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Providing an optimized 
model to detect driver genes 
from heterogeneous cancer 
samples using restriction 
in subspace learning
Ali Reza Ebadi1, Ali Soleimani2* & Abdulbaghi Ghaderzadeh1

Extracting the drivers from genes with mutation, and segregation of driver and passenger genes are 
known as the most controversial issues in cancer studies. According to the heterogeneity of cancer, it 
is not possible to identify indicators under a group of associated drivers, in order to identify a group of 
patients with diseases related to these subgroups. Therefore, the precise identification of the related 
driver genes using artificial intelligence techniques is still considered as a challenge for researchers. In 
this research, a new method has been developed using the subspace learning method, unsupervised 
learning, and with more constraints. Accordingly, it has been attempted to extract the driver genes 
with more precision and accurate results. The obtained results show that the proposed method is more 
to predict the driver genes and subgroups of driver genes which have the highest degree of overlap 
due to p-value with known driver genes in valid databases. Driver genes are the benchmark of MsigDB 
which have more overlap compared to them as selected driver genes. In this article, in addition to 
including the driver genes defined in previous work, introduce newer driver genes. The minister will 
define newer groups of driver genes compared to other methods the p-value of the proposed method 
was 9.21e-7 better than previous methods for 200 genes. Due to the overlap and newer driver genes 
and driver gene group and subgroups. The results show that the p value of the proposed method is 
about 2.7 times less than the driver sub method due to overlap, indicating that the proposed method 
can identify driver genes in cancerous tumors with greater accuracy and reliability.

Cancer is one of the deadliest diseases, and according to the estimation of the American Cancer Association in 
2019, about 1,762,450 people has cancer worldwide, of them about 606, 880, individuals have died. Cancer is the 
second leading cause of death among all  diseases1. One of the reasons for the abnormal tumor growth, is the rate 
of DNA mutation in the driver genes, which consequently causes mess in the function of the cancerous cell of 
a tumor. Due to this reason, having integrated information on this field helps establishing cancer detection and 
treatment  strategies2. The large genome changes is one of the causes of cancer, using the second-generation tech-
nology of DNA sequencing and analysis, which would significantly contribute to the biological understanding of 
diagnosis and treatment of cancer. This insight helps us examining each type of change in the somatic genome, 
and also facilitates the detection of mutant genes in cancer  samples3. In this study, although we have been able 
to identify all mutant genes in the tumor, many of these mutant genes have no effect on the tumor development, 
which are known as passenger genes. Accurate and direct identification of whether this passenger gene has an 
impact on the development of the tumor or not, still remains a challenge. So, one of the major works in the field 
of cancer research is identifying the passenger gene from the driver’s gene in cases with  cancer4,5. One com-
mon way to deduce driver genes, is a hypothesis that “the driver’s mutated genes are primarily among the large 
groups of sample mutated tumor genes”. Therefore, based on this hypothesis, many scientific studies have been 
driven using computational methods of identifying driver genes among the mutated gene groups in this  field6. 
In OncodriveCLUST, specific genes that tend to cluster mutations throughout the protein sequence, were identi-
fied, which indicated that these genes have a particular bias toward their dependent gene sequences. Moreover, 
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based on this hypothesis, in this method, a number of genes that had high mutation frequencies were the driving 
candidate genes, which were later found to have no significant effect on tumor  growth7. The MutSigCV method 
solves one of the challenges in identifying driver genes. Previous methods have identified a list of driver genes, 
but because of mutation heterogeneity, some of them have not been identified properly. Therefore, by the use of 
this method, this problem has been  solved8. Because cancer is a heterogeneous disease, there are many different 
subtypes for one type of cancer, and the driver genes of each subgroup may be different from the other genes. If 
a mutated gene acts as a driver gene for several specimens in a subgroup, it can be identified as the driver gene 
of the subgroup and also can be used as a criterion for separating  subgroups9. Considering the genomic diversity 
and heterogeneity of subgroups of specific genes in a group, which their driver is small part of samples, so they 
are rarely changing among all the  samples10. Other methods are also used to identify a rare mutation except 
for mutation frequency, such as modifying the amino acid of the flanking sequence Another method based on 
optimizing SpeMDP and the maximum matrix weight, is used to identify the driver genes. In this method, the 
genome data of twelve different types of heterogeneous cancer are used to form a common biological path, and 
finally the genes in this common path, are used as candidate  genes11,12. All the results of the previous methods 
are encountered the problem that methods are suitable for the idea mode. It is appropriate when all subgroup 
information are available, which are not mostly available in many cases. The accurate extraction of the driver 
genes, without providing the subgroup information to find the exact treatment of cancer and personal medicine, 
still remains as a  challenge10. To solve the problem of inaccessibility of information, the margin writing of the 
subgroups, as Driversub method was proposed. Correspondingly, in this method, an unsupervised learning 
method was  used13, which needs no information about  subgroup14. One of the challenges in analyzing the results 
of this method is that the available data has noise and there is still discarded data, which consequently affects 
the accuracy of the results. Therefore, in this study, we have tried to overcome this problem by developing this 
method. In this article, we achieved better accurate for this method via developing the driversub method, and 
by applying more restrictions on the data. To achieve this goal, robust adaptive graph regularized non-negative 
matrix factorization method has been used, and by applying less weight to noisy as well as the discarded data, 
and giving more weight to clean data, we have tried to improve the accuracy of the results. This article used the 
Cancer Genome Atlas (TCGA) program and Cancer Gene Gensus (CGC).

