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ABSTRACT 

Advances in in vivo Ca2+ imaging using miniatured microscopes have enabled 

researchers to study single-neuron activity in freely moving animals. Tools such as 

MiniAN and CalmAn have been developed to convert Ca2+ visual signals to numerical 

information, collectively referred to as CalV2N. However, substantial challenges remain 

in analyzing the large datasets generated by CalV2N, particularly in integrating data 

streams, evaluating CalV2N output quality, and reliably and efficiently identifying Ca2+ 

transients. In this study, we introduce CalTrig, an open-source graphical user interface 

(GUI) tool designed to address these challenges at the post-CalV2N stage of data 

processing. CalTrig integrates multiple data streams, including Ca2+ imaging, neuronal 

footprints, Ca2+ traces, and behavioral tracking, and offers capabilities for evaluating the 

quality of CalV2N outputs. It enables synchronized visualization and efficient Ca2+ 

transient identification. We evaluated four machine learning models (i.e., GRU, LSTM, 

Transformer, and Local Transformer) for Ca2+ transient detection. Our results indicate 

that the GRU model offers the highest predictability and computational efficiency, 

achieving stable performance across training sessions, different animals and even 

among different brain regions. The integration of manual, parameter-based, and 

machine learning-based detection methods in CalTrig provides flexibility and accuracy 

for various research applications. The user-friendly interface and low computing 

demands of CalTrig make it accessible to neuroscientists without programming 

expertise. We further conclude that CalTrig enables deeper exploration of brain function, 

supports hypothesis generation about neuronal mechanisms, and opens new avenues 

for understanding neurological disorders and developing treatments. 
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1. INTRODUCTION:  

Neurons within the same brain region are diverse in type, connectivity, and activity, 

responding to stimuli with high temporal precision. One of the key advances in modern 

neuroscience is the shift from studying brain regions as functional units to focusing on 

individual neurons. Monitoring single-neuron activity in freely moving animals allows for 

deeper insights into brain function and dysfunction. Recent advances in in vivo imaging 

and fluorescent Ca2+ indicators, coupled with miniature microscopes (miniScopes), have 

revolutionized the study of neural dynamics in freely moving animals. Tools have been 

developed to convert Ca2+ visual signals (i.e., Ca2+ imaging video files) to numerical 

information (e.g., changes of fluorescent signal intensity indicating the Ca2+ influx for 

each neuron), denoted CalV2N. Early tools such as Suite2P1, SIMA 2, STNeuronNet 3, 

CalmAn 4, were created to process two-photon imaging data. Due to the low resolution 

and poor signal to noise ratio (SNR) in one-photon imaging data, more specific CalV2N 

tools were created including MIN1PIPE5 and MiniAn6. The algorithms used in CalV2N 

tools started with principal-component analysis/independent component analysis 

(PCA/ICA)7, and then upgraded to constrained non-negative matrix factorization 

(CNMF), and its various derivations such as CNMF-E6. Due to better reliability in 

demixing the activities of overlapping cells, the computational efficiency and 

accessibility of parameter adjustment, CNMF-E based MiniAn has become a reliable 

choice and selected as the CalV2N tool to extract Ca2+ traces in this study.  

 

Despite the availability of CalV2N tools, substantial challenges remain in drawing 

meaningful conclusions from Ca2+ imaging data. First, the lack of synchronized 
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visualization of multiple data streams: Usually at least two original data streams are 

collected, including behavioral video tracking and the Ca2+ image. After data processing 

by the CalV2N tool, three data streams are generated, including extracted Ca2+ traces, 

footprint of identified cells, and the processed video. The current available CaV2N tools 

are usually Python-based. Visualization of different lines of data or videos are primarily 

contained in discrete sections (e.g., background removal, seed selection, and other 

sections in MiniAn serving as an example CalV2N tool). Although this provides insight 

into the effects of single parameters, an integrative visual platform is missing that would 

provide the user with a review of the multiple lines of data. Second, the global 

parameters applied across the data often result in inconsistencies, as signal quality 

varies between neurons. The parameters that are available to the user are applied 

across the entirety of the input data, which can contribute to mixed results to the quality 

of extracted Ca2+ traces. MiniAn for instance, visualizes 5-10 cells at random to 

ascertain the impact of a parameter. In our research group, we observed 

inconsistencies arising from differing SNRs across different cells and varying intensities 

of resultant Ca2+ traces, which has created a demand for a post-CalV2N tool. Third, the 

verification of detected cells and extracted Ca2+ traces remains uncertain. Forth, there 

is no well-established tool available to time efficiently and reliably identify Ca2+ 

transients. Fifth, we would also like to highlight that the challenges mentioned are 

significantly amplified by the complexity and sheer volume of data processed through 

CalV2N. This includes: (1) high temporal resolution, with sampling rates of 10-60 Hz; (2) 

high spatial resolution, with pixel sizes ranging from 0.8-1.0 µm and a field of view 

(FOV) up to 1.0 mm × 0.8 mm; (3) high cell throughput, with 50-200 neurons typically 
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detected per animal, resulting in massive datasets, especially when scaled across 

multiple animals (e.g., 10-20 per group) and various experimental conditions; and (4) 

integration with behavioral data, adding further complexity to the analysis.  

 

To address these challenges at the post-CalV2N stage, we developed the Ca2+ transient 

identifier GUI (CalTrig), a graphical user interface (GUI) using the Python package 

PyQT5. CalTrig integrates all outputs from MiniAn (including Ca2+ imaging original 

processed videos, Ca2+ traces, cell footprints, and behavioral videos) to facilitate 

synchronized visualization, evaluate the performance of CalV2N, and identify Ca2+ 

transients. The objective of creating CalTrig is listed below: 

• Efficient performance: Low computing demands ensure smooth operation on 

standard computers. 

• User-friendly interface: Neuroscientists without programming skills can explore and 

analyze data at neuronal levels with high temporal resolution. 

• Integrative visual exploration: CalTrig enables evaluation of CalV2N performance 

and reliable detection of Ca2+ transients by integrating multiple data streams and 

videos. 

• Multiple options for Ca2+ transient detection: CalTrig supports manual, 

parameter-based, and machine learning-based detection methods. 

• Integration of detection strategies: Detection strategies can be combined. For 

example, parameter-based autodetection or machine learning outputs can be 

manually corrected, and parameter-based autodetection can serve as a preliminary 
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step before manual detection, helping set up datasets for training machine learning 

models. 

•  Informative output: Detailed Ca2+ transient data for each neuron and an overview 

of a pool of neurons from one mouse brain can be exported as data tables or figures 

for publication. 

 

In summary, CalTrig is developed to bridge the gap between CalV2N tools and the final 

stages of data analysis, simplifying the workflow and enabling researchers to extract 

meaningful biological insights from raw data. Although the potential readership is broad, this 

research article primarily aims to assist neurobiologists in processing in vivo Ca2+ imaging data 

collected using a single-photon miniScope. We would like to give a brief introduction to the 

article’s organization, which differs from a typical neurobiological research paper. In the 

Introduction, we elaborate on the significance of in vivo Ca2+ imaging in freely-moving animals 

and discuss the challenges encountered after extracting Ca2+ traces using tools like CalV2N and 

MiniAn. We then concluded the goals for developing CalTrig. The Methods section not only 

reiterates previously established procedures for collecting Ca2+ imaging data from freely-moving 

mice and extracting the Ca2+ traces, as we reported earlier, but also provides detailed 

information about the newly developed tool, CalTrig. The latter includes data loading from 

CalV2N, data visualization, cell verification, CalV2N evaluation, Ca2+ transient identification, and 

exporting figures or data for statistical analysis, ready for publication. We present three 

strategies for Ca2+ transient identification (i.e., parameter-based, manual, and machine learning-

based detection), including their procedures and applications. In the Results section, we 

compare the performance of multiple machine learning models, evaluate whether the 

established machine learning model can be used to identify transients across datasets collected 

at different time points, from different animals, and in various brain regions. Finally, the 
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Discussion highlights the advantages of using machine learning models, the integrative visual 

exploration interface, and the unique features of CalTrig. 

 

2. METHODS:  

2.1. In vivo Ca2+ Imaging data collection 

2.1.1. Experimental animals 

All in vivo procedures on laboratory animals were performed in accordance with the 

United States Public Health Service Guide for Care and Use of Laboratory Animals and 

were approved by the Institutional Animal Care and Use Committee at Indiana 

University School of Medicine. Ten male C57BL/6J, bred in-house using breeders 

originally derived from the Jackson Laboratory, were used in this study. The mice were 

group housed except for those undergoing GRIN lens implantation, which were singly 

housed to prevent cage mates from damaging the implanted lens. All mice had free 

access to chow and water in home cage, maintained on a 12-hour light/dark cycle (light 

on at 7:00 AM and off at 7:00 PM). 

 

2.1.2. Surgical procedures: 

Microinjection of AAV 

Mice were anesthetized with 2.5% isoflurane for induction and maintained with ~1.2%. A 

28-gauge injection needle was used to unilaterally inject the tAAV1-Syn-jGCaMP8f-

WPRE or AAV1-CaMKIIa-jGCaMP8f-WPRE solution (0.5 µl/site, 0.1 µl/min) via a 

Hamilton syringe into the M2 (coordinates in mm: AP, +1.80; ML, ±0.60; DV, -1.30 for 

M2), using a Pump 11 Elite Syringe Pumps (Harvard Apparatus). Injection needles were 

left in place for 5 min following injection.  
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Lens implantation 

A couple of minutes after withdrawing the AAV injection needle, a unilateral GRIN lens 

(Inscopix Inc, #1050-004595, Diameter: 1.0 mm; length: ~4.0 mm; Working Distance: 

200 µm) was lowered through the cranial window to 200 µm above the center of the 

virus injection site. The open space between the lens’ side and the skull opening was 

sealed with surgical silicone (Kwik-Sil) and secured by dental cement (C&B Metabond). 

