Test. Faster RCNN is used as the framework, and ResNet50, ResNet101,
and ResNet152 are used to extract image features respectively.
FIGURE 2 | Labeling tool used by doctors to annotate tumor coordinates: Labelme. The Labelme displays the currently annotated image. The red annotation box
indicates that the current location is a tumor. The annotation tool will automatically generate the coordinates of the upper left point and the lower right point.
March 2022 | Volume 12 | Article 814667
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with average precision. Compared with the ground truth
annotated by doctors, when the intersection of union (IoU)
went over the threshold, the prediction was considered correct.
The IoU formula is as follows:

IoU =
bpred  ∩  bgt
bpred  ∪  bgt

where, bpred and bgt represent a bounding box of predictions and
ground truth, respectively.

Training Implementation Details
In the training stage, the input images were divided into mini-
batches. Each mini-batch contained eight images per GPU,
and each image had 2000 region of interest samples with a
ratio of one positive to three negatives. Specifically, anchors
with an IoU >0.7 with the annotated bounding boxes) were set
as positive examples; those with an IoU <0.3 were set as
negative examples. The RPN anchors spanned five scales
{16, 32, 64, 128, 256} and three aspect ratios {0.5, 0.8, 1.3},
totaling 15 anchors. The threshold of the non-maximum
suppression layer was set to 0.5. We trained on one GPU
with SGD for 10 epochs with a learning rate of 0.01, which was
decreased by 0.5 every epoch. We used a weight decay of
0.0005 and momentum of 0.9. Due to the similarity between
medical pictures, having more training pictures helps the
DL model to better extract features, which can enhance
the generalization of the model. Therefore, for better
performance, axial and sagittal images were trained together
for the MRI dataset. Similarly, T1W1 and T2W1 were trained
together as a training set.

Turing Test Software Program
To complete the Turing test, the annotated images were reviewed
by a team of 6 respondents, including two radiologists and one
orthopedist who worked at our hospital for approximately 10
years, and other two radiologists and one orthopedist who
worked there >20 years. The six respondents (doctors F–K)
specialized in spine tumors and had not performed the
annotation previously (doctors A–E). The six respondents’
answering processes were double blindly designed to ensure no
communication with any other people occurred.

We set up a Turing test software program with choice
questions (Figure 4). In every choice question, the respondents
were shown an interface with four MR images of an identical
tumor; three featured bounding boxes were generated by DL
models, whereas only one featured a bounding box drawn by an
annotation doctor. The four images with correspondent
bounding boxes featured were randomly ordered in each
question. The respondents would be asked, “Which one is
annotated by a human?” Each respondent reviewed
approximately 200 choice questions (sagittal and axial figures)
from 100 patients, randomly selected from a pool of 6635
annotated images of the test set. Figures of the interfaces were
presented for assessment in questions only once owing to the
random nature of the selection process. The display could be
adjusted to a standard window, and a magnifying tool was
Frontiers in Oncology | www.frontiersin.org 5
provided to enable a detailed image inspection. Additionally,
the software program documented respondent responses
provided for each question and the time required to choose
each respondent.

Specifically, in the selection of questions shown in Figure 4,
prediction 3 is the result annotated by one of the doctors A-E,
and predictions 1, 2, and 4 is the tumor location predicted by
models CNN 3, CNN1, and CNN2, respectively. The network
depth of the models CNN 1, CNN 2, and CNN3 differed.
Compared with CNN 1, CNN 2 and CNN3 have a
sequentially increasing number of network layers; the more
the layers of the network mean the richer the abstract features
of different levels that can be extracted. Moreover, the deeper
the network, the more abstract the features, and the more
semantic information.