Method
Subspace learning. Due to the lack of subgroup information, we have used an unsupervised learning 
method. To do this, a subspace learning framework has been  used15. Afterward, we displayed the marginal writ-
ing information of a gene, as a vector, so that the mutation data of the gene with high dimensions was converted 
into a small subspace with smaller dimensions. Gene mutation input data was converted to a binary matrix. The 
mutation vector of each gene is X  = [x1, x2, x3,…xp], where p is equal to the total number of genes. The input 
matrix contains p-genes and n-samples, and each entry of this matrix indicates whether the ith gene has been 
mutated in the j sample or  not16. The output matrix was Z = [z1, z2, z3,… zi …zp], which was compressed space 
with less dimensions, so that k <  < n, where k is the dimension of the output matrix  Z17. Low-dimensional output 
matrices in vector space can be better suited for the computational analysis. Although the output matrix can well 
represent the mutation index of the input matrix, the main challenge is that there is no indication to show that 
the investigated gene is from which one of the subgroups. In fact, there is no general criterion for matching a 
gene with a subgroup. Due to the fact that the sub-space dimensions can determine the hidden features related 
to each gene, and the sub-space output dimensions are almost able to determine the indicators related to each 
subgroup. However, there is no guarantee that the dimensions of the subspecies matrix represent those indica-
tors related to that subgroup, so it can be used to determine whether the special checked genes is relevant to 
that  subgroup18. Based on the two hypotheses proposed in the driversub method, the values of the output vector 
indices can be used as criteria for evaluating the driver’s genes. Also, in the second hypothesis, the values of the 
output vectors can be used indicators for determining whether a gene belongs to a specific subgroup. However, 
to increase the guarantee of the first hypothesis in the driversub method, the regularization of L1 norm was used 
to ensure that the output vectors are  sparse19. Because the values of the espresso of output vector index are large, 
the output vectors will more tend to be inclined to match the coordinates of the dimensions subspace. The axes 
of dimensions of subspace can be used as an indicator to recognize if a gene belongs to a particular subgroups. 
Hence, at the beginning of the first step, we use the objective function defined in the GNMF method 20as follows:

where LS = DS -S is called graph Laplacian. S is the data similarity matrix, and DS is the degree matrix which the 
used attribute function in this method is as follows:

Which �z controls the distance between the output vectors Z and the coordinate axes and the coefficient of the 
regulator of sparse value. Also, one of the problems of the space learning method is an overflowing  problem21. To 
overcome this problem, Frobenius norm regularization has been used in the driversub method, which changed 
the attribute function as follows.

(1)min
U≥0,V≥0

∥

∥

∥
X − UVT

∥

∥

∥

2

F
+ �Tr(V

TLSV)

(2)
min

p
∑

i=1
w,z

�xi − wzi�
2
2 + �z

p
∑

i=1

� zi �1

s.t W ≥ 0 and Zi ≥ 0, ∀i = 1, . . . p



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9171  | https://doi.org/10.1038/s41598-021-88548-2

www.nature.com/scientificreports/

Here, our parameters are the weight matrix W which can reverse the relationship between a subset of samples 
and subspace dimensions to calculate the real values of Matrix W and Z, we used the basic method of matrix 
factorization, and each time we repeated the initial W, Z we obtained more accurate values… What has been 
forgotten is that in calculating the similarity between the Samples, the Gaussian kernel function can also be 
used, which is as follows:

si,j is the similarity between i and j samples. While the Euclidean distance is used to compute the difference 
between two different samples, real trait space of sample including noise and large amounts of unrelated features, 
which play no role in similarity, but they can be used for similarity. To enhance the accuracy and precision, a 
number of irrelevant and disconnected attributes should be eliminated. It was shown that the attributes that 
have an impact, will have more weight in the distance calculation. Therefore, in order to achieve this goal, it is 
necessary to learn an M matrix to obtain the exact distance, so we have used M matrix in this article where M is 
a diagonal matrix. Herein, we get the distance as follows:

In this article, we have attempted to reduce noise by combining driversub. The methods as well as applying 
more restrictions on the obtained samples. Robust adaptive graph regularized NMF (RAGNMF) was also used, 
which is as follow:

Optimization
To solve the desired method, a duplicate updating method was used, which is as follows.

