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ABSTRACT Variation in gut microbiome is associated with wellness and disease in
humans, and yet the molecular mechanisms by which this variation affects the host
are not well understood. A likely mechanism is that of changing gene regulation in
interfacing host epithelial cells. Here, we treated colonic epithelial cells with live mi-
crobiota from five healthy individuals and quantified induced changes in transcrip-
tional regulation and chromatin accessibility in host cells. We identified over 5,000
host genes that change expression, including 588 distinct associations between spe-
cific taxa and host genes. The taxa with the strongest influence on gene expression
alter the response of genes associated with complex traits. Using ATAC-seq, we
showed that a subset of these changes in gene expression are associated with
changes in host chromatin accessibility and transcription factor binding induced by
exposure to gut microbiota. We then created a manipulated microbial community
with titrated doses of Collinsella, demonstrating that manipulation of the composi-
tion of the microbiome under both natural and controlled conditions leads to dis-
tinct and predictable gene expression profiles in host cells. Taken together, our re-
sults suggest that specific microbes play an important role in regulating expression
of individual host genes involved in human complex traits. The ability to fine-tune
the expression of host genes by manipulating the microbiome suggests future ther-
apeutic routes.

IMPORTANCE The composition of the gut microbiome has been associated with
various aspects of human health, but the mechanism of this interaction is still un-
clear. We utilized a cellular system to characterize the effect of the microbiome on
human gene expression. We showed that some of these changes in expression may
be mediated by changes in chromatin accessibility. Furthermore, we validate the
role of a specific microbe and show that changes in its abundance can modify the
host gene expression response. These results show an important role of gut microbi-
ota in regulating host gene expression and suggest that manipulation of micro-
biome composition could be useful in future therapies.
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The microbial community in the human digestive tract, the gut microbiota, is highly
complex and also displays strong variation across individuals (1–3). Variability in gut

microbiota composition is related to many factors, including medication, diet, and
genetics (4–16). The gut microbiota has a variety of functions within the host, such as
metabolism of certain compounds (17–20), and its composition is correlated with
several diseases, such as Crohn’s disease and colorectal cancer (21–26). In mice, certain
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microbial communities can lead to changes in the host’s weight and overall health,
suggesting that there is a reciprocal effect between the host and the gut microbiota
(27). Recent work in mice has explored host gene expression and gene regulation in
response to microbiome exposure (28–30). These studies suggested that the micro-
biome can induce both epigenetic changes and binding of specific transcription factors
(28, 29, 31–33). In humans, work has been done to correlate microbiota composition,
cellular response, and phenotype, thus illuminating the interplay between microbe and
host. For example, studies have shown that expression and RNA splicing changes
correlate with changes in the gut microbiota in vivo (34–37). However, in humans, it is
challenging to perform large-scale studies and to account for environmental effects,
such as host diet, health status, and medication use.

Recently, we described an in vitro approach based on human epithelial cells
inoculated with live microbial communities (38) that is well suited to the study of the
effects of the microbiome on human gene regulation. In short, we cultured human
colonocytes under hypoxic conditions in order to recapitulate the gut environment. We
then exposed the colonocytes to live gut microbiotas derived from human fecal
samples under hypoxic conditions and measured the levels of response of host cells via
transcriptome sequencing (RNA-seq). Using this technique, we identified differentially
expressed (DE) genes that were enriched among genes associated with microbiome-
related diseases, such as obesity (27, 39), and among genes that were differentially
expressed in germ-free mice exposed to gut microbiota (28). The advantage of this
system is that we can study human cellular response to gut microbiota in a highly
scalable way.

Here we sought to use this in vitro system to determine the extent to which and the
mechanism by which interindividual variations in microbiome composition drive dif-
ferences in gene expression in the host cells. In order to assess the mechanism of
cellular response to microbiotas, we considered chromatin accessibility via ATAC-seq
(40), which utilizes the Tn5 transposase for fragmentation and tagging of accessible
DNA. Similar to DNase-seq, ATAC-seq can capture open chromatin regions, which are
regions accessible to transcription factor (TF) binding. Changes in chromatin accessi-
bility can modulate transcription factor binding and thereby influence gene expression
(33, 41). The specific TFs binding in regions of open chromatin can be identified
through the motif sequence model and footprinting analysis of ATAC-seq data. We also
sought to determine if specific microbial taxa drive gene expression variation. These
open issues are crucial for understanding the causal role of the microbiome in host
physiology and for designing targeted therapies revolving around interventions in the
gut microbiome.