The exposed part of the lens above the skull was further coated with black cement 

(Lang Dental Mfg. Co.’ Inc.). 

 

Base-plating 

After the catheter implantation, the mouse was maintained anesthetized with isoflurane. 

The cement on top of the GRIN lens was carefully removed using drill bits until the lens 

was exposed. The top of the lens was then cleaned using lens paper and a cleaning 

solution. A metal baseplate was mounted onto the skull over the lens using Loctite super 

glue gel, guided by a MiniScope for optimal field of view.  Once the baseplate was 

securely mounted, the MiniScope was removed. A protective cap was attached to the 

baseplate, and the mouse was returned to its home cage. 

Verification of AAV expression and the lens location 

After the completion of the in vivo Ca2+ imaging, M2 or mPFC-containing coronal slices 

were prepared as described before8, then fixed in 4% Paraformaldehyde (PFA) for no 

less than a couple of hours. After a brief rinse with PBS, slices were mounted with 

ProlongTM Gold antifade mounting reagent with DAPI (Invitrogen, Cat# P36931). Confocal 
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imaging was performed using a Zeiss LSM 800 confocal microscope. The criteria for 

animal inclusion in this study were (a) highly enriched AAV expression in mostly pyramidal 

neurons, within-M2 or mPFC viral injection site, and (b) the footprint of the GRIN lens tip 

at the top of the targeting brain area. 

 

2.1.3. In vivo Ca2+ imaging recording 

Mice were habituated to the in vivo Ca2+ recording procedure by mounting the miniScope 

V4 (OpenEphys) to the pre-anchored baseplate and recording for 5 min per day at home 

cage for 3 days before starting the 1-hr daily recordings in an operant chamber (Med 

Associates). Data Acquisition (DAQ) box, supported by an open source, C++ and Open 

Computer Vision (OpenCV) libraries-based software, were used to collect both Ca2+ and 

behavioral video streams simultaneously controlled by the operant chamber software, 

MED-PC (Med Associates) via a TTL adaptor. The sampling frequency was 30 Hz.  

 

2.2. Extraction of Ca2+ transient traces from the raw videos 

Among multiple types of computational tools established previously to extract Ca2+ 

transients from raw videos, a Python-based analysis pipeline, Minian9, was used in our 

data analyses due to its low memory demand and user friendly parameter options. In brief, 

there were five steps in the pipeline. First, multiple raw videos were batch loaded and 

subjected to a PREPROCESSING stage, where sensor noise and background 

fluorescence from scattered light were removed. Second, rigid brain motions were 

corrected by MOTION CORRECTION. Third, the initial spatial and temporal matrices for 

later steps were generated by a seed-based approach, called SEEDS INITIALIZATION. 
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Fourth, the spatial footprints of cells were further refined. Fifth, the temporal signals of 

cells were also refined. The last two steps, the SPATIAL UPDATE, and the TEMPORAL 

UPDATE, as the core computational components based on CNMF algorithm, were 

repeated at least one more time.   

 

2.3. CalTrig (Ca2+ Transient identification GUI) 

CalTrig is python-based open source code with GUI interface. It is available in our lab 

Github station (webpage to be added). The repository contains documentation, demos, 

and a message/discussion board. The code, which is compatible with Python 3.10, uses 

several open-source libraries including Xarray, Numpy, Pandas, PyQt5 and Pyqtgraph.  

 

Computer system specifications for CalTrig development and testing: The development 

and testing of CalTrig were conducted on a system with the following specifications: 

CPU, Ryzen 9 7900X; RAM, 64GB; GPU, Nvidia RTX 4080; Operating System, 

Windows 11. 

 

2.3.1. Data loading 
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The front page of CalTrig serves as a hub for loading data (Fig. S1A). Data can be 

loaded by directly specifying the file path, or indirectly by loading the pre-generated INI 

(Initialization) files or JSON (JavaScript Object Notation) files.  

The INI file uses a flat format with itemized information to detail a single data set. It 

incorporates both basic experimental design details (e.g., Animal ID, day, session stage) 

and multiple temporally synchronized data lines, including (1) the original and CNMF 

process Ca2+ image video, (2) extracted Ca2+ trace data (i.e., the CNMF-E output), (3) 

behavioral data (i.e., operant behavioral such as active lever press, ALP; inactive level 

press, ILP; and Reinforcement, RNF), and (4) behavioral video tracking. The variables 

included in each CNMF dataset are listed in Table 1 and included in Parameter list in 

CalTrig interface (Fig. S2). The INI file can be created by following the format provided 

in demo INI files, ensuring that both the experimental design and data streams are 

properly synchronized for exploration and analysis. 

 

 

CNMF variable Definition  

C Temporal matrix of Ca2+ dynamics 

S Temporal matrix of Ca2+ transient rising slope 

A Spatial matrix of cell footprints 

B Spatial matrix of background footprints 

f Temporal vector of background dynamic. 

YrA Temporal matrix of residual cell traces. 

Y/.... A collection of 3D matrices containing original and processed videos. 

ΔF/F 

Temporal matrix of ΔF/F values for cells. This is the only variable that is not 
considered mandatory, as the MiniAn pipeline does not generate it. When 
absent, it will be automatically generated in the CalTrig using a CAIMAN 
implementation. 

 

Table 1. CNMF variable 
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The JSON file, in contrast, uses a hierarchical format, representing the experimental 

design. Using data from one of our addiction projects as an example, the JSON file can 

collect information from multiple INI files, outlining details such as treatments for each 

animal, Ca2+ imaging days, and session stages. The JSON file can be generated by 

saving data after loading multiple INI files, either for longitudinal recordings in a single 

animal or for a group of animals assigned to the same experimental group. 

 

2.3.2. Data visualization  

As shown in Fig. S1B, each set of data can be visualized in the window by their cell 

footprint and are arranged in a grid related to the experiment design details, such as 

animal ID, day, session stage. Select the data set to be explored by clicking the 

corresponding window of the footprint, then click the “cell exploration” button to open a 

separate window that is subdivided into five main components (Fig. 2), including  

(1) Ca2+ image video: toggle between original vs. CNMF processed videos, can 

be zoomed in to see more details about the cellular signal.  

(2) behavioral video tracking, showing behaviors of the freely-moving animal 

during Ca2+ imaging recording,  

(3) cell list, including individual cell# identified by CNMF-E,  

(4) Ca2+ trace window,  

(5) Trace toolbox  

 

The following tasks can be done by the crosstalk between windows: 
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• Footprint of cells of interest (COI): The footprint of the detected neurons can be 

visualized by clicking the projection area in the Ca2+ imaging video, or by selecting 

the cell number from the cell list. This action superimposes its corresponding 

footprint onto the Ca2+ imaging video. The footprint can be displayed as a solid 

patch, a contour or by dimming the non-cell intensity. 

• Ca2+ traces of cells of interest: The cells of interest can be selected by clicking on 

the footprint area in Ca2+ imaging video, or selection of the cell# in the cell list.  

• Variable readouts of Ca2+ traces: Ca2+ traces can be visualized with different 

temporal readouts as listed in Trace toolbox, including the variables directly 

imported from CNMF-E (i.e., C signal and S signal), the variables calculated by 

CalTrig (i.e., ΔF/F, Raw signal, SavGol Filter of ΔF/F, Noise, SNR).  

• Time stamp of behavioral events or external stimuli on Ca2+ traces: Ca2+ traces can 

be segmented by the behavioral readout listed in the Trace toolbox, such as ALP, 

ILP, RNF, 

• Standardized window size of the Ca2+ trace window: The window size for X-axis in 

the unit of frame, and the scale range for Y-axis, can be defined in this box. When 

clicking “Reset view” button, the magnification of the signal will be adjusted 

according to the Y axis range, and the window will be set up with the pre-defined 

size by anchoring the first visible frame in the Ca2+ trace window. This is 

considerably helpful when manually identifying Ca2+ transients.  

• Cell verification:  Cells identified by CNMF-E can be individually reviewed and 

categorized into “Approved cells”, “Rejected Cells” and Missed Cells” as detailed 

below by crosstalk between multiple windows.  
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• Quality evaluation of CNFM analysis: 

• Ca2+ transient identification: this can be done by parameter-based auto detection, 

manual detection, machine learning-based detection, or combination of multiple 

strategies we have developed in CalTrig. 

 

2.3.3. Cell verification and CalV2N evaluation 

Cell verification 

• Verified cell: CalTrig allows user to inspect individual cells detected by CalV2N by 

interactive exploration of the Ca2+ imaging window and Ca2+ trace window. A cell 

becomes verified after a visual confirmation of its footprint, Ca2+ Image, and Ca2+ 

trace, ensuring identifiable Ca2+ transients are present (Fig. S3). Once verified, the 

cell can be repurposed for machine learning training. 

• Rejected Cell: Cells can be assigned to the rejection column for different reasons, 

including no identifiable Ca2+ transients, suspicious footprint, statistically identified as 

an outlier of the detected Ca2+ transients, etc. CalTrig provides the option to provide 

a written justification for each cell rejection, which can be used to provide feedback 

and potentially rerun the CNMF pipeline. 

• Missing Cell: Automatic time-series based algorithms may not be sensitive enough 

to detect cells with low to medium SNR, or those constitutively active or inactive with 

minimal dynamic changes. While reviewing the Ca2+ imaging video, one may notice 

a potentially missed cell by CalV2N. CalTrig allows user to manually draw the 

contour of the suspected cell in the Ca2+ image window, creating its footprint (Fig. 