Statistical and Data Analyses
All statistical analyses were performed using the Statistical
Package for the Social Sciences (SPSS, version 26.0; IBM
Corporation, Armonk, N.Y., USA). Results were obtained for
the fivefold cross-validation of object detection. The Mann–
Whitney U test and chi-squared test were used for comparisons
between groups for continuous and categorical variables,
respectively. A P-value <0.05 was considered significant. The
criteria of true detection and false detection were calculated for
the DL-based automated tumor detection on MR images and the
annotation team.
FIGURE 4 | The choice interface of a Turing test software program. This
software displays four options of one choice question, including amplification,
timing, and technical functions. The user can click the next button to continue
to the next question. After confirming the answer to the current question, click
the save button to save the answer. After all the questions are completed,
click the exit button to exit the program. Of these four options, prediction 3 is
the result annotated by one of the doctors A-E, and prediction1, 2, and 4 is
the result of the tumor location predicted by the model CNN 3, CNN1, and
CNN2 respectively.
March 2022 | Volume 12 | Article 814667
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RESULTS

Patient Characteristics and Data Split
We obtained the MRI dataset of the primary spine tumors to
train and evaluate our model. We trained together in these two
views and tested them separately. Concerning primary spine
tumors, 19532 images from 508 patients were included in the
MRI dataset. We chose 12179 images from 321 patients to
develop AI detection systems, including 7788 images (2346
axial; 5442 sagittal) randomly selected from 193 patients as the
training set and 4391 images (1199 axial; 3192 sagittal) from 128
patients randomly selected as the validation set. The validation
set was used to determine the network structure and help train a
better model. Moreover, 6635 images (1835 axial; 4800 sagittal)
from the other 187 patients were randomly selected as test set
and Turing test data source. The dataset only contained axial and
sagittal views, and the remaining 718 coronal images were not
used for the training or the Turing test.

Evaluation Measurement Among Doctors
The five doctors annotated primary spine tumors on MR images;
the total number of annotated images for each doctor was 4527
(A), 4159 (B), 3910 (C), 3727 (D), and 3209 (E). As Figure 5
shows, there were a total of 26 tumor histological categories in
our dataset, such as schwannoma, myeloma, and chordoma,
among others. In the dataset, there were 3758 schwannoma
images and only 25 ganglion neurofibroma images. The
evaluations of the five annotation doctors are listed in
Figures 6, 7 and include detailed accuracy rate, false-positive
rate, and false-negative rate of the spine tumors MRI manual
annotations for each doctor. In the training set of primary spine
tumors, the five doctors’ MRI annotations accuracy rates were
94.44% (A), 98.16% (B), 92.20% (C), 97.84% (D), and 87.99%
(E); the false-positive rates were 1.40% (A), 0.00% (B), 5.50% (C),
0.00% (D), and 0.00% (E); the false-negative rates were 4.16%
Frontiers in Oncology | www.frontiersin.org 6
(A), 1.83% (B), 2.30% (C), 2.16% (D), and 12.00% (E).
The average accuracy rate, false-positive rate, and false-
negative rate of doctors A-E were 94.13%, 1.38%, and 4.49%
respectively. In the test group of primary spine tumors, the five
doctors’ MRI annotations accuracy rates were 97.90% (A),
97.90% (B), 98.40% (C), 98.75% (D), and 96.43% (E); the false-
positive rates were 0.50% (A), 0.00% (B), 0.00% (C), 0.00% (D),
and 0.00% (E); the false-negative rates were 1.60% (A), 2.10%
(B), 1.60% (C), 1.25% (D), and 3.57% (E). The average accuracy
rate, false-positive rate, and false-negative rate of doctors A-E
were 97.88%, 0.10%, and 2.02% respectively. Tables 1 and 2 show
the details of the precision, recall, F1-score, specificity, and
sensitivity in the training and testing sets.