RESULTS
Exposure to microbiota influences host gene expression. To determine the

impact of variation in the gut microbiota on host cells, we treated human colonic
epithelial cells (HCoEpiC) with live gut microbiota extracted from 5 healthy, unrelated
human individuals (Fig. 1A; see also Fig. S1A to D in the supplemental material). The
composition of these samples is representative of that other healthy gut microbiome
samples from the Human Microbiome Project (Fig. S1E) (1, 42). We then separately
assessed changes in gene expression and microbial composition following 1, 2, and 4 h
of exposure. The overall changes in gene expression among microbiome treatments
and controls are clustered first by time point (by principal-component analysis and
by hierarchical clustering as shown in Fig. 1B [see also Table S1 in the supplemental
material]), where the strongest response (3,240 genes across any of the five microbiota
samples) occurred at 2 h following exposure (see equation 3 in Text S1 in the sup-
plemental material; Benjamini-Hochberg false-discovery rate [BH FDR] � 10%,
|log2fold change �FC�| � 0.25). Among these, we identified 669 transcripts (188 genes)
that were differentially expressed in all five treatments following 2 h of treatment
(Fig. 1C; see also 1-h and 4-h comparisons in Fig. S1F and G). To identify genes whose
expression levels changed consistently across the treatments at each time point, we
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FIG 1 Gene expression changes in colonocytes treated with microbiota from five unrelated individuals. (A) Study design. Human colonocytes were inoculated
separately with five microbiota samples from unrelated individuals. (B) Heat map of gene expression changes induced at each time point by the individual
microbiota samples. Purple denotes an increase in gene expression (green shows a reduction) compared to the gene expression in the control (colonocytes

(Continued on next page)
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removed the individual effect from the model and considered the 5 microbiota
treatments as replicates. Two representative genes, PDLIM5 and DSE, that were found
to be differentially expressed at each time point are shown in Fig. 1D. Notably, the
results from analysis of those genes show that we were able to identify various
expression patterns through this model as long as the 5 microbiota treatments led to
the same response at a given time point (Fig. S1H and I; see also Table S1). These 5,413
genes with shared expression changes were enriched for genes that function in protein
translation, as well as those associated with the cell surface, such as in adherens
junctions (BH FDR � 10�6) (Fig. S1J; see also equation 2 in Text S1), suggesting a
biological function that may relate to the host cell’s interaction with the microbiota.

Each microbiota sample was derived from a different individual with a unique diet
and genetic makeup. Therefore, we expect that the microbial composition and diversity
of all samples differ. Examining the uncultured microbiomes, we found variability in
their microbial composition and diversity (Simpson’s index values ranged between 0.94
and 0.98). In contrast, we found that the microbial communities in the cultured
microbiomes did not change dramatically over time and that the microbiomes main-
tained their individual-specific composition characteristics during culture (Fig. S1A to
C). Next, we considered how the human colonocytes influence microbial composition,
and we found that most taxa were unaffected by the presence of human cells, while 13
taxa (of 112 tested) showed various levels of abundance dependent on the presence of
host cells (likelihood ratio test; BH FDR � 10%) (examples are shown in Fig. S2A and B,
table shown in Fig. S2C). In order to determine how the compositions of the microbiota
samples influenced host gene expression differently, we utilized a likelihood ratio test
to compare models that included or excluded the individual microbiota effect. This test
is able to incorporate gene expression changes over time and to compare the trajec-
tories of expression in response to the 5 different microbiota treatments. In this way, we
identified 409 genes (1,484 transcripts) (likelihood ratio test; BH FDR � 10%; see
Table S1) with expression patterns that significantly differed in response to the five
microbiota samples. Two examples of representative genes with differing gene expres-
sion patterns are WNT7A and SPARC (Fig. 1E). These examples demonstrate that no two
microbiota samples induce the same response in the genes identified by the likelihood
ratio test and further showed that the genes had different responses to the same
treatment. These data demonstrate that the host and the microbiota influence each
other and that interindividual variation in the microbiome can lead to different gene
expression responses in interacting host cells.