S4). The corresponding temporal trace of signal intensity for the selected area is 
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then calculated by averaging pixel intensities and displayed in the Ca2+ trace 

window. If the Ca2+ traces meet the criteria for accepted cells, the manually identified 

cell can be added to the list of missing cells.  

 

Evaluation of CalV2N performance 

Although many CalV2N tools have been developed, there is no evaluation system 

available to assess the quality of cell identification and Ca2+ transient extraction.  One of 

our initial motivations for developing CalTrig was to address this gap by creating a 

platform to evaluate CalV2N outputs (Fig. 3). Cells identified by CalV2N can be 

accepted or rejected, and missing cells can be manually added as described above.  

Further refinement of cell quality evaluation is possible after Ca2+ transient detection, 

using metrics such as rising time, peak amplitude, and inter-transient interval to review 

transient kinetics.  If the rate of missing cells is too high (e.g., 10% or higher) and/or the 

rate of acceptable cells is too low (e.g., 90% or lower), further optimization of CalV2N 

parameters should be considered. For example, MiniAn pipeline can be optimized by 

adjusting the following parameters9.   

ksize: Controls the denoising step, filtering out electronic noise while 

preserving important cell details. 

wnd: Regulates the background removal step, subtracting unwanted light to 

isolate signals from cells. 

dl_wnd: Used in the spatial update to focus on nearby cells and adjust the shape 

of cell signals. 
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sparse_penal: In the spatial update, it controls how detailed or simplified the shapes of 

the detected cells are. In the temporal update, it balances how much 

detail is included in the signals from the cells. A higher value makes the 

signals simpler and less detailed. The best value for this needs to be 

found through experimentation, as it’s hard to estimate in advance. 

sparsity: Ensures only the most meaningful signals are captured during the 

temporal update, minimizing noise. 

 

Low SNR may also indicate poor raw data quality, which can be addressed by 

optimizing AAV preparation (e.g., selecting appropriate subtypes, adjusting titer and 

volume), improving surgical techniques (slower needle insertion / withdrawal, slower 

AAV delivery, minimizing bleeding), and enhancing data collection methods (adjusting 

focal levels, securing miniScope anchoring, preventing cable twists via sensitive 

commutator, and ensuring reliable hardware connections).  

 

2.3.4. Ca2+ transient identification 

Transient confirmation can be done in three ways, including manually selecting the start 

and end points of the transients, auto filtering with specified kinetic parameters or 

specifying frame number ranges, or running a trained machine learning model. 

 

2.3.4.1. Manual Identification:  

Method: Ca2+ transients can be directly identified by manually selecting the start and 

end points of the rising section of Ca2+ transients (Fig. S5). Efforts have been made to 
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improve the efficiency of manual identification. For example, the window size of the Ca2+ 

can be pre-set at a desired size (e.g., 1000 frames per window width in the x-axis, -1 to 

20 as the signal range in the y-axis) which will allow the visual impression of Ca2+ at 

different time stage, different animals are comparable, assisting a consistent decision 

making on Ca2+ manual identification. We also set up the shortcut keys to switch the 

screen window in the Ca2+ trace panel. Specifically, clicking A and F allow to jump to the 

first or the last window, respectively, and clicking S and D allow to jump to the previous 

or the next screen window, respectively. To account for inaccuracies resulting from 

human interaction, the selected points would automatically position themselves within a 

20-frame window to the local maxima or minima, dependent on their order. 

  

Applications for manual identification: First, directly label the Ca2+ transient at the 

beginning stage of the project when no reference in setting up the parameters for 

autodetection or no data set are available to training the machine learning model. It 

takes ~5 min to go through a 15-min Ca2+ traces. Second, correct, add, or remove the 

transient spikes after running the parameter-based auto detection to establish the 

ground truth for training the machine learning model. This would primarily apply to 

problematic spikes around the specified parameter threshold or those whose rising part 

was too slow to be confidently identified as a transient event. It takes ~1 min to go 

through a 15 min Ca2+ traces. Third, to further improve the Ca2+ transient identification 

after processed by an established machine learning model. Since our machine learning 

model, specifically the GRU model used in identifying the Ca2+ transient in neurons 

detected during the same recording window from the same animal are highly reliable 
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(more details in Results), we expect this correction process should be done on 2-4 cells 

per min. Fourth, when we need to extend the application of a well-trained machine 

learning model to a different brain region, a different cell type, etc., the machine learning 

model may provide a compromised predictability in detecting Ca2+ transients. Adding a 

few traces with the manually identified Ca2+ transient will set up a new data set as 

ground truth for establishing an updated machine learning model to be used in a new 

task.  

 

2.3.4.2. Parameter-based automatic identification 

Three Parameters 

“Peak Threshold (ΔF/F)”: First, let’s define ΔF/F, which represents the relative change in 

fluorescence intensity, where: 

• ΔF is the difference between the observed fluorescence intensity (F) at a given 

time and the background fluorescence intensity (F₀). 

• F₀ is the background fluorescence intensity, which we’ve calculated using a 

moving percentile provided by Caiman4. 

The formula is: 

𝛥𝐹/𝐹 =
𝐹 − 𝐹0

𝐹0
 

The peak ΔF/F value within a specified time window is considered as the potential peak 

of the Ca2+ transient. The “Peak Threshold (ΔF/F)” is the minimum value of peak ΔF/F. A 

Ca2+ transient is accepted only if its peak surpasses this threshold.  
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“Interval Threshold”: This specified the minimum Inter-Transient Interval (ITI), measured 

as the frame distance between the initial fames of two adjacent Ca2+ transients. If the 

distance between two transients is shorter than the “Interval Threshold”, they are 

considered part of the same transients, with the lower peak, whether preceding or 

following, merged into the higher peak.  

 

“SNR Threshold”: This sets the minimal Signal-to-Noise ratio (SNR).  Using the 

Savitzky–Golay filter 10,11 to smooth ΔF/F signals, noise is calculated as the difference 

between the original and filtered ΔF/F, further smoothed by a rolling window strategy. 

Then SNR is computed by dividing the smoothed ΔF/F by the estimated noise. See 

more details in Supplementary Information. 

 

At the initial experimental stage, parameter settings are determined using manual 

identification on a limited number of cells or demo data. As more cells are manually 

identified, these parameters can be refined to enhance the effectiveness of parameter-

based auto-detection. 

 

Method: Through manual identification, the C signal from CNMF was found to reliably 

predict Ca2+ transients in most cases but prone to false positives. To enhance detection 

accuracy, the parameter-based auto detection algorithm starts by including all C picks in 

a candidate pool, then filtering down to a valid subset based on three pre-defined 

parameters: “Peak Threshold (ΔF/F)”, “Interval Threshold”, and “SNR Threshold” (Fig. 

S7). This is achieved through the following steps.  

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2024. ; https://doi.org/10.1101/2024.09.30.615860doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.30.615860
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

• Initial peak detection through local maxima calculation of the C signal. 

• Refine peak selection from left to right by looping the following steps. 

• Remove erroneous peaks if the S signal is zero. 

• Allocate overlapping, continuous S signal to the current peak. 

• Check if the distance to the next peak is shorter than the pre-defined “Interval 

Threshold”.  

• If so, merge the current and subsequent peaks, selecting the taller peak. 

• If not, use the S signal to determine the start and end of the transient. 

• Accept the transient selection if in the defined boundaries, the values surpass 

both the pre-defined “Peak Threshold (ΔF/F)” and “SNR Threshold”.  

 

Application: Parameter based Ca2+ transient detection is faster than manual detection, 

but less predictive than using a well-trained machine learning model. It is particularly 

useful after manual identification of a few cells, enabling parameter tuning. Parameter-

based detection can then serve as a pre-detection step to accelerate further manual 

identification, eventually creating a ground-truth dataset for training machine learning 

models. This method also helps refine or update machine learning models for different 

experimental conditions (Figs. 6, 8,9). 

 

2.3.4.3. Detection using Machine Learning Model 

Feature selection for machine learning model:  

In selecting the appropriate architecture for the machine learning model, we aimed to 

incorporate key signals gained from the “ground truth” Ca2+ transient verification by 

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2024. ; https://doi.org/10.1101/2024.09.30.615860doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.30.615860
http://creativecommons.org/licenses/by-nc-nd/4.0/


manual detection process. We identified three signals, i.e., C and ΔF/F, as sufficient for 

decision-making. The determination of whether a given time-step contains a Ca2+ 

transient can be inferred from a 100-frame window centered by the frame of interest. A 

corresponding data set, denoted E, was created by marking the initial and peaking 

frames within the context of a dynamic rise in Ca2+ transients. 

 

Selection of machine learning models: 

Ca2+ transient data are inherently time-series data with a long sequence of many 

neurons firing at different times, where the signal at any given frame is highly relevant to 

past and upcoming activity. Thus, Recurrent Neural Networks (RNNs) 12 and 

Transformers13,14 are selected as the candidate machine learning models for Ca2+ 

transient detection due to their ability or potential to handle the temporal dynamics of 

Ca2+ signals in neurons.  

