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A B S T R A C T   

Tb II-I isolated from Tityus bahiensis venom causes epileptic-discharges when injected into the hippocampus of 
rats. The involvement of neurotransmitters in this activity was investigated. Our results demonstrated that Tb II-I 
increases the concentrations of dopamine metabolite but does not alter other neurotransmitters. Thus, dopa-
minergic system seems to be partially responsible for the convulsive process. Specific action on particular 
neurotransmitter can make this toxin a useful tool to better understand the functioning of the system.   

Scorpions are the main responsible for human accidents with 
venomous animals in Brazil, being Tityus serrulatus and T. bahiensis (Tb) 
the most relevant species. 

The composition and characterization of the venoms of some scor-
pions have been studied for a long time and consist of a complex mixture 
of small organic molecules, proteins and peptides, the last ones, also 
known as neurotoxins (Bertazzi et al., 2003; Cologna et al., 2009), 
causing disturbances in the normal physiology of tissues such as muscles 
and nerves through their interaction with ion channels (Tian et al., 
2008). 

Isolated toxins from Tb venom have not yet been fully characterized 
and their effects on the central nervous system (CNS) are poorly un-
derstood. Some studies have demonstrated that peripheral Tb crude 
venom injection causes electroencephalographic and behavioral alter-
ations (Nencioni et al., 2009); fractions of this venom cause similar al-
terations and neuronal loss (Lourenço et al., 2002); and some isolated 
toxins, when directly injected into the hippocampus of rats, induce wet 
dog shake (WDS), myoclonus, epileptic discharges (Ossanai et al., 2012) 
and increase in the intracerebral level of glutamate (Beraldo Neto et al., 
2020). 

In a previous study we have demonstrated that the fraction Tb II-I, 
isolated from Tb venom and composed by two toxins, Tb4 and Tb2-II 
(Beraldo Neto et al., 2018), causes convulsive behavior, neuronal loss 
and alteration in the levels of cytokines in the CNS of rats when 

intrahippocampally injected (Beraldo Neto et al., 2018). Now, we aimed 
to complement this study (Beraldo-Neto et al., 2018) assessing the 
intracerebral levels of some neurotransmitters after the intra-
hippocampal injection of this fraction, in order to understand if they are 
responsible for the alterations described above. 

The lyophilized venom was provided by the Strategic Nucleus of 
Venoms and Antivenoms, Butantan Institute São Paulo – Brazil; and the 
fractionation was obtained according to previously described by our 
group (Beraldo Neto et al., 2018). 

Seven male Wistar rats (260–280 g) provided by the Central Animal 
Facility of the Butantan Institute and maintained under controlled 
conditions (light with cycles of 12 h light/dark and temperature of 22 ±
2 ◦C, water and food ad libitum) were used. All the procedures were 
previously approved by the Institutional Ethics Committee for Experi-
mental Animals (No. 1389/15). The animals were intraperitoneally 
anesthetized with 10% Ketamine Hydrochloride (Syntec, São Paulo, 
Brazil) and 2% Xilazine Hydrochloride (Syntec, São Paulo, Brazil). A 
CMA/11 guide cannula with a replaceable inner guide (CMA Micro-
dialysis, Stockholm, Sweden) was stereotaxically implanted in the left 
hippocampus. The coordinates (AP − 5.3, L − 4.0, V − 2.0.) were estab-
lished according to the Stereotaxic Atlas of Paxinos and Watson (1998) 
and the surgical method was performed according to previous works 
(Beraldo Neto et al., 2020; Nencioni et al., 2009; Ossanai et al., 2012). 

After recovery of the animals, guide cannula obturator was replaced 
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by a 2-mm CMA 11 microdialysis probe (CMA Microdialysis, Stockholm, 
Sweden), and continuous perfusion was started with Ringer’s solution 
(rate 2.13 μL/min; CMA 100 Microdialysis pump). Dialysates were 
collected every 60 min from the freely moving animals. The micro-
dialysis experiment was performed in three steps: (1) three basal col-
lections, the average of which was used to establish baseline values, (2) 
intracerebral injection of Tb II-I (2 μg/2 μL), and (3) six more sample 
collections, making a total of 9 per animal. The samples were immedi-
ately frozen and maintained in − 80 ◦C until analysis. All dialysate 
samples were split for analysis of GABA and glutamate, and monoamines 
dopamine (DA) and 5-hidroxytriptamine (5-HT) and their metabolites 
homovanilic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA). 

For monoamines analysis a solution containing 1 M perchloric acid, 
0.2% EDTA and 0.2% sodium metabisulfite was added to the dialysate 
(1:9, v:v). Samples were analyzed by RP-HPLC with ionic annealing 
(Shimadzu Model 20 A, Kyoto Japan) coupled to an electrochemical 
detector (Antek-Decade, Zoeterwoude, The Netherlands) with a ODS 
C18 column (150 × 4.6 mm Shimpak, Kyoto Japan) and a line filter was 
used. For amino acids analysis dialysates did not receive any pre- 
treatment. The samples were derivatized employing 70% ethanol, 10% 
triethylamine and 10% phenylsothiocyanate solution. 50 μL of the 
samples were injected in UFLC (Shimadzu, Kyoto Japan) coupled with a 

reverse phase C18 column with a variable UV detector using a 254 nm 
wavelength for sample reading. The neurotransmitters were identified 
according to their retention time, comparing to a known concentration 
standard. 