Specific microbes influence unique host genes. We hypothesized that the differ-
ences in gene expression responses to each microbiome could be attributed to specific
microbiota features, such as the abundance of specific taxa. For this reason, we used
DESeq2 to study the association between host gene expression (147,555 transcripts)
and the abundance of microbial taxa (62 taxa that passed filtering criteria; see Materials
and Methods and Text S1) at the time of treatment. Across all possible associations
(9,125,927 tests), we identified 588 transcript-by-taxon pairs with a significant associ-
ation (see equation 5 in Text S1; BH FDR � 10%) (see also Table S1), corresponding to
121 host genes with changes in expression associated with the abundance of 46 taxa.
Among those taxa, 35 were associated with the expression of two or more host genes
(see equation 5 in Text S1; BH FDR � 10%), suggesting that a single microbe may affect
the regulation of many genes and the presence of a trans regulatory mechanism by
which microbes may influence host organism traits.

FIG 1 Legend (Continued)
cultured alone). Only genes that were differentially expressed in at least one sample are shown. LogFC, log fold changes. (C) Comparison of levels of transcripts
differentially expressed at 2 h across the five treatments for the five individual microbiota samples (Ind.1 to Ind.5). The blue bars to the left show the total
number of differentially expressed transcripts in the given set. The gray vertical bars show the number of transcripts that are in the set denoted below them.
Sets with a single dark gray circle show the number of differentially expressed transcripts unique to that sample. (D) Examples of genes (PDLIM5 [left panel]
and DSE [right panel]) whose changes in expression were consistent across treatments with the five different microbiotas. Changes in expression (y axis) are
shown as log2 fold change compared to control. (E) Examples of genes (WNT7A [left panel] and SPARC [right panel]) whose changes in expression were
significantly different across treatments with the five microbiota samples.
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Of the 121 host genes whose expression was found to be associated with abun-
dance of microbial taxa, 70 genes (219 transcripts) were also found to be differentially
expressed in comparisons of microbiota treatment to control and formed two clusters
with distinct functions (Fig. 2A and D; examples are shown in Fig. 2B and C). Genes in
the first cluster were found to be positively correlated with genera Ruminococcus,
Coprococcus, and Streptococcus and to have functions in cell junction assembly
(GeneTrail enrichment analysis BH FDR � 10�5) (Fig. 2E), while those in the second
cluster were found to be positively correlated with microbial genera that included
Odoribacter, Blautia, and Collinsella and to function in protein targeting of the endo-
plasmic reticulum (GeneTrail enrichment analysis BH FDR � 10�7) (Fig. 2F). Our
analyses of the abundances of the microbes in the clusters showed them to be highly
correlated, further suggesting that the microbial community as a whole may act on
host gene expression (Fig. S2D and E).

We then focused on microbial taxa associated with changes in expression for a large
number of genes, since these microbes are more likely to impact host traits. To test this
hypothesis, we focused on the six microbial genera that were associated with the
largest number of host genes (at least 30 host genes at P values of �3.5 � 10�5 [see
equation 5 in Text S1]): Odoribacter, Streptococcus, Blautia, Thiovirga, Thiothrix, and
Collinsella. Indeed, all of those taxa, except for Blautia, showed expression changes in
genes that were between 2.7-fold and 3.6-fold enriched (compared to a background of
expressed genes) for those associated with complex traits from the genome-wide
association study (GWAS) catalog (Fisher’s exact test P value � 0.005) (Fig. 3A; see also
Table S2) (43). Moreover, we identified 21 genes that were associated with traits already
linked to the gut microbiome, including colorectal cancer (21, 26), obesity (27, 39), and
inflammatory bowel disorder (IBD) (44–46). Genes associated with the genus Collinsella
were found to be 3.4-fold enriched for those associated with a trait in GWAS (15 of 30
genes; Fisher’s exact test P value � 0.001) (Fig. 3A). Previous studies revealed that the
abundance of Collinsella is correlated with several diseases, including colorectal cancer
(47), Type 2 Diabetes (48), and irritable bowel syndrome (49). Interestingly, we identi-
fied a gene, GLTP, that is involved in glycolipid transfer and that has been associated
with metabolic syndrome (50). Based on the transcriptome-wide association study
(TWAS) analysis reported in Metaxcan (51–53) (https://imlab.shinyapps.io/metaxcan_
a_1/), higher expression of GLTP is associated with decreased levels of high-density
lipoprotein (HDL) (P value � 3.1 � 10�7), which is a factor contributing to metabolic
syndrome. In our data, the abundance of the genus Collinsella was found to be
positively associated with GLTP expression (see equation 5 in Text S1; BH FDR � 12.6%).
Additionally, GLTP was shown expressed in the colon according to the GTEx data
(average number of transcripts per million [TPM] � 47 in transverse colon and 39 in
sigmoid colon). These data suggest an association between GLTP and metabolic
syndrome that may be modulated by exposure to Collinsella. These data also suggest
that specific microorganisms, and not simply general exposure to the entire gut
microbiota, can lead to changes in the expression levels of many genes. Furthermore,
these results support the hypothesis that variations in the abundances of members of
the microbiota may influence complex traits.