 

The core of its architecture lies in the RNN cells and its gating mechanisms, which 

processes inputs sequentially, creating a representation of the data in the context of the 

preceding timestamps. In the case of Ca2+ transient data, two features (i.e., C, ΔF/F) 

used for training will be incorporated into the hidden state (H) and passed to the 

subsequent cell (C). We tested two RNN variants: Long Short-Term Memory (LSTM) 

15,16 and Gated Recurrent Unit (GRU)17,18. Given the importance of both forward and 

backward context in detecting Ca2+ transients, we employed a bidirectional RNN. The 

outputs from both directions are concatenated and passed through a feed-forward layer 

to generate the final prediction. 
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One significant limitation of the RNN is due to the fixed size of its hidden state and the 

sequential nature of the architecture, causing early-time step bias. To address this, we 

trained a Transformer, which uses self-attention to compare the relationship between all 

input values simultaneously, rather than processing sequentially19,20. This approach 

allows the model to attend to both low and high-intensity values that occur at different 

temporal distances from the Ca2+ transient, improving prediction accuracy. Recent 

advancements in Natural Language Processing have introduced the Local 

Transformer, which limits attention to a subset of nearby inputs 21,22. This model could 

help reduce errors by focusing on local context and ignoring distant irrelevant signals. 

However, the self-attention mechanism in the Transformer obscures positional 

information, hence we need positional embeddings. The trainable embeddings were 

used in our Transformer. Additionally, we observed that the small dimensionality of the 

original input data negatively affected training, likely due to the model's inability to 

effectively encode positional information in low-dimensional data. To address this, we 

introduced a preliminary dimension expansion layer, which projects the input into a 

higher-dimensional space before passing it through the encoding layers. 

 

Both RNN and Transformer architectures were implemented in CalTrig using PyTorch 

23,24. For the Transformer, we used the Transformer Encoder module, and for the Local 

Transformer, we adapted a modified version of the model 25. Parameters for machine 

learning model training are listed in Table 2. 
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Table 2. Parameters for machine learning model training 

Parameters GRU & LSTM Transformer local Transformer 

Hidden Ssize 30 42 32 

Number of layers 3 3 3 

Loss function BCEWithLogitsLoss BCEWithLogitsLoss BCEWithLogitsLoss 

Optimizer Adam Adam Adam 

Initial learning rate 0.001 0.001 0.001 

Section Length 200 200 200 

Slack 50 50 50 

number of Heads  2 1 

Local Attention Window Size   10 

Look forward/backward Size   5 Local Attention Windows 

 

Data Pre-processing: 

The input data consisted of two signals (i.e., C, ΔF/F) representing 15-minute time 

intervals of 27000 frames per cell, captured at a sampling rate of 30 Hz. Each segment 

was normalized relative to the highest value within the cell, per data type. We tested two 

data generation and loading approaches:   

 

Discrete Sample Chunking: We defined three variables—sequence length, slack, and 

rolling parameter. The sequence length specifies the number of frames the model will 

train on and use to make predictions, typically set to around 200 frames in our testing. 

The slack variable determines the extra context length on either side of a given 

sequence, providing necessary context for making predictions without being used for 

the predictions themselves. This slack is usually set between 50 and 100 frames. For 

sequences at the edges of the 27,000-frame segment, zero-padding is applied to match 

the slack length and maintain consistency. Lastly, the rolling parameter defines the 
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windowing approach for generating data, allowing overlapping sequences to be 

extracted for model training. 

 

Ca2+ transient events account for only 2-3% of the overall data. To avoid biasing the 

model towards detecting non-Ca2+ transients, we initially applied class weighting, which 

resulted in a poor precision score. We investigated that it was due to the 

underemphasizing of noisy data within training, whose signal characteristics were more 

similar to transient activity rather than an empty signal. This resulted in a model that 

considered any activity including noise to be a transient event. We opted instead to 

implement stratification where we ensured that only samples containing ground-truth 

transient events or positive values from the C array were included. The C array was 

used as a reference to give the model insight into problematic spikes identified by the 

CNMF process but deemed invalid by the verifier. During classification, we average all 

outputs for a single time-step to address overlapping predictions. 

 

Key metrics for validation: 

We used Precision, Recall, F1 and macro F1 as key metrics to evaluate the 

performance of machine learning model in predicting Ca2+ transients vs. nonCa2+ 

transients (Fig. S8). There are four types of predictions: true positive (TP) predicting the 

positive as positive, true negative (TN) predicting the negative as negative, false 

positive (FP) predicting the negative as positive, and false (FN) negative predicting the 

positive as negative.  
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Table 2. Event to be predicted: Ca2+ transients 

predicted 
Ca2+ transients 

predicted 
non-Ca2+ 
transients 

Actual 
Ca2+ transients 

TP FN 

Actual 
non-Ca2+ transients 

FP TN 

Table 3. Event to be predicted: non-Ca2+ transients 

predicted 
Ca2+ 

transients 

predicted 
non-Ca2+ 
transients 

Actual 
Ca2+ transients 

TN FP 

Actual 
non-Ca2+ transients 

FN TP 

Precision measures how many of the positive predictions (TP + FP) are actually positive 

(TP). (It focuses on the quality of the positive predictions.) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP

Recall measures how many of the actual positive instances (TP + FN) are correctly 

predicted as positive (TP). (It focuses on the ability to find all positive cases.) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP + NF

F1 score is the harmonic mean of Precision and Recall, balancing both metrics. 

𝐹1 = 2 × 
Precision × Recall

Precision + Recall
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Macro F1 is the average of the F1 scores calculated for each class, i.e., Ca2+ transients 

and non-Ca2+ transients.  

𝑚𝑎𝑐𝑟𝑜 𝐹1 =  
Ca2+ transient F1 + non-Ca2+ Transient F1

2
 

 

For evaluation, cells were randomly separated into training (80%), validation (10%), and 

testing (10%) sets (Fig. 6). Manual identification, parameter-based identification and 

machine learning model-based identification can be integrated in detecting Ca2+ (Fig. 

4).  

 

2.3.5. Data export 

All the detected Ca2+ transient information can be extracted. A few examples are listed 

below. This will directly aid in data processing, statistical analyses, and figure 

preparation for sharing and publishing.   

 

Animal-wide data export 

A data table is generated, with each row representing one of the CalS2N-detected cells 

and each column providing specific readout as a general description of that cell (Fig. 

S9A). From left to right, the columns include: Cell ID, Cell Size (number of pixels), 

Footprint Location (x, y), Total Ca2+ Transient Count, Frequency (Hz), Average 

Amplitude (ΔF/F), Average Rising (# of frames), Average Rising Time (seconds), 

Average Interval (seconds), Standard Deviation (denoted Std, ΔF/F), Mean Absolute 

Deviation (denoted MAD, ΔF/F), Average Peak Amplitude (ΔF/F), and Category 

(Verified, Rejected, Missing). The data can be easily copied to the clipboard for further 
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processing in other applications like Excel (Microsoft 365) or Prism (GraphPad). 

Figures, such as box plots showing the 25%, 50%, and 75% values for metrics like 

Average Peak Amplitude or ITI (Fig. S9B, C), can be directly generated and saved as 

editable SVG files for publication purposes. 

 

Cell-wide data export: A data table is generated for a selected cell, with the top row 

displaying column titles and the subsequent rows representing individual Ca2+ transients 

detected by CalTrig, one transient per row (Fig. S10). The columns include: Rising Start 

(frames), Rising Stop (frames), Total Rising Frames, Rising Start (seconds), Rising Stop 

(seconds), Total Rising Time (seconds), Interval with Previous Transient (frames), Peak 

Amplitude (ΔF/F), and Total Amplitude (ΔF/F, calculated as the area under the rising 

slope). The column title can be selected to sort the data based the information in the 

selected column (Fig. S10B). This table can be copied to the clipboard for further 

processing in applications like Excel (Microsoft 365) or Prism (GraphPad). Figures such 

as Amplitude Distribution or ITI Frequency Histograms (Fig. S10 C, D) can be created 

directly from this data and saved as editable SVG files for publication. 

 

Maximum projection image 

An editable image file, including the footprints of detected or verified cells for an animal, 

can be created for data sharing and publication purposes.  

 

2.4. Statistical Analysis:  
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Data were collected from 6 mice in vivo, shown as mean ± SEM in curve graphs (Figs. 

8B, C, F, G, J, K, N; 9B, C, F, G, J, K, N) or the quartile in violin plots (Figs. 6; 7; 8D, 

E, H, I, L, M, O; 8D, E, H, I, L, M, O). Using GraphPad Prism 10, statistical significance 

was assessed by one way ANOVA or two-way ANOVA, followed by Bonferroni post-hoc 

tests. Statistical significance was considered to be achieved if p < 0.05. 

 

3. RESULTS: 

3.1. Comparison of the 4 machine learning models 

Our goal is to find an efficient machine learning model with high predictability in 

detecting the Ca2+ transients while minimizing computational demands. To achieve this, 

we compared the performance of two RNN variants, GRU and LSTM, alongside two 

Transformer models, the standard Transformer and local Transformer. We used a 

dataset of 203 cells with manually confirmed Ca2+ transient as “ground” truth (see more 

details in Methods) (Fig. 6A). Our data showed that the macro F1 score for predicting 

Ca2+ transients and no Ca2+ transients was higher with RNN (GRU, 0.948 ± 0.002; 

LSTM, 0.946±0.004) compared to the standard Transformer (0.919 ± 0.005), which was 

partially improved by local Transformer (0.935 ± 0.005) (Fig. 6H).  

 

For Ca2+ transient prediction, the F1 score is higher with RNN (GRU, 0.900 ± 0.005; 

LSTM, 0.894±0.008) compared to the standard Transformer (0.841 ± 0.010), which was 

partially improved by local Transformer (0.873 ± 0.010) (Fig. 6F). In terms of Precision, 

both GRU (0.873 ± 0.008) and LSTM (0.860 ± 0.010) models outperformed the 

standard Transformer (0.771 ± 0.015) and the local Transformer (0.835 ± 0.013) (Fig. 
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6B). However, the Recall scores across 4 machine learning models were similar (GRU: 

0.926 ± 0.008; LSTM: 0.931 ± 0.010; standard Transformer: 0.929 ± 0.009; local 

Transformer: 0.916 ± 0.010) (Fig. 6D), indicating that the F1 score differences were 

mainly driven by Precision. 