By keeping W, M constant, the values of w and z were calculated as follows:

In order to update the W value, by keeping values of M, w, and z constant, the following relationships were 
obtained.

where EM is as follows:

Function (10) can be converted to the following equation:

Also, by keeping the values of W, z, and w constant, the value of M was calculated as follows:
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We have used the matrix factorization method here Another point is that here �,α,β are the control and 
regulating parameters and the correctness of the method depends on these parameters when the accuracy of 
the results is reduced when α    is too large or too small, Here we have created a filter on the weights between the 
input and output vectors by imposing a constraint on the softness of the filter and low weights or high impact 
weights that are abnormal and the use of control parameters. We have achieved better results.

In this study, to solve this equation, we used the Accelerated Gradient Method, which was earlier used  in22. 
The steps of performing this work are shown in the algorithm 1.1:

Results
In this study, we used breast cancer data (Cancer Genome Atlas Network and others, 2012), which included 
somatic mutations of 507 samples and 12,233 genes that can be downloaded from the cBioPortal  database23. 
By default, we considered the dimensions of k subspace as 4. In the present study, we have used Python 3.7 to 
implement this method. Moreover, we used Gsea Msigdb web-based  software24 to analyze the results. Firstly, we 
calculated the mutation score of each gene from the output vector obtained from the learning subspace, and then 
arranged it in descending order. Thereafter, we separated the top 500 genes with the highest mutation scores, 
and then selected them as the candidate for driver genes. Finally, we compared the results with the Benchmarks 
on Msigdb show in Figs. 1, 2 and 3. Thus, we have taken from the 200 candidate driver genes obtained from this 
method about 13 genes which had the lowest p-value and highest mutation score, for example, and used the 
outputs obtained by the Msigdb web software and curated gene sets as a benchmark. Driver genes results have 
a very good overlap with the defined driver genes. They are also very similar to the previous methods in terms 
of defined driver genes. Besides, the new genes defined in this method are very similar due to p-value compared 
to previous works. They have better overlap with breast cancer benchmarks. The results of our simulation in 
the model presented in Table 1, Figs. 2 and 3. In Fig. 1, the details of candidate driver genes obtained from this 
method for breast cancer show 13 genes with characteristics which is based on the amount of p-value overlap 
with the driver genes in the specific subgroup of benchmark, As we can see in Fig. 2, from the 13 proposed driver 
genes in specific subgroups of the benchmark, we see the different numbers of genes of that overlap. Hence, the 
more driver genes overlap with the benchmark, and the lower the amount p-value, the better the outcome. In 
the Fig. 3, and as it can be seen, the more black cells there are, the more they overlap in one gene. In 200 driver 
genes obtained from top to bottom ranking, the number of genes proposed by our method overlapped better than 
previous methods so that we have achieved p-value = 9.21e-07. In Fig. 4 and Table 1, Comparing the proposed 
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method with the previous methods due to the amount of p-value for 200 driver genes due to the averages can be 
seen, which the proposed method of this paper performs better. We compared the proposed specific subgroups of 
100, 200, and 500 members of driver genes with the driver genes in the benchmark due to the degree of overlap. 
The results indicate a good degree of overlap. In details of Fig. 1, you can see 13 driver genes in the proposed 
method as showed in Table 1 and Fig. 4. Comparing p-values between the previous and the proposed methods 
for an average of a subset of 200 driver genes that the lowest p-value and highest mutation score which were 
compared by different methods in the Table 1. So that the proposed method has a significantly lower average 
p-value. Due to Fig. 5, the overlap of the number of suggested genes with curated gene sets (Misgdb) is observed. 
Considering the subgroups of 100, 200 and 500 members of driver genes are obtained and their overlap with the 
driver gene database is seen. The results indicate a good degree of overlap. to further analyze the results on breast 
cancer data, we compared the superior driver genes selected by existing method with previous methods so that 
40 genes are shared between the proposed method and MutsigCV, and also between MutsigCV and Driversub. 
Under similar conditions, there are 21 common genes, and also between OncodriveCLUST and Driversub, there 
are about 81 common driver genes, while between the method proposed in this article and OncodriveCLUST, we 
had about 108 common genes which indicates that the proposed method is better. BRCA2, ERBB2, and PIK3CA 
are common, which are genes with high mutations, and also in the overlap between the proposed methods of 
OncodriveCLUST driver genes Which AKAP9, MTOR, TP53 are high mutant driver. The results indicate that 

Figure 1.  Details of 13 top driver genes in the proposed method.
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the used method in this article with a high ability to predict and deduce driver genes was shown to be better 
than previous methods.