Validation of changes in host gene expression due to specific microbiota. To
validate and further demonstrate the effect of specific microbes on host gene expres-
sion, we treated colonocytes with a microbiota sample without any detectable Collin-
sella aerofaciens and supplemented it with titrated abundances (0.01%, 0.1%, 1%, and
10%) of this bacterium relative to the whole-microbiota sample. We used RNA-seq to
study the resulting changes in gene expression and identified 1,570 genes whose
expression levels had changed (see equation 6 in Text S1; BH FDR � 10%) (Table S1; see
also Fig. S2F) in a manner dependent on the abundance of Collinsella aerofaciens.
Examining changes in gene expression associated with Collinsella abundance in the five
microbiota treatments, we found that the effects of Collinsella in the two experiments
were correlated (Fig. 3B). We validate 19 of the 29 genes originally identified (Fisher’s
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FIG 2 Abundance of microbiome taxa is associated with specific host gene expression changes. (A) Heat map of microbiota taxa and colonocyte
gene expression correlation (Spearman’s �). Rows correspond to 28 microbiota taxa (which include all OTUs within the taxa if collapsed to genus

(Continued on next page)
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exact test P value � 0.0002, odds ratio [OR] � 4.1) (see equation 5 in Text S1; BH
FDR � 20%), including GLTP and MMP14 (see equation 5 in Text S1; BH FDR � 7% in
Fig. 2B) (see also equation 6 in Text S1; BH FDR � 9% in Fig. 3C), demonstrating that
the presence of Collinsella is sufficient for the occurrence of changes in the expression
of these genes. Interestingly, we also found a correlation between the effect of
Collinsella in the spike-in experiment and the effect of several other microbes from our
genus-based model on host gene expression. Specifically, we found positive correla-
tions of effects on gene expression between the Collinsella spike-in experiment and
other microbes in the cluster that contained Collinsella (Fig. 2A; Spearman’s � � 0.25 to
0.4) and negative correlations for microbes in the cluster that did not contain Collinsella

FIG 2 Legend (Continued)
level), and columns correspond to 219 transcripts (70 genes) that had at least one significant association (likelihood ratio test [LRT]). Taxa and
transcripts are each clustered via hierarchical clustering, showing two major groups indicated by a different shade of red (taxa)/blue (transcripts).
(B and C) Examples (MMP14 [B] and CAPRIN2 [C]) of significant association (BH FDR � 7% for both genes) between host gene expression
(fragments per kilobase per million [FPKM] quantile normalized) and baseline abundance of specific taxa. (CO), control samples. (D) Network of
associations between taxa and genes from the heat map. Nodes in blue denote genes, while nodes in red denote microbial taxa. Color shading
indicates clusters of genes or taxa as defined in the heat map. Black edges indicate a positive correlation, while light gray indicates a negative
correlation. (E and F) Gene ontology enrichment for cluster 1 (E) and cluster 2 (F). ER, endoplasmic reticulum; SRP, signal recognition particle.