 

For predicting non-Ca2+ transients, the precision, recall, and F1 scores were all near 

perfect (>0.990), due to the consistent nature of non-Ca2+ transient signals. When 

analyzing F1 scores specifically for non-Ca2+ transient prediction, similar trends as the 

macro F1 scores were observed across the four MACHINE LEARNING  models (Fig. 

6G), with differences primarily driven by Recall (Fig. 6E) rather than Precision (Fig. 6C). 

 

Compared to Transformer models, RNN models exhibited higher Precision in detecting 

Ca2+ transients and better Recall for non-Ca2+ transients, both attributable to RNN’s 

ability to minimize misclassification of the non-Ca2+ transient signal as Ca2+ transient 

signals. The consistent good Recall for Ca2+ transients and Precision values for non 

Ca2+ transients across all MACHINE LEARNING  models indicates that they have a low 

likelihood of misclassifying Ca2+ transients as non-Ca2+ transients. The primary 

challenge in identifying Ca2+ transients lies in reducing errors where non-Ca2+ transients 

are mistakenly classified as transients. RNN models outperformed Transformer in 

addressing this issue, which was partially improved when using the local Transformer. 

Given its lower variability and faster processing time, GRU is recommended over LSTM. 

Therefore, all subsequent analyses were conducted using the GRU model. 
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3.2. Optimization of the cell number of the training data set 

To determine the optimal number of cells to be used as the training dataset, we tested 

the predictability of GRU model trained by varying number of cells, ranging from 1 to 20. 

When the testing data sets were randomly sampled form the same session stage (i.e., 

the first 15 min or the last 15 min) in the same 1hr daily session on either Day 1 or Day 

5, we observed a significant improvement in the macro F1 score when 5 to 20 cells 

were sampled, compared to GRU models trained with only 1 or 2 cells. However, no 

differences were observed among models trained with 5 to 20 cells (mean ± S.D.E 

macro F1 score: 1 cell, 0.817 ± 0.014; 2 cells, 0.885 ± 0.008; 5 cells, 0.926 ± 0.005; 10 

cells, 0.945 ± 0.004; 15 cells, 0.947 ± 0.004; 20 cells, 0.946 ± 0.004) (Fig. 7H).  This cell 

number-dependent predictability is primarily attributable to the model’s predictability of 

the Ca2+ transient indicated by its Precision (Fig. 7B), Recall (Fig. 7D), and F1 scores 

(Fig. 7F) for Ca2+ transients, as the Precision (Fig. 7C), Recall (Fig. 7E) and F1 scores 

(Fig. 7G) for non-Ca2+ transient were all near perfect regardless of the cell number of 

the training data set.  We further explored the effects of cell number when testing cells 

were randomly sampled from the different session stages within the same 1-hr daily 

session, the same session stage on a different daily session, and the different sessions 

stage on a different daily session of the same mouse (Fig. 8A). In call cases, we found 

significant improvements of both Ca2+ transient prediction (Fig. 8B, F, J, N) and the 

non-Ca2+ transient predictions – though the latter were near perfect in most instances 

(Fig. 8 C, G, K, O)– when 5 or more cells were sampled for training, compared to the 

models trained with only 1 or 2 cells.  Finally, we extended further by randomly sampling 

the training data sets from different mice (Fig. 9A). We found significant improvements 

30

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2024. ; https://doi.org/10.1101/2024.09.30.615860doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.30.615860
http://creativecommons.org/licenses/by-nc-nd/4.0/


of Ca2+ transient prediction (Fig. 9 B, F, J, N) and the non-Ca2+ transient prediction - 

though the latter were near perfect in most instances (Fig. 9 C, G, K, O)- when using 5 

or more cells, regardless of whether the testing cells were from the same or different 

brain regions in mice distinct from those used for training. In conclusion, the number of 

cells used for training is crucial for accurately predicting Ca2+ transients. A minimum of 

10 cells appears to be sufficient for achieving macro F1 scores above 0.900 when 

training the GRU model. 

 

3.3. Share the machine learning model for predicting testing cells across 

different time windows in the same mouse 

To assess how well a GRU model trained on data from a section of a 1-hr daily session 

can predict Ca2+ transients from any other recordings in the same mouse, we randomly 

sampled testing cells under four conditions: (1) the same session stage in the same 

daily session (smSS::smDay), (2) a different session stage in the same daily session 

(dfSS::smDay), (3) the same session stage in a different daily session (smSS::dfDay), 

and (4) a different session stage in a different daily session (dfSS::dfDay) (Fig. 8A). 

When 20 cells were sampled, the macro F1 scores were 0.946  ± 0.004 for 

smSS::smDay, 0.936  ±  0.006 for dfSS::smDay, 0.934  ±  0.005 for smSS::dfDay, and 

0.927  ±  0.008 for dfSS::dfDay (Fig. 8N). Thus overall, the predictability remained high 

when testing cells were sampled from the same mouse used for GRU model training, 

though the macro F1 score for predicting both Ca2+ transients and non-Ca2+ transients 

was affected statistically, but mildly, by the source of testing cells (Fig. 8 N, O).   
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For predicting Ca2+ transients, the source of testing cells affected the F1 scores (Fig. 8 

J, L), particularly the Precision (Fig. 8 B, D) rather than the Recall (Fig. 8 F, H). When 

smSS::smDay was set as the gold standard with 20 cells as the benchmark, similar 

predictability was observed when testing cells were sampled from dfSS::smDay or 

smSS::dfDay. However, lower Precision and F1 score, but comparable Recall, were 

noted when testing cells were sampled from dfSS::dfDay.  

 

For predicting non-Ca2+ transients, the source also affected the F1 scores (Fig. 8 K, M), 

primarily impacting the Recall (Fig. 8 G, I), while the Precision remained largely 

unaffected (Fig. 8 C, E). Similarly, as what was observed for predicting Ca2+ transients, 

we found the non-Ca2+ transient prediction were comparable when testing cells were 

sampled from smSS::smDay, dfSS::smDay or smSS::dfDay. Lower Recall and F1 score, 

but similar Precision, for non-Ca2+ transient prediction was detected when testing cells 

were sampled from dfSS::dfDay.  

 

In conclusion, the GRU model can effectively predict Ca2+ transients in cells from the 

same mouse used for training. However, the risk of misclassifying non-Ca2+ transients 

as Ca2+ transients increase, though within a narrow range, when testing cells are 

sampled from a different session stage and a different day.  

 

3.4. Share the machine learning model for predicting testing cells from different 

mice 
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To evaluate how the GRU model can predict the Ca2+ transients from a different mouse, 

either sharing the same brain region or switch to a different brain region, we use the 

smSS::smDay sampling strategy as the benchmark and added two more strategies in 

sampling testing cells: (1) the same brain region in a different mouse (denoted 

smRegion::dfMouse, and (2) a different brain region in a different mouse (denoted 

dfRegion::dfMouse). When 20 cells were sampled, the macro F1 scores were 0.946 ± 

0.004 for smDay::smSS, 0.947 ± 0.003 for smRegion::dfMouse, and 0.927 ± 0.005 

dfRegion::dfMouse. Thus, regardless of the brain region specificity, overall predictability 

remained high when testing cells were sampled from mice different from the one used 

for GRU training, although the macro F1 score for predicting both Ca2+ and non-Ca2+ 

transients was statistically reduced when the testing cells were sampled in 

dfRegion::dfMouse (Fig. 9 N, O). 

 

For predicting Ca2+ transients in different mice, the source of testing cells affected the 

F1 scores (Fig. 9 J, L) by impacting both the Precision (Fig. 9 B, D) and the Recall 

(Fig. 9 F, H). Lower Precision, Recall and F1 score were noted when testing cells were 

sampled from dfRegion::dfMouse, relative to either smSS::smDay or 

dfRegion::dfMouse.  

 

For predicting non-Ca2+ transients, the source also affected the F1 scores (Fig. 9 K, M), 

by impacting both the Precision (Fig. 8 C, E) and the Recall (Fig. 8 G, I). Lower, 

although still near perfect, Precision, Recall and F1 score were noted when testing cells 
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were sampled from dfRegion::dfMouse, relative to either smSS::smDay or 

dfRegion::dfMouse.  

 

In conclusion, the GRU model can identify Ca2+ transients in cells from different mice 

with a macro F1 beyond 0.900. However, the risk of misclassifying non-Ca2+ transients 

as Ca2+ transients or Ca2+ transients as non-Ca2+ transients increase, though within a 

narrow range, when testing cells are sampled from a different brain region of a different 

mouse. There appears to be no significant impact on the F1 score when the testing cells 

are from the same region of a different mouse.  

 

4. DISCUSSION 

4.1. Selection of Machine Learning Model 

In recent years, there a few studies using different machine learning methods which 

have been developed that have utilized some combination of the CNN, Attention-based 

architectures for cell identification and subsequent cell extraction26-28. However, they 

require a significant amount of labelled data as ground truth to achieve adequate 

predictive performance. This raises concern in both time investment to train a single 

model as well as due to the black box nature of these models, their ability to maintain 

performance given a substantial change in the input data (such as changes to different 

experimental animal, another rain region of interested, a different type of neurons). 