Table 1 and Fig. 4 Comparing p-values between the previous and the proposed methods for an average of 
a subset of 200 driver genes the lowest p value and highest mutation score which were compared by different 
methods in the Table 1, so that the proposed method has a significantly lower average p value.

In this method, BRCA1, BRCA2, ERBB2, PIK3CA, TP53, and KDM6A genes were introduced as driver 
candidate genes, which were also common in previous methods. The genes introduced by the proposed method, 
had a good overlap. In addition, the genes MYO10, ISTN1, EPHA4, SLIT2, WRN, DOP1B PLXNA2, and TCHH 
were introduced using the proposed method. Due to the elimination of overflow and suspension in the proposed 
method, the predicted genes were significantly different from the previous methods. Figure 6 shows the heat map 
diagram of seven genes with the highest score subspace (z) with k = 4 in the proposed method, which showed 
the heterogeneity of the mutation of specific genes in each one of the subgroups.

Figure 5 overlap of the number of suggested genes with curated gene sets (Misgdb) is observed. Considering 
the subgroups of 100, 200 and 500 members of the driver genes are obtained and their overlap with the driver 
gene database is seen. The results show that the candidate driver genes overlap well.

In Fig. 6, we see the overlap and distribution of the driver genes of new top candidate defined for 200 genes 
which were randomly selected with four specific subgroups of driver genes defined in the color bar, which the 
adjustment margin increases p-value from bottom to top. Black color indicates the lowest p-value and highest 
mutation score, for example, the gene GH2 has more overlap.

Figure 2.  The number of driver genes overlapping with the benchmark dataset in a subset of the top 13 driver 
genes.
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Discussion
Extraction of subgroups of driver genes is one of the most important cases in personal medicine and heteroge-
neity in cancer. One of the problems in this regard is the lack of subspace margin information due to the fact 
that annotation of the subtypes of cancer samples is not available in many cases and previous methods cannot 
correctly determine the driver genes of each subgroup; hence, we predict the subtypes of driver genes in the 
heterogeneous cancers. A very important point which was forgotten in the past is that in calculating Z where 
our output is less than the input X under the confined space, the weight of input samples which are less impor-
tant to influence the output of Z are not removed and cause the accuracy of Z matrix. In this work, we have 
achieved better results by creating constraints. In this method, we have used the subspace learning method and 
the unsupervised learning method. Due to the used method in this paper, more restrictions were applied on the 
distance between the input vector (X) and the output vector (z) in the subgroups, which was done by applying 
more weight to the samples that were more effective, and giving less weight to those that had no effect, and then 
applying it to the Euclidean distance between the two input and output vectors’ subspace. Herein, we attempted 
to extract the subgroups of the driver’s genes more accurately. The results show that the proposed method can 
extract the driver genes more accurately and realistically compared to the previous methods. here There are many 

Figure 3.  Proposed driver genes are compared to several benchmarks at the same time.

Table 1.  Comparing p-values between the previous and the proposed methods for an average of a subset of 
200 driver genes the results of comparison between different methods in the method proposed in this paper 
have an average of p value less for 200 driver genes.

Method Average (p value)

MutSigCV 8.35e−02

OncodriveCLUST 1.23e−02

DriverSub 1.46e−06

proposed method 9.21e−07
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ideas for researchers to work with in the future, for example  in25,26, the extraction of the characteristics of normal 
cancer cells through image processing using CNN and deep learning  methods27,28 to isolate healthy cells from 
cancer, which can be done to identify the driver genes. Due to the openness of article subject, the researchers can 
achieve more accurate predictions from other methods such as deep learning and combining it with the method 
in this article. However, using CNN networks with computational complexity and high memory consumption 
due to the number FLOPS could be due to the volume of input data, and in this case, it should be improved by 
speeding up CNN through pruning methods. In fact, one of the advantages of using the method used in this 
article is the low computational complexity and low memory consumption compared to CNN which suffer from 
memory and computational complexity. Furthermore, in my future work, I decide to use deep learning and 
convolutional neural network (CNN) with the addition of other information genes  in29,30 such as KEGG pathway 
and gene transcriptionally changes to more accurately predict specific subgroups of driver genes, Furthermore, 
using Weighted Gene Co-expression Network Analysis methods  in31 for using in the body of the method of this 
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Figure 4.  Comparing p-values between the previous and the proposed methods for an average of a subset of 
200 driver genes.

Figure 5.  Overlap of the number of suggested genes with specific subgroups of 100, 200 and 500 genes of driver 
genes.

Figure 6.  The amount of distribution p value of driver genes in the proposed method among specific 
subgroups.
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paper to calculate the weight between input vector x and output vector z achieved better results. In future work, 
better results can be obtained for more accurate extraction to further analyze the results on breast cancer data.
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