FIG 3 Manipulation of the microbial community induces predictable gene expression changes in the host. (A) Genes associated
with particular microbiota (BH FDR � 20%) were enriched for complex traits. Microbiota were chosen if they had at least 30
genes associated via the genus-based model for gene expression. The shade of the point indicates the �log(adjusted P value)
from the enrichment test, while the size of the point and the x-axis values give the fold enrichment. (B) Scatterplot of the effect
of Collinsella abundance from the five microbiome samples (x axis) and effect of Collinsella aerofaciens from the spike-in
validation experiment (y axis). Plotted are log2 fold changes normalized by the standard error. Blue points denote transcripts that
were DE only in the genus-based model that included the abundance of Collinsella. The red points and line highlight the
transcripts that were DE only in the spike-in experiment. Purple points denote transcripts that were DE in both the genus-based
model and the spike-in experiment. Gray points denote transcripts that were not differentially expressed in either the
gene-based model with abundance of Collinsella or in the spike-in experiment. There was a correlation across all points (linear
regression P value � 10�20, Spearman’s � � 0.29) and across transcripts differentially expressed only in the spike-in experiment
(linear regression P value � 10�20, Spearman’s � � 0.46). (C to E) Examples (MMP14 [C], UBE2E3 [D], and GTF3A [E]) of significant
association (DESeq2 BH FDR � 9%, 6%, and 7%, respectively) between host gene expression (FPKM quantile normalized) and
abundance of Collinsella aerofaciens from spike-in validation experiment (linear regression P value � 0.05, 0.02, and 0.004 with
Pearson’s r � –0.64, 0.73, and 0.81, respectively).
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(Spearman’s � � – 0.27 to – 0.32). These results underline the importance of considering
the entire microbial community rather than individual microbial species in studying
host-microbiome interactions. That the expression levels of a large number of genes
changed in this experiment could have been due to several factors, including the
increase in the power of the analysis that resulted from the use of a larger number of
samples. These 1,570 genes were found to be enriched for those associated with
complex traits in the GWAS data compared to a background of all expressed genes
(Fisher’s exact test P value � 10�10, OR � 1.5) and to be specifically enriched for genes
associated with HDL cholesterol (Fisher’s exact test, Bonferroni-corrected P value �

0.018, OR � 2.75). Other DE genes were found to be associated with additional traits
relevant to the microbiome, such as body mass index (e.g., see GTF3A in Fig. 3E) and
obesity and celiac disease (e.g., see UBE2E3 in Fig. 3D). The results of this spike-in
experiment showed that host gene expression can be modulated by changing the
abundance of a single bacterial species within the microbiome.

Changes in chromatin accessibility and transcription factor binding following
microbiota exposure. In order to investigate the regulatory mechanism whereby the
microbiome induces changes in host gene expression, we performed ATAC-seq in
colonocytes inoculated for 2 h with each of the five microbiota samples and were able
to identify ATAC-seq peaks at the transcription start site (TSS) of expressed genes
(Fig. S3E). We then used DESeq2 to characterize regions with differential levels of
chromatin accessibility. We identified only a limited number of regions that were
differentially accessible across the five microbiome treatments with two technical
replicates (n � 234) (Fig. S3A). Nevertheless, we found enrichment of differentially
accessible regions at 2 h within 50 kb of genes differentially expressed at 4 h (Fig. 4A;
see also Table S3) (Fisher’s exact test P value � 3.96 � 10�4, OR � 2.13). We note that
this enrichment consisted of 24 differentially accessible chromatin regions within 50 kb
of 32 differentially expressed genes and so still represented a minority of the differen-
tially expressed genes. Interestingly, we did not find the same enrichment when we
examined genes differentially expressed at 1 and 2 h following exposure to gut
microbiota (Fisher’s exact test P value � 0.15), suggesting that the changes in chro-
matin accessibility that we identified occurred first (at 2 h) and then led to subsequent
changes in gene expression by 4 h postinoculation.

Notably, the directions of the changes in chromatin accessibility and in gene
expression were concordant, which indicates that opening of the chromatin resulted in
upregulation of gene expression, as expected (Fig. S3B). One interesting example is the
TPM4 gene, which is a gene that binds actin filaments and whose role in the regulation
of the cytoskeleton may impact the host cell response to the microbiome. TPM4 is
regulated by the microbiome through changes in chromatin accessibility and showed
increased expression at 4 h following treatment with the five microbiota samples
(Fig. 4B and C; see also Fig. S3C and D). We identified the chromatin change at a region
located at 4,800 bp upstream of the transcription start site of TPM4.

To identify transcription factors that may mediate the response to the microbiome,
we performed footprinting analysis of the ATAC-seq data using CENTIPEDE (54). We
identified 397 factors that were active under the treatment and control conditions, for
a total of 36,565,954 and 28,922,773 footprints, respectively. We identified 40 motifs
with footprints in differentially accessible regions, including factors that bind the ELF5,
SOX2, and HMGA2 motifs (Table S4). Interestingly, using a stratified FDR approach to
identify differential levels of chromatin accessibility for regions that contained foot-
prints for active factors, we identified a larger number of differentially accessible
regions (209 regions; FDR � 10%; Table S5).