 

In this study, we evaluated four machine learning models (GRU, LSTM, Transformer, 

and Local Transformer) for Ca2+ transient detection. Both predictability performance 
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(i.e., precision, recall, and F1 scores) and time efficiency should be considered. First, 

GRU model is the most time-efficient, with a computation time of 287.1 second / epoch, 

slightly faster than LSTM (290.59 second / epoch) due to its simpler architecture and 

fewer parameters, making it computationally less expensive. GRU also exhibits strong 

overall performance in terms of precision, recall, and F1 scores, making it an excellent 

choice when considering both predictability and computation time. Second, LSTM takes 

marginally longer than GRU but performs slightly worse across multiple predictability 

metrics for Ca2+ transient detection. While very close to GRU in time efficiency, its more 

complex gating mechanism results in slightly longer computation times, without a 

significant performance advantage. Third, standard Transformer requires significantly 

more computation time at 708.8 second / epoch. Although transformers can be easily 

parallelized, their global self-attention mechanism and large parameter space demand 

much higher computational power. This increased time is not justified by any 

improvement in Ca2+ transient predictability, which actually suffers due to interruptions 

from distal frames when global attention is used in decision-making. Fourth, Local 

Transformer is the least time-efficient, taking 1744.4 second / epoch, almost 6x slower 

than GRU or LSTM, and 2.5x slower than the standard Transformer. This can be 

attributed to the increased complexity of managing localized attention windows and 

maintaining context between them. Additionally, it loses parallelization efficiency when 

processing the entire window. However, this increased computation time is 

compensated by improved predictability, as attention is focused more effectively on 

local frames, leading to better decision-making.  In conclusion, RNNs outperform 

transformers in both time efficiency and predictability for Ca2+ transient detection. 
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Between two RNN variants, GRU offers a better performance in both time efficiency and 

predictability, although LSTM remains a viable alternative. When the GRU performance 

is challenged by dataset size, computational resources, and the complexity of the 

transient dynamics, other models could be explored directly in the CalTrig.  

 

4.2. Integrative Visual Exploration 

The synchronization of Ca2+ imaging, cellular footprint, behavioral tracking, and Ca2+ 

trace windows, adjustable via a time bar, allows for a comprehensive and temporally 

aligned visualization of neuronal activity and behavior. This integration of multiple data 

streams provides several key benefits for neuroscience research. First, enhanced 

understanding of brain-behavior relationships: By synchronizing Ca2+ traces with 

behavioral data, researchers can directly observe how specific neuronal populations 

respond during behaviors or external stimuli. This real-time insight deepens our 

understanding of how brain activity drives behavior, such as the timing of Ca2+ 

transients relative to actions like lever presses. Second, technical flexibility and real-

time adjustments: The adjustable time window enables researchers to zoom in on 

specific segments of data, closely examining how neural activity changes just before or 

after a behavioral event, which is critical for understanding causal relationships between 

stimuli and neural responses. Third, hypothesis proposing and testing: The integration 

of data streams facilitates hypothesis proposing, which can be rapidly tested about the 

relationships between neural signals and behaviors. Researchers can observe whether 

certain Ca2+ transients precede or follow behavioral events, helping to refine 

hypotheses in real-time. Fourth, visualization of micro-network dynamics: Viewing 
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neural footprints while tracking behavior enables the identification of micro-networks at 

the neuronal level, distinct from traditional brain region-level network, during specific 

tasks or stimuli. This is critical for understanding neuronal network dynamics in healthy 

and diseased states, such as in learning, memory, or addiction studies. Fifth, 

categorization of neurons: Visualizing Ca2+ transients allows for the clustering of 

neurons based on activity patterns, helping to uncover subpopulations with distinct 

response profiles. This helps researchers understand the heterogeneity and complexity 

of neural networks and their roles in both normal and pathological behaviors. Sixth, 

facilitating longitudinal studies: In long-term studies, where animals undergo repeated 

trials, integrative visualization tools allow researchers to track changes in both neuronal 

activity and behavior over time, aiding in the study of neuroplasticity and how neuronal 

responses evolve with experience. Seventh, improved data interpretation and 

collaboration: The ability to visualize multiple layers of data simultaneously aids in the 

interpretation of complex datasets. This holistic view helps researchers identify patterns 

and facilitates collaboration by making findings more accessible and easier to 

communicate across disciplines. In conclusion, integrative visual exploration enables 

deeper exploration of brain function, supports hypothesis generation about neuronal 

mechanisms, and opens new avenues for understanding neurological disorders and 

developing treatments. 

 

4.3. Featured Value of CalTrig 

The usability of the CalTrig tool is highlighted by its integrated visual experience, which 

provides users with a comprehensive view of Ca2+ images, neuron footprints, and Ca2+ 
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transient traces in one unified interface. The tool features multi-layered toolboxes that 

cater to various analytical needs, allowing users to work efficiently at both the cellular 

and Ca2+ transient levels. Manual identification of Ca2+ transients is made efficient with 

features such as keyboard shortcuts (ASDF keys), hide/show traces, and unified scales 

for transient identification. This allows users to manually identify transients in 

approximately 1-2 minutes per 15-minute Ca2+ trace. Furthermore, manual identification 

can be assisted by auto-identification processes based on kinetic parameters or pre-

established machine learning models. CalTrig is a self-looped tool, designed for 

continuous functional improvement, ensuring it remains adaptable and upgradable. 

 

In terms of accessibility, CalTrig is a GUI-based open-source tool, making it readily 

shareable and open for further updates. It supports all CNMF or CNMF-E-processed 

imaging data and operates with limited computing demands, allowing for efficient 

performance even on less powerful systems. The graphical user interface (GUI) of 

CalTrig is designed to be user-friendly, ensuring that non-programmers can easily 

interact with it through intuitive buttons, menus, and forms. The tool presents a 

professional appearance, which enhances its suitability for presentations, 

collaborations, and publications. Real-time feedback is provided during parameter 

adjustments in Ca2+ transient identification, allowing users to fine-tune the process 

interactively. CalTrig can be downloaded as an independent application that runs in a 

Python environment, meaning users do not need additional software installations. 

Additionally, the tool is highly customizable, allowing users to tailor it to specific 
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workflows and improving productivity for different use cases. Its expandability ensures 

that it can accommodate future updates and feature integrations. 

Our research demonstrates that the GRU model provides high predictability when 

applied to testing cells from the same or different session stages, across various 

training days, brain regions, and mice. The GRU model has proven to be efficient in 

training, as shown in Fig. 7, even with a limited number of cells (Figs. 8-10), and the 

"ground truth" of Ca2+ transients can be established with relative ease, as detailed in the 

Methods and Results sections. This makes it highly feasible to extend testing to longer 

training sessions, such as the 6-hour sessions commonly used in studies on learning, 

memory, motivation, and addiction, or across broader time spans covering days, weeks, 

or months. The tool we developed here will be instrumental in evaluating the feasibility 

of in vivo Ca2+ recordings during extended sessions over prolonged recording periods. 

 

The high predictability of the GRU model in detecting Ca2+ transients also indicates that 

the basic properties of Ca2+ transients, such as rise slope, amplitude, and signal-to-

noise ratio, remained stable during 1-hour recording sessions, across five recording 

days, and across different brain regions in several mice. Notably, the neurons detected 

in two brain regions, M2 and PrL, are most likely pyramidal neurons, which may explain 

the model's high level of expandability. A future direction for research could be to test 

the expandability of the model to different types of neurons. 

 

4.4. Limitations and Future Directions 
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There are several areas in which the current study has not yet explored. For instance, 

we have not tested the trained machine learning model for detecting Ca2+ transients 

across different animal lines or across species, such as from mice to rats. The Ca2+ 

indicator used in this study is GCaMP8f, and it would be interesting to compare the 

dynamics of Ca2+ transients and the persistence of fluorescent intensity using other 

genetically encoded Ca2+ indicators (GECIs). Furthermore, the detection of Ca2+ 

transients is often not the end goal of data analysis. When conducting longitudinal 

recordings across different experimental groups, researchers may face challenges 

related to selecting appropriate time windows for analysis. Behavior-associated Ca2+ 

transients present a particularly valuable area for exploration, as they offer insights into 

neuronal activities linked to specific brain functions. Another area of interest is the 

association between neuronal footprints and activity in specific physiological or 

pathological conditions. This is a largely unexplored field, but it is intriguing to consider 

how the spatial distribution of neurons may influence brain function. Our team is 

currently developing relevant tools to integrate with CalTrig, which will further enhance 

our ability to understand the role of Ca2+ transients in brain output coding. 
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FIGURE LEGENDS 

Figure 1. Flowchart showing the procedures of an in vivo Ca2+ study.  

 

Figure 2. Five windows in CalTrig interface 

 

Figure 3. Use CalTrig to validate and filter cells identified by CalV2N 

 

Figure 4. Use CalTrig to identify Ca2+ transients 

 

Figure 5. Flowchart demonstrating Ca2+transient validation via Machine Learning 

models. 

A, Applications of RNN in predicting Ca2+ transients. 

B, Applications of Transformer in predicting Ca2+ transients.  

C, D, Diagrams showing the internal operations of two variants of RNN, i.e., GRU 

module (C) and LST module (D). The GRU uses two gates: the update gate, 

which controls the amount of information passed to the next step, and the reset 

gate, which determines how much of the previous information to forget. These 

gates modify the hidden state H(t) at the current time step based on the input 

X(t) and the previous hidden state H(t−1), leading to a new hidden state H(t). 

The LSTM module architecture is depicted, showcasing its cell structure. It 

uses three gates: forget, input, and output gates to control the flow of 

information. The input X(t), the previous cell state C(t−1), and the previous 

44

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2024. ; https://doi.org/10.1101/2024.09.30.615860doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.30.615860
http://creativecommons.org/licenses/by-nc-nd/4.0/


hidden state H(t−1) are processed through these gates to update the cell state 

C(t) and produce the new hidden state H(t). 