Evaluation With the Turing Test
The mean Average Precision (mAP) results of CNN1, CNN2, and
CNN3 were 79.1%, 79.8%, and 80.6% respectively in the axial
view, and 84.5%, 85.2%, and 86.1% in the sagittal view,
respectively when IoU was over 0.3. These three models were
used for Turing testing. The Turing test contained 100 choice
questions in the axial view and another 100 choice questions in the
sagittal view. Figure 8 shows the overall percentage of annotation
images incorrectly identified by each respondent when asked the
following: “Which one was drawn by a human?” in axial and
sagittal views. The misclassification rates for the respondents were
44% (F), 52% (G), 62% (H), 59% (I), 46% (J), and 44% (K) in the
axial view question, and the average misclassification rate was
51.2% (95% CI: 45.7–57.5%). Among the results of doctors who
wrongly selected the prediction of the DL model but did not
correctly select the annotations of the doctors A-E, 47.6% chose
the prediction by CNN3, 27.4% by CNN2, and 25.0% by CNN1 in
the axial view question. Moreover, the misclassification rates
for the respondents were 46% (F), 36% (G), 51% (H), 59% (I),
36% (J), and 39% (K) in the sagittal view question, and the average
misclassification rate was 44.5% (95%CI: 38.2–51.8%). Among the
FIGURE 5 | The number of images of different tumor categories.
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results of doctors who wrongly selected the prediction of the DL
model but did not correctly select the annotations of the doctors
A-E, 48.4% chose the prediction by CNN3, 26.2% by CNN2, and
25.4% by CNN1 in the sagittal view question. According to the
results selected by doctors F-K, CNN 3 performed better and
the predictions were closer to the manual annotations. Among
the six respondents, the lowest misclassification was achieved
by an expert radiologist with 25 years of experience. The
misclassification rates of the respondents during the Turing test
represented an inability to distinguish the annotation source
between a human and a computer. The misclassification rates
were all >30%, indicating that the DL models passed the Turing
test. Therefore, the automated detection of spine tumors by our
DL model was equal to that of annotation doctors in our hospital.
Frontiers in Oncology | www.frontiersin.org 7
The complete raw results from the Turing test are provided as
Supplemental Material (see file “TuringTestResults”). Figure 9
shows an MRI scan in which all doctors chose the DL prediction
in both axial and sagittal views, which indicated their failure.
Figure 10 shows an MRI scan in which all doctors F-K correctly
selected the annotations of doctors A-E in axial and sagittal
views, respectively.

Table 3 shows the assessment time required by each
respondent for each multiple-choice question in the Turing
test. In the axial view, the average time per question needed by
each respondent for the Turing test was 10.72 s (F), 12.08 s (G),
15.73 s (H), 9.46 s (I), 5.69 s (J), and 9.01 s (K). For the 100 choice
questions in the axial view, the mean time for each question was
10.45 (range: 5–70) s; therefore, the entire assessment took
FIGURE 7 | Manual annotation results on MRI primary spine tumor dataset in testing set. This figure shows in detail the accuracy rate, false-positive rate, and false-
negative rate of the testing set annotated by doctors A-E.
FIGURE 6 | Manual annotation results on MRI primary spine tumor dataset in training set. This figure shows in detail the accuracy rate, false-positive rate, and false-
negative rate of the training set annotated by doctors A-E.
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approximately 17 min 25 s per participant (range: 9 min 29 s–26
min 13 s). Moreover, in the sagittal view, the average time per
question taken by each respondent for the Turing test was 9.25 s
(F), 13.92 s (G), 10.04 s (H), 9.66 s (I), 7.41 s (J), and 9.02 s (K).
For the 100 choice questions in the sagittal view, the mean time
for each question was 9.88 (range: 4–54) s; therefore, the entire
assessment took approximately 16 min 28 s per participant
(range: 12 min 21 s–23 min 12 s). No correlation was observed
between the time required and the level of accuracy of the
assessment. All time results are provided as Supplemental
Material (see file “TimingResults”).
DISCUSSION

Rather than assessing the performance of our DL model, this
study aimed primarily to evaluate whether our DL model for the
automated detection of primary spine tumors was as good as that
of standard manual annotation methods using the Turing test
(18, 19). Although it is doubtful whether AI will ever pass the
Turing test for various complex clinical scenarios, it is easy to
misunderstand the role of AI in future medical development. AI
should complement rather than replace medical professionals.
One of our primary aims in using the DL model was to develop a
novel method of detecting primary spine tumors from MR
images, which is likely to assist orthopedists to find the spine
tumors efficiently and reduce the burden on them in the future.
The results showed that the accuracy of our DL automatic
detection was comparable to that of annotation doctors in
Frontiers in Oncology | www.frontiersin.org 8
radiology or orthopedics. Despite some reports on the
applications of AI systems for the spine (20–28), especially on
MRI (29) and tumor (30), few studies used the Turing test to
evaluate the automatic detection of primary spine tumors in MR
images based on DL.