We next investigated how specific transcription factors may be involved in modu-
lating gene expression responses to the microbiome that may not require changes in
chromatin accessibility. In this case, we conducted an enrichment analysis using a
logistic model to predict which genes would be found to be differentially expressed,
using the footprint counts for each of the 397 active factors within 50 kb of the gene
transcription start site. At a FDR of 10%, we detected 110 factors that had footprints
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FIG 4 The microbiome induces changes in gene expression through changes in chromatin accessibility.
A QQ (quantile-quantile) plot of P values from the analysis of consistent differential levels of gene

(Continued on next page)
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enriched in genes that were more likely to be differentially expressed after treatment,
including motifs such as AP1, RELB, N�FB, STAT1, STAT3, and HNF4A (Table S6). Many
of these factors are involved in immune response pathways, inflammation pathways,
and chemokine signaling and may not require chromatin remodeling to activate their
target genes to elucidate a response after microbiome treatment.

DISCUSSION

The gut microbiota has recently been reported to be associated with several
different diseases and disorders (21, 26, 27, 39, 44–46). However, the mechanism of
action is not well understood, and we know little about how microbiome risk factors
interact with the host genes that have been linked to the same disorders. Here, we
investigated how interindividual variations in microbiome composition affect host gene
regulation. Previous work in mice has shown that transplantation with microbiomes
derived from mice with different phenotypes, e.g., obese versus lean, can lead to
differences in organismal phenotypes (39). In contrast, our work focuses on variable
responses associated with microbiomes derived from healthy humans. We note that
the in vitro system has several limitations: for example, the presence of a low level (5%)
of oxygen may be deleterious to obligate anaerobes. Moreover, the combination of the
inclusion of a single cell type and the short duration of treatment (up to 4 h) does not
recapitulate in vivo systems where microbes and host cells of different types interact for
longer time periods. Nevertheless, this is a well-controlled system that is not susceptible
to many of the biases that are found in other model systems and that allows charac-
terization of the direct effect of microbial communities and isolates on gene regulation
in host cells. We illustrate that while there were thousands of genes that showed
consistent responses induced by the five microbiome treatments, there were several
hundred that responded differently to each microbiome. Furthermore, some of the
differences in response can be understood as having resulted from the variations in the
microbiome compositions of the five samples. Though we focus on healthy micro-
biomes, our results highlight the interactions of particular microbes and host genes that
may play roles in various host traits. For example, we identified hundreds of genes that
responded to particular microbes in a predictable way, such as the GLTP gene, whose
response was correlated with the presence of Collinsella. Our results suggest that
Collinsella may impact complex traits through regulation of host gene expression. While
we closely examined the effect of the presence of Collinsella on host gene expression,
there were many other relevant microbes that may also play a role in host gene
regulation. For example, the abundance of Prevotella, which has been associated with
colorectal carcinoma (55) and ileal Crohn’s disease (56), induces changes in the expres-
sion of 6 genes (BH FDR � 10%). Further studies performed with a wider panel of
microbiome samples will allow increased power to detect more genes that are differ-
entially expressed across microbiome treatments.

One consideration in our analysis of the effect of Collinsella on host gene expression
is that our treatments consisted of healthy microbiota samples spiked with Collinsella.
This was done in order to better replicate natural variation in gut microbiota compo-
sition and microbial interaction in the human gut. Microbes are constantly in compe-
tition for particular niches in the gut, and so we do not expect that increases in
Collinsella levels in an organism would occur alone but would instead likely affect the

FIG 4 Legend (Continued)
expression in colonocytes treated with five microbiota samples for 4 h. The blue points indicate the P
values for transcripts that were within 50 kb of a differentially accessible region identified through
ATAC-seq after 2 h of treatment. The gray points indicate transcripts that were not within 50 kb of a
differentially accessible region. (B) ATAC-seq profile centered on the 300-bp window (with 1,000 bp on
either side) that was differentially accessible following 2 h of treatment with the microbiome (log2 fold
change [FC] � 0.47, BH FDR � 12%). This region was found 4,795 bp distant from the differentially
expressed TPM4 gene. (C) RNA-seq profile of TPM4 (ENST00000586833) (and of 20,000 bp in either
direction), which was differentially expressed following 4 h of treatment with the microbiome (log2 FC �
0.29, BH FDR � 1.9%). The gene model is shown at the bottom. Panels B and C show the summation of
reads at each position across the five biological replicates and the two technical replicates.
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levels of other microbes. However, future work using treatments of Collinsella alone
may identify genes whose expression levels change as direct consequences of Collin-
sella abundance rather than as a result of overall changes in microbial environment
induced by manipulation of Collinsella abundance.