E, F, the diagram showing the Transform (E) and local Transformer (F) mechanisms. 

Each column corresponds to the same set of data. The non-translucent color in 

a column highlights the current input being evaluated, while translucent colors 

indicate the values being compared to it. No color signifies that certain values 

are excluded from evaluation for the current input. 

FNN, Feedforward neural network.  

 

 

Figure 6. GRU module has the best predictability of Ca2+ transients. 

A,  Shared strategy for assigning data to training, validation, and testing across 

four Machine learning models.  

B, C,  Precision varied significantly in Ca2+ transient prediction (B, F3,36=14.2, p<0.01), 

but remained similar in no Ca2+ transient prediction (C, F3,36=0.4, p=0.78) in 

four Machine Learning models.   

D, E,  Recall remained similar in Ca2+ transient prediction (D, F3,36=0.6, p=0.63) but 

varied in Ca2+ transient prediction (E, F3,36=9.4, p<0.01) in four Machine 

Learning models.   

F, G,  Significant differences in F1 scores of Ca2+ transient prediction (F, F3,36=9.3, 

p<0.01) and no Ca2+ transient prediction (G, F3,36=4.8, p<0.01) in four machine 

learning models. 
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H,  Significant differences in macro F1 scores (F3,36=9.3, p<0.01) in four Machine 

Learning models. 

Each machine learning model was trained using data from 226 cells, with 28 cells 

allocated to the validation set and 28 cells to the testing set. Data were analyzed by 

one-way ANOVA, followed by Bonferroni post hoc test. *, p<0.05; **, p<0.01. 

 

Figure 7. Prediction of Ca2+ transients or no Ca2+ transients across different numbers of 

cells in Machine learning training.  

A,  The strategy of randomly picking up cells for training, validation and testing within 

the same session stage on the same day.  

B, C, Increasing the number of cells in machine learning training model significantly 

improved the precision in predicting Ca2+ transients (B, F5,234=11.0, p<0.01) and 

no Ca2+ transients (C, F5,234=12.8, p<0.01).   

D, E, Increasing the number of cells in machine learning training model significantly 

improved the recall in predicting Ca2+ transients (D, F5,234=40.9, p<0.01) and no 

Ca2+ transients (E, F5,234=2.8, p=0.02).   

F, G, Increasing the number of cells in machine learning training model significantly 

improved the F1 scores in predicting Ca2+ transients (F, F5,234=46.7, p<0.01) and 

no Ca2+ transients (G, F5,234=12.0, p<0.01). 

H, Increasing the number of cells in machine learning training model significantly 

improved the macro F1 scores in predicting Ca2+ transients and no Ca2+ 

transients (H, F5,234=46.6, p<0.01) 
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Data were analyzed by one-way ANOVA, followed by Bonferroni post hoc test. *, 

p<0.05; **, p<0.01, compared to the machine learning model trained by 1 cell. #, p<0.05; 

##, 0.01, compared to the machine learning model trained by 2 cells. 40 testing cells in 

each group.  

 

Figure 8.  

A, Four strategies for sourcing cells within the M2 area from a mouse for machine 

learning model training, validation, and testing. 

B-E, The training cell number, and the testing cell source, but not their interactions, 

significantly affected the Precision in predicting Ca2+ transients (B, training cell # 

F5,936=21.4, p<0.01; testing cell source F3,936=10.0, p<0.01; training cell number × 

testing cell source interaction F15,936=0.8, p=0.64). The training cell number, but 

not the testing cell source or their interactions, affected the Precision in predicting 

no Ca2+ transients (C, training cell number F5,936=71.7, p<0.01; testing cell source 

F3,936=1.1, p=0.36; training cell number × testing cell source interaction 

F15,936=0.3, p=0.99). When 20 cells were included in the machine learning 

training model, the Precision in predicting Ca2+ transients (D, F3,156=2.7, p=0.046) 

and no Ca2+ transients (E, F3,156=0.2, p=0.93) in testing cells from different 

session stage on different day reduced.   

F-I, The training cell number, but not the testing cell source or their interactions, 

significantly affected the Recall in predicting Ca2+ transients (F, training cell 

number F5,936=126.0, p<0.01; testing cell source F3,936=0.8, p=0.49; training cell 

number × testing cell source interaction F15,936=0.3, p=0.99). The number of cells,  
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the testing cell source, but not their interactions, significantly affected the Recall 

in predicting no Ca2+ transients (G, training cell number F5,936=2.7, p=0.02; 

testing cell source F3,936=11.4, p<0.01; training cell number × testing cell source 

interaction F15,936=1.5, p=0.10).  When 20 cells were included in the machine 

learning training model, the Recall in predicting Ca2+ transients (H, F3,156=0.4, 

p=0.78) and no Ca2+ transients (I, F3,156=3.3, p=0.02) in testing cells from 

different session stage on different day reduced.   

 

J-M, The training cell number and the testing cell source, but not their interactions, 

significantly affected the F1 scores in predicting Ca2+ transients (J, training cell 

number F5,936=130.0, p<0.01; testing cell source F3,936=3.0, p=0.03; training cell 

number × testing cell source interaction F15,936=0.7, p=0.74). Similarly, the 

number of cells and the testing cell source, but not their interactions, significantly 

affected the F1 scores in predicting no Ca2+ transients (K, training cell number 

F5,936=32.3, p<0.01; testing cell source F3,936=8.8, p<0.01; training cell number × 

testing cell source interaction F15,936=1.2, p=0.28). When 20 cells were included 

in the machine learning training model, the Recall in predicting Ca2+ transients 

(L, F3,156=2.7, p=0.048) and no Ca2+ transients (M, F3,156=2.8, p=0.040) in testing 

cells from different session stage on different day reduced.     

N, O, The training cell number, and the testing cell source, but not their interactions, 

significantly affected the macro F1 scores in predicting Ca2+ transients and no 

Ca2+ transients (N, training cell number F5,936=128.5, p<0.01; testing cell source 

F3,936=3.1, p=0.03; training cell number × testing cell source interaction 
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F15,936=0.8, p=0.73). When 20 cells were included in the machine learning 

training model, the macro F1 scores in predicting Ca2+ transients and no Ca2+ 

transients (O, F3,156=2.8, p=0.041) in testing cells from different session stage on 

different day reduced.   

P,  Legends showing the color-coded abbreviations for 4 experimental groups.  

Data were analyzed by one-way ANOVA (B, C, F, G, J, K, N) or two-way ANOVA (D, E, 

H, I, L, M, O), followed by Bonferroni post hoc test. *, p<0.05; **, p<0.01. 40 testing cells 

in each group.  

 

Figure 9.  

A, Three strategies for sourcing testing cells (smSS::smDay, between mice, different 

regions, see more details in panel P) 

B-E, The training cell number, and the testing cell source, but not their interactions, 

significantly affected the Precision in predicting Ca2+ transients (B, training cell 

number F5,942=24.4, p<0.01; testing cell source F2,942=19.2, p<0.01; training cell 

number × testing cell source interaction F10,942=1.1, p=0.37) and the no Ca2+ 

transients (C, training cell number F5,942=74.1, p<0.01; testing cell source 

F2,942=11.6, p<0.01; training cell number × testing cell source interaction 

F10,942=1.0, p=0.43). When 20 cells were included in the machine learning 

training model, the Precision in predicting Ca2+ transients (D, F2,157=4.7, p=0.01) 

and no Ca2+ transients (E, F2,157=6.2, p<0.001) in testing cells from different 

regions in different mice reduced.   
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F-I,  The training cell number, but not the testing cell source or their interactions, 

significantly affected the Recall in predicting Ca2+ transients (F, training cell 

number F5,942=145.6, p<0.01; testing cell source F2,942=3.7, p=0.02; training cell 

number × testing cell source interaction F10,942=0.7, p=0.68). The training cell 

number and the testing cell source, but not their interactions, significantly 

affected the Recall in predicting no Ca2+ transients (G, training cell number 

F5,942=8.7, p<0.01; testing cell source F2,942=22.9, p<0.01; training cell number × 

testing cell source interaction F10,942=0.9, p=0.58). When 20 cells were included 

in the machine learning training model, the Recall in predicting Ca2+ transients 

(H, F2,157=4.4, p=0.01) and no Ca2+ transients (I, F2,157=5.3, p<0.01)  in testing 

cells from different regions in different mice reduced.   

J-M,  The training cell number, and the testing cell source, but not their interactions, 

significantly affected the F1 scores in predicting Ca2+ transients (J, training cell 

number F5,942=165.7, p<0.01; testing cell source F2,942=17.6, p<0.01; training cell 

number × testing cell source interaction F10,942=0.3, p=0.98) and the no Ca2+ 

transients (K, training cell number F5,942=55.8, p<0.01; testing cell source 

F2,942=40.4, p<0.01; training cell number × testing cell source interaction 

F10,942=1.3, p=0.23). When 20 cells were included in the machine learning 

training model, the F1 scores in predicting Ca2+ transients (L, F2,157=8.9, p<0.01) 

and no Ca2+ transients (M, F2,157=9.3, p<0.01) in testing cells from different 

regions in different mice reduced.   

N,O, The training cell number, and the testing cell source, but not their interactions, 

significantly affected the macro F1 scores in predicting Ca2+ transients and no 
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Ca2+ transients (N, training cell number F5,942=164.6, p<0.01; testing cell source 

F2,942=18.3, p<0.01; training cell number × testing cell source interaction 

F10,942=0.3, p=0.98). When 20 cells were included in the machine learning 

training model, the macro F1 scores in predicting Ca2+ transients and no Ca2+ 

transients (O, F2,157=9.0, p<0.01) in testing cells from different regions in different 

mice reduced.   