Analysis of glutamate and GABA levels demonstrated that there were 
no statistically significant differences between the baseline samples and 
those collected after the injection of the fraction (Fig. 1). The other 
neurotransmitters or metabolites were not significantly altered either 
(Fig. 1) except HVA, that increased compared to baseline (the average of 
the three first collections), being statistically significant at the fifth and 
eighth hour (Fig. 1). 

Venoms generally act on the peripheral nervous system in order to 
paralyze preys or predators. But the action in the CNS cannot be ruled 
out, as demonstrated in this study. Although the CNS is probably not the 
main focus of the animal, this type of toxins can be a useful pharma-
cological tool for study this system. 

As previously demonstrated, the fraction Tb II-I causes epileptic-like 
behavior, electrographic alterations such as grouped spikes and strong 
discharges, alters the level of some cytokines in the hippocampus, and 
additionally decreases the number of pyramidal cells in the CA1, CA3 
and CA4 hippocampal areas (Beraldo Neto et al., 2018). These effects are 
commonly associated with increase in the level of the glutamate, the 

Fig. 1. Extracellular levels of glutamate, GABA, 5-HT, DA, and metabolites as determined by microdialysis in the CA1 area of the hippocampus in conscious rats (n =
7) before and after injection of 2 μg/2 μL of Tb II-I in the same area. Line corresponds to the average of three basal collections which was used to establish baseline 
values. Data are represented as the means + SD of the mean. ANOVA for repeated measures followed by Tukey’s test. *p < 0.05. 
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main neurotransmitter associated with continued depolarization caused 
by scorpionic neuropeptides (Beraldo Neto et al., 2020; Massensini et al., 
1998; Nencioni et al., 2003, 2009). However, in the present study we 
demonstrated an opposite effect, with no changes in the intra-
hippocampal level of glutamate and GABA. Instead, it was observed an 
increase in the level of extracellular HVA, suggesting an alteration in 
dopaminergic metabolism (Wiesel et al., 1973) since drugs that cause 
dopamine release, increase the concentration of HVA often without 
changing the dopamine concentration (Freitas et al., 2004; Kopin et al., 
1988; Starr, 1996). Inflammatory cytokines affect the dopamine meta-
bolism (Felger and Miller, 2012; Miller et al., 2013) and the previously 
observed changes in IL-6 and TNF-α level (Beraldo Neto et al., 2018), 
could be partially responsible for this result. 

Our results are in accordance with previous works with scorpion 
venoms, in which it was observed an increase in HVA but not in DA 
levels, in striatum and hypothalamus after intravenous injection of 
T. serrulatus venom (Dorce and Sandoval, 1994), or an increase in 
intra-hippocampal levels of HVA after peripheral injection of 
T. serrulatus and T. bahiensis venoms (Nencioni et al., 2009). It was also 
demonstrated the release of DA from cortical slices of rat brain induced 
by tityustoxin and TiTX γ toxins, isolated from T. serrulatus venom 
(Fernandes et al., 2004a; 2004b). 

Monoaminergic systems are the target for many venomous animals 
which act inducing or blocking the release of monoamine from cells, 
blocking the reuptake, affecting synthesis, acting as agonists and an-
tagonists at monoaminergic receptors, and changing sensitivity of re-
ceptors (Weisel-Eichler and Libersat, 2004). Monoaminergic systems act 
as neuromodulators in the CNS (Strac et al., 2016) and DA has a 
prominent role in limbic seizures since several experimental models 
point DA as one of the factors increased (Meurs et al., 2008). Particu-
larly, activation of D1-type receptors reduces the threshold and aggra-
vates the seriousness of seizures in animal models of acquired epilepsy 
(DeNinno et al., 1991; Gangarossa et al., 2014), which induce general-
ized convulsions. Activation of D1-like receptors increases cAMP levels 
and protein kinase A (PKA) activity via the stimulation of adenylyl 
cyclase, and consequently the phosphoprotein DARPP-32 is activated 
(Bozzi and Borelli, 2013). This protein activates a series of signaling 
cascades that are important in regulating neuronal excitability (Bozzi 
et al., 2011). 

Our results lead us to believe that the pro-convulsive effects of Tb II-I 
previously described (Beraldo Neto et al., 2018) is at least in part the 
consequence of an overstimulation of the dopaminergic system. 

This result is particularly important because highlights the speci-
ficity of action of Tb II-I and the discovery of selective toxins that affect 
the dopaminergic system can be useful and help to identify possible 
therapeutic targets, since several neuropsychiatric symptoms are 
mediated by changes in dopaminergic function (Miller et al., 2013). 

Our findings can be resumed in (1) an increase in the release HVA; 
and (2) in the stagnation in the levels of glutamate and GABA, which are 
important neurotransmitters related to envenoming. The observed result 
generates complex discussion since there are few studies linking toxins 
and the central nervous system, particularly with regard to neuro-
transmitters and cytokines. 
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