Our study of chromatin accessibility changes after 2 h of microbiome exposure in 12
samples identified a limited number of differentially accessible regions. These results
are similar to those reported from previous work in conventionalized mice that did not
show broad changes in chromatin accessibility compared to germ-free mice and could
have been a consequence of limited statistical power, incorrect time point for detec-
tion, or short duration of the treatment (28, 29). In our study, the regions that were
detected as significantly differentially accessible were enriched near genes that
changed their expression following treatment with a consistent direction of effect; and
yet the changes in chromatin accessibility were small and accounted for only a limited
number of genes that were differentially expressed after treatment. Many of the
changes in gene expression could still be mediated by transcription factor binding that
does not affect chromatin accessibility, as footprints for key transcription factors related
to immune responses and inflammation were found to be enriched in genes that
showed a response to the microbiome. Other mechanisms may also explain the
observed changes in gene expression. For example, others have observed that RNA
processing in the host changes in response to exposure to bacteria (35, 57–59). Future
studies could analyze whether the gut microbiota may modulate RNA processing
directly and thereby induce a transcriptional response. In this study, we identified
specific transcription factors that may play a key role in mediating the gene regulatory
response to the microbiome. The recently developed CUT&RUN technique (60) could
be used in the future to specifically investigate whether the microbiota induces binding
of specific TFs through the use of the footprinting data we have generated to identify
potential candidates. It is unlikely that changes in methylation could happen in the
short time frame analyzed here and could induce the observed gene expression
changes. However, a longer time course would allow investigation of methylation
changes as potential mechanisms for long-term gene regulatory changes induced by
the microbiome. It has been shown that epigenetic changes and changes in TF binding
can be induced by the gut microbiome (31, 32), and our results confirm that they may
also be among the mechanisms in human colonic epithelial cells by which the micro-
biota drives host gene expression.

Conclusion. Our results suggest that specific microbes in the microbiome may be
important in regulating host gene expression in the gut and that microbes can induce
changes in the expression levels of a large number of genes. Furthermore, our data
support the hypothesis that the microbiome induces changes in the levels of expres-
sion of host genes that are involved in complex traits. While the mechanism of response
is as yet unclear for most genes, we identified a small subset of genes whose response
to microbiome exposure may be regulated by changes in chromatin accessibility.
Finally, our work suggests a molecular mechanism by which supplementation of the
microbiome can influence human health through changes in host cellular response. We
have shown that by manipulating microbiome composition by supplementation of a
single microbe, we were able to influence the host cell regulatory response in a
predictable way. This work and future research will help to determine which microbes
may be most beneficial in interventional therapy to improve one’s health.

MATERIALS AND METHODS
Extended materials and methods. Extended materials and methods can be found in Text S1 in the

supplemental material.
Cell culture and treatment. Experiments were conducted using primary human colonic epithelial

cells (HCoEpiC; lot 9810), which we also term “colonocytes” (ScienCell catalog no. 2950). Five fecal
microbiota samples were purchased from OpenBiome as live microbial suspensions in 12.5% glycerol. On
the day of the experiment, medium was removed from the colonocytes and fresh antibiotic-free medium
was added, followed by inoculation with microbial extract for a final microbial ratio of 10:1 (microbe/
colonocyte) in each well. Additional wells containing only colonocytes were also cultured for use as
controls. Control wells also received fresh antibiotic-free media when the treatment wells were being

Effect of Microbiota on Host Gene Regulation

September/October 2019 Volume 4 Issue 5 e00323-18 msystems.asm.org 11

https://msystems.asm.org


treated. While the live microbial suspension was purchased in 12.5% glycerol, the microbiota sample in
the culture plate was present only in traces (0.014%); therefore, no glycerol was added to the controls.
This experimental protocol was described previously (38).

After 1, 2, or 4 h, the wells were scraped on ice and the contents were pelleted and washed with cold
phosphate-buffered saline (PBS) and then resuspended in lysis buffer (Dynabeads mRNA Direct kit) and
stored at – 80°C until extraction of colonocyte RNA was performed. Each microbiota sample was used to
treat colonocytes three times in total (once for each time point). At each time point, three wells of control
(untreated) colonocytes were collected as technical replicates. To identify the genes that responded to
the microbiota at each time point, the five microbiota samples were treated as biological replicates (see
equation 2 in Text S1). To identify the genes that responded to a specific microbiota sample, we
considered the technical replicates of each microbiome collected at 3 different time points (see equation
3 in Text S1). Further details can be found below and in the supplemental material.