P,  Legends showing the color-coded abbreviations for 4 experimental groups.  

Data were analyzed by one-way ANOVA (B, C, F, G, J, K, N) or two-way ANOVA (D, E, 

H, I, L, M, O), followed by Bonferroni post hoc test. *, p<0.05; **, p<0.01. 40 testing cells 

in each group.  
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Figure 2. 

Figure 1

GCaMP8f-AAV
 inj. 

Implant lens

skull
Kwik-Sil gel cap 

Dental cement

Lens

in vivo Ca2+ imaging
during behavioral test

Step 1 Step 2 Step 33 weeks later Step 51 week later
Anchor 

baseplate

Ca2+ imaging recordings on a freely moving mouse

pipelines, such as miniAn (Zhou et al., 2022), CalmAn (Giovannucci et al., 2019), MIN1PIPE(Lu et al., 2018),
developed to convert Calcium Visual signals (i.e., Ca2+ imaging video files) to Numerical information.

CalV2N: 

Calcium Transient Identifier GUI, facilitating data visualization, evaluating the performance of CalV2N, and
identifying calcium transients. 

CalTrig: 

Final statistics and results report
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Figure 3
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Figure 6
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Figure 7

Ca2+ Transient & non-Ca2+ Transient

non-Ca2+ TransientCa2+ Transient

0.0

1.0

0.5

1 2 5 10 15 20

# of cells in ML training

0.0

0.5

1.0

1 2 5 10 15 20

# of cells in ML training

non-Ca2+ Transient

0.0

0.5

1.0

1 2 5 10 15 20

# of cells in ML training

1 2 5 10 15 20

# of cells in ML training

0.0

0.5

1.0

non-Ca2+ TransientCa2+ Transient

Ca2+ Transient

B C

D E

F G

H

0.96

0.98

1.00

1 2 5 10 15 20

# of cells in ML training

0.96

0.98

1.00

1 2 5 10 15 20

# of cells in ML training

0.96

0.98

1.00

1 2 5 10 15 20

# of cells in ML training

1 hr in vivo miniScope
during operant test Training cells, randomly selected from a 15-min session stage 

during a 1-hr recording.

Testing cells, randomly selected from the same 15-min daily 
session stage.

Validation cells, randomly selected from the same 15-min daily 
session stage.

A

**
** ** **

##
## ## ##

*

** ** ** **# # #

**

**
** ** **
## ## ##

**
** ** ** **
##

## ## ##

**

**
** ** **

##
## ## ## **

** ** **## ## ##

56

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2024. ; https://doi.org/10.1101/2024.09.30.615860doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.30.615860
http://creativecommons.org/licenses/by-nc-nd/4.0/


non-Ca2+ Transient

0.6

0.8

1.0

1 2 3 4 5 6
# of cells in ML training

Ca2+ Transient

0.6

0.8

1.0

1 2 3 4 5 6

# of cells in ML training

non-Ca2+ Transient

0.991

0.994

1.000

0.997

1 2 3 4 5 6

# of cells in ML training

Ca2+ Transient

0.6

0.8

1.0

1 2 3 4 5 6
# of cells in ML training

non-Ca2+ Transient

0.991

0.994

1.000

0.997

1 2 3 4 5 6
# of cells in ML training

Ca2+ Transient

0.6

0.8

1.0

1 2 3 4 5 6
# of cells in ML training

0.991

0.994

1.000

0.997

1 2 3 4 5 6
# of cells in ML training

B C

F G

J K

N Ca2+ Transient & non-Ca2+ Transient

non-Ca2+ TransientCa2+ Transient

non-Ca2+ TransientCa2+ Transient

Ca2+ Transient

0.4

0.6

0.8

1.0

D E

H I

L M

O

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0
smSS::smDay, same session 
stage, same day, 

dfSS::smDay, different session
stage, same day 

ssSS::dfDay, same session stage,
different day 

dfSS::dfDay, different session 
stage,different day 

0.96

0.98

1.00

0.96

0.98

1.00

Ca2+ Transient & non-Ca2+ Transient

Figure 8

1 hr in vivo miniScope
during operant test

Validation cells, randomly selected from the same session stage (i.e., 0-15 min) during the same daily session.
Testing cells, randomly selected from the same session stage (i.e., 0-15 min) during the same daily session.

0-15 min 45-60 min

0-15 min 45-60 min

Testing cells, randomly selected from a different session stage (i.e., 45-60 min) during the same daily session.

Testing cells, randomly selected from the same session stage (i.e., 0-15 min) during a different daily session.

Testing cells, randomly selected from a different session stage (i.e., 45-60 min) during a different daily session.

A

*

*

Training cells, randomly selected from the 0-15 min during a 1-hr recording.

non-Ca2+ Transient

0.96

0.98

1.00
*

P

57

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2024. ; https://doi.org/10.1101/2024.09.30.615860doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.30.615860
http://creativecommons.org/licenses/by-nc-nd/4.0/


motor cortex

Ca2+ Transient non-Ca2+ Transient

Ca2+ Transient non-Ca2+ Transient

Ca2+ Transient & non-Ca2+ Transient

non-Ca2+ TransientCa2+ Transient

0.96

0.98

1.00

0.96

0.98

1.00

**

0.4

0.6

0.8

1.0
**

0.4

0.6

0.8

1.0

Ca2+ Transient non-Ca2+ Transient

Ca2+ Transient

Ca2+ Transient & non-Ca2+ Transient

non-Ca2+ Transient

non-Ca2+ Transient

smSS::smDay, same session stage, same

smRegion::dfMouse, same brain region from 
different mice

dfRegion::dfMouse, different brain region in
different mice

B C

F G

J K

N

Figure 9

1 2 3 4 5 6

0.6

0.8

1.0

# of cells in ML training

0.6

0.8

1.0

1 2 3 4 5 6
# of cells in ML training

Ca2+ Transient

2 3 4 5 61

0.6

0.8

1.0

# of cells in ML training

1 2 3 4 5 6

0.6

0.8

1.0

# of cells in ML training

0.992

0.996

1.000

1 2 3 4 5 6
# of cells in ML training

1 2 3 4 5 6

0.992

0.996

1.000

# of cells in ML training

1 2 3 4 5 6

0.992

0.996

1.000

# of cells in ML training

day from the same brain region in the same 
mouse

D E

H I

L M

O

0.4

0.6

0.8

1.0
** **

0.96

0.98

1.00

****

0.4

0.6

0.8

1.0
** **

1 hr in vivo miniScope recording

Training cells, randomly selected from the 0-15 min during a 1-hr recording.

Testing cells, randomly selected from the same session stage (i.e., 0-15 min) 
during the same daily session of the same mouse .

Testing cells, randomly selected from the same brain region in a differnt mouse

Mouse a

Mouse c

Mouse b

medial prefrontal cortex

motor cortex

Testing cells, randomly selected from a different brain region in a differnt mouse

A

Validation cells, randomly selected from the same session stage (i.e., 0-15 min) 
during the same daily session of the same mouse .

P

**

58

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2024. ; https://doi.org/10.1101/2024.09.30.615860doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.30.615860
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S1. Data loading 

A B

Figure S3. Cell verification

Figure S2. Parameter list 
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Figure S6. Savitzky–Golay filter

Figure S5. Manual identification of Ca2+ transients

Figure S4. Add missing cell
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Figure S7. Automatic detection

Figure S9. Animal-wide data export

Figure S8. Machine learning evaluation
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Figure S10. Cell-wide data export
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Signal-to-Noise Estimation 

While verifying transient events, occasional spikes were detected due to background 

fluctuations rather than specific cellular activity, and in rare cases, noise was 

misinterpreted as calcium signals. Contemporary methods often use z-scores to 

estimate noise, but this global noise estimation lacks robustness when noise fluctuates 

over time, potentially leading to the rejection of valid transients during low-noise periods. 

 

To address this concern, we apply the Savitzky–Golay (SavGol) filter (Fig. S6), which 

smooths noisy data while preserving important features such as peaks and edges 

(Steinier, Termonia et al. 1972, Dai, Selesnick et al. 2017). This filter fits successive 
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polynomial functions to adjacent data points, making it ideal for time-series data where 

preserving peak shape is crucial. In our pilot studies, where we compared the original 

ΔF/F with the smoothed ΔF/F using CalTrig’s data exploration tools, the Ca2+ transients 

were well-preserved. Therefore, the SavGol filter was chosen as the primary smoothing 

filter. 

 

Noise estimation for each image frame is calculated by the difference between the 

original and SavGol-filtered ΔF/F: 

 

𝑆𝑆𝑆𝑆𝑔𝑔𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡) ≈ �𝑆𝑆𝑆𝑆𝑔𝑔𝛥𝛥𝛥𝛥
𝛥𝛥
− 𝑠𝑠𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝑠𝑠 �𝑆𝑆𝑆𝑆𝑔𝑔Δ𝛥𝛥

𝛥𝛥
��  

To further refine the noise, we apply a rolling window function, preventing small value 

overlaps between the smoothed and non-smoothed signals. The user can choose 

smoothing types (average, median, max) and adjust the rolling window size (20 frames 

is a recommended starting point). SNR is calculated by dividing the smoothed signal by 

the estimated noise, with a minimum cap (e.g., 0.1) to avoid ineffective or exaggerated 

values. The resulting SNR effectively mirrors the ΔF/F, proportionally accentuated or 

diminished by the noise. 

 

The parameters for the SavGol filter and noise smoothing can be adjusted under the 

"SavGol" and "Noise" subtabs in the Trace toolbox window. Visualization options for the 

SavGol-filtered ΔF/F, noise, and SNR are available under the "Params" subtab for easy 

analysis in the Ca2+ trace window. 
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