Regardless of symptoms and physical observations, AI
facilitates the diagnosis of spine tumors over humans (31).
Bluemke et al. (32) reviewed AI radiology research to make a
brief guide for authors, reviewers, and interrogators. Wang et al.
(33) made a multi-resolution approach for spine metastasis
detection using deep Siamese neural networks. Liu et al. (34)
compared radiomics with machine learning in the prediction of
high-risk cytogenetic status in multiple myeloma based on MRI.
The performance of our proposed automatic detection model is
not only comparable to that of actual radiologists or orthopedists
but also helps to minimize the possibility of overlooking tumors.
Massaad et al. (35) used machine learning algorithms to assess
the performance of the metastatic spine tumor frailty index.
Furthermore, the application of this model can reduce the delay
in diagnosing spine tumors because it responds significantly
more quickly than humans. Additionally, due to time
constraints, radiologists or orthopedists could not evaluate all
MR images on their own; sometimes other surgeons or
physicians must assess MR spine images. Fortunately, the
detection rate of this system is comparable to that of
annotation doctors, and the possibility of missing tumors
becomes significantly less. Consequently, patients with primary
spine tumors can be referred to spine tumor surgeons earlier and
more safely.
TABLE 2 | The details of precision, recall, f1 score, specificity, and sensitivity of the testing set annotated by the doctor A-E.

Doctor A Doctor B Doctor C Doctor D Doctor E

Precision 99.50% 100.00% 100.00% 100.00% 100.00%
Recall 98.42% 97.94% 98.43% 98.77% 96.55%
F1 score 98.96% 98.96% 99.21% 99.38% 98.25%
Specificity 99.48% 100.00% 100.00% 100.00% 100.00%
Sensitivity 98.42% 97.94% 98.43% 98.77% 96.55%
M
arch 2022 | Volume 12 | Artic
Precision = TP/(TP+FP); Recall = TP/(TP+FN); F1 score= (2*Precision*Recall)/(Precision + Recall);
Specificity = TN/(FP+TN); Sensitivity = TP/(TP+FN).
TP = true-positive: It is actually a lesion area, and the doctor annotated it as a lesion area;
FP = false-positive: It is actually not a lesion area, but the doctor annotated it as a lesion area;
FN = false-negative: It is actually a lesion area, but the doctor annotated it is not a lesion area;
TN = true-negative: It is actually not a lesion area, and the doctor annotated it is not a lesion area.
TABLE 1 | The details of precision, recall, f1 score, specificity, and sensitivity of the training set annotated by the doctor A-E.

Doctor A Doctor B Doctor C Doctor D Doctor E

Precision 98.60% 100.00% 94.50% 100.00% 100.00%
Recall 95.95% 98.20% 97.62% 97.89% 89.29%
F1 score 97.26% 99.09% 96.04% 98.93% 94.34%
Specificity 98.56% 100.00% 94.67% 100.00% 100.00%
Sensitivity 95.95% 98.20% 97.62% 97.89% 89.29%
Precision = TP/(TP+FP); Recall = TP/(TP+FN); F1 score= (2*Precision*Recall)/(Precision + Recall);
Specificity = TN/(FP+TN); Sensitivity = TP/(TP+FN).
TP = true-positive: It is actually a lesion area, and the doctor annotated it as a lesion area;
FP = false-positive: It is actually not a lesion area, but the doctor annotated it as a lesion area;
FN = false-negative: It is actually a lesion area, but the doctor annotated it is not a lesion area;
TN = true-negative: It is actually not a lesion area, and the doctor annotated it is not a lesion area.
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Although the MR images used in this study corresponded to
various spine tumor types, the object detection model achieved
high accuracy. However, there are always exceptions in clinical
settings. For instance, sometimes, it is difficult to identify spine
tumors because of signal intensity, location, configuration, or
tumor shape. Therefore, the differentiation of spine tumors in
neuroimaging is not always reliable. Nevertheless, the use of MRI
has facilitated the diagnosis of spine tumors. Another drawback
is that if the patient is allergic to contrast agents and/or
experiences renal insufficiency, an enhanced MRI scan cannot
be performed. In this case, if our proposed system is used to
detect spine tumors, we can determine whether other imaging
modalities, such as positron emission tomography-computed
Frontiers in Oncology | www.frontiersin.org 9
tomography, should be performed. If MRI cannot be
performed owing to renal dysfunction, the proposed system
allows for MRI to be performed as minimally as possible.