Collinsella spike-in experiment. Collinsella aerofaciens was purchased from ATCC (catalog no.
25986) and grown in reinforced clostridial medium (BD Biosciences; catalog no. 218081), following the
manufacturer’s protocol, under anaerobic conditions. We verified that we were utilizing Collinsella
aerofaciens by extracting the DNA by the use of a PowerSoil kit as described below. We then PCR
amplified the 16S region using primers specific to Collinsella aerofaciens (61) (see Fig. S3F in the
supplemental material).

Cell culture conditions for this experiment were the same as those described above. On the day of
treatment, solutions were made with the microbiota sample (from individual 4) at 10:1 compared to the
number of colonocytes and the C. aerofaciens inoculum was spiked into the microbiota sample at the
following 4 dilutions: 10%, 1%, 0.1%, and 0.01%. Additional wells containing only colonocytes and
colonocytes with the microbiota sample (0% Collinsella aerofaciens) were cultured as controls on the
same 12-well plate. Each treatment was performed in duplicate.

Following 2 h of culturing, the wells were scraped on ice and the contents were pelleted and washed
with cold PBS, resuspended in lysis buffer (Dynabeads mRNA Direct kit), and stored at – 80°C until
extraction of colonocyte RNA was performed (as described below).

RNA library preparation from colonocytes. Polyadenylated mRNAs were isolated from thawed cell
lysates by the use of a Dynabeads mRNA Direct kit (Ambion) following the manufacturer’s instructions.
RNA-seq libraries were prepared using a protocol modified from the NEBNext Ultradirectional (NEB)
library preparation protocol to use barcodes from Bioo Scientific added by ligation, as described
previously (62). The libraries were then pooled and sequenced on two lanes of an Illumina NextSeq 500
system in the Luca/Pique-Regi laboratory using high-output kits for 75 cycles to obtain paired-end (PE)
reads for an average of over 40 million total reads per sample.

RNA sequencing and alignment. Reads were aligned to the hg19 human reference genome using
STAR (63) (https://github.com/alexdobin/STAR/releases, version STAR_2.4.0h1) and the Ensemble refer-
ence transcriptome (version 75). We further removed reads with a quality score of �10 (equating to reads
mapped to multiple locations) and removed duplicate reads using samtools rmdup (http://github.com/
samtools/).

Differential gene expression analysis. To identify differentially expressed (DE) genes, we used
DESeq2 (64) (R version 3.2.1, DESeq2 version 1.8.1). Gene annotations from Ensembl version 75 were
used, and transcripts with fewer than 20 reads in total were discarded. coverageBed was utilized to count
reads with -s to account for strandedness and -split for BED12 input. The counts for 28,107 genes
(147,555 transcripts) were then utilized in DESeq2 with several models to determine changes in gene
expression under various conditions. A gene was considered DE if at least one of its transcripts was DE.
In order to identify genes whose level of expression changed at each time point following coculturing,
we used each microbiota treatment as a replicate. With this model, we identified 1,835 genes whose level
of expression changed after 1 h (70% of the genes showed increased expression levels), 4,099 genes
whose level of expression changed after 2 h (53% of the genes showed increased expression levels), and
1,197 genes whose level of expression changed after 4 h (56% of the genes showed increased expression
levels) (BH FDR � 10%, |logFC| � 0.25) (Fig. S1H and I).

In order to identify genes that were differentially expressed at a given time point after coculturing
with a specific microbiota sample, we used an alternative model which allows analysis of different effects
of each microbiome. With this model, 1,131 genes showed changes in expression levels after 1 h with any
of the 5 samples, 3,240 after 2 h, and 1,060 after 4 h (BH FDR � 10%, |logFC| � 0.25 (Fig. 1B).

We next used the likelihood ratio test that is a part of DESeq2 to compare the 2 models described
above in order to identify genes whose expression changes over time are determined by the individual
from which the microbiota sample was taken. In this way, we identified 409 genes at a BH FDR of �10%.

In order to identify components of the microbiota samples that affect gene expression, we used a
model that included the baseline abundance of each taxon as measured in the microbiota samples prior
to coculturing with the human cells (after all of the samples had been rarified to the sample with the
lowest read count of 141,000). For this analysis, we considered the 62 most abundant taxa (�0.1% of the
total number of reads in at least one of the five samples) and all genes expressed in the colonocytes, for
a total