Some individuals believe that passing the Turing test suggests
that human-level intelligence can be achieved by machines.
However, achieving human-level AI is still far from reality (36,
37). This study, compared to other Turing test studies to date, is
one of a few to include a large number of patients with primary
spine tumors and a large set of marked spine tumor MR images.
The human respondents in this study had only a fair level of
agreement with one another, averaging approximately 51.17%
accuracy for selecting the human annotation. In a prior report
from Scheuer et al. (38), the skilled human interrogators in their
A B

FIGURE 9 | (A) Shows that all doctors F-K have selected prediction 2 which is predicted by the model CNN1 instead of prediction 4 annotated by one of the
doctors A-E in axial. (B) Shows that four of all doctors F-K have selected the predictions from the models instead of the prediction 3 annotated by one of the doctor
A-E in the signal. Among them, four of all doctors F-K chose prediction 4 from the model CNN3, they were doctors F, H, I, and J And doctor G chose prediction 1
predicted by CNN1, and doctor K chose the prediction 2 predicted by CNN2.
FIGURE 8 | The misclassification rates of all six respondents in axial and sagittal views.
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study had a higher sensitivity (45%) for electroencephalography
spike events marked by three neurologists. However, the longer
the Turing test, the bigger the challenge for a machine to
satisfactorily pretend to be a human. In our test of 100 choice
questions in the axial or sagittal view, which took approximately
17 min, it would be extremely difficult for a machine to mislead a
clinical respondent. Additionally, one of the major challenges in
clinical studies dealing with bounding box lesion annotation is to
define a “gold standard.” Gooding et al. (13) made an evaluation
of auto contouring in clinical practice using the Turing test, and
Sathish et al. (18) compared lung segmentation and nodule
detection between convolutional neural network and humans
using the Turing test. Using the choice monitor, the respondents
assumed the human’s label as the golden standard; hence, they
tried to judge the best labels as objectively as possible. This study
has demonstrated that with training, the DL model can improve
its ability at tumor annotation and mislead the respondents’
judgments. In several studies, DL technology has been shown to
have a reasonable ability to discriminate between abnormal
construct and normal construct in the spine.

Despite a design to limit selection and respondent biases, this
study has some limitations. First, the spine tumor MR images
were all obtained from a single center, drawn from a cohort of
documented patients, and the number of MR images utilized in
this study was significantly limited. Hence, it is necessary to
improve the accuracy of our system by incorporating multi-
center MRI data. Despite the limited number of images, we were
able to amplify the training datasets by applying random
Frontiers in Oncology | www.frontiersin.org 10
transformations (e.g., flipping and scaling) to the images. This
technique has proven valuable for DL with small datasets.
Another limitation was that the proposed system only analyzed
and detected the location and approximate outline of spine
tumors. Other relevant characteristics, such as whether a spine
tumor was benign or malignant, were not recognized in our DL
model. Therefore, further research of methods to identify other
spine tumor characteristics is necessary. Furthermore, only axial
and sagittal images were obtained in our study; hence, the
addition of coronal images would improve the model’s
performance. In addition, to help doctors with image
annotation and follow-up, we converted the DICOM into an
easy-to-read JPEG. The average misclassification rate of doctors
in our current Turing test was over 35%. Despite these
limitations, we believe that in the future, our system, with its
high accuracy and comparable performance to clinical experts,
could be applied to different settings and conditions.
CONCLUSION

In conclusion, this study proposed an AI primary spine tumor
detection system that passed the Turing test; respondents were
unable to distinguish between our DL model and annotation
doctors. The present results show that our DL model may be an
efficient tool to assist radiologists or orthopedists in primary
spine tumors detection, increasing efficiency and sparing time.
TABLE 3 | The Average Time (second) Per Question Taken by Each Respondent in the Turing test.

Doctor F Doctor G Doctor H Doctor I Doctor J Doctor K

Axial view(s) 10.72 12.08 15.73 9.46 5.69 9.01
Sagittal view(s) 9.25 13.92 10.04 9.66 7.41 9.02
March 2
022 | Volume 12 | Artic
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FIGURE 10 | (A) Shows that all doctors F-K have correctly selected the prediction 4 annotated by doctors A-E in the axial. And (B) shows that all doctors F-K have
correctly selected the prediction 1 annotated by doctors A-E in sagittal.
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In the future, larger multi-center datasets are necessary to
increase the accuracy of our system and validate our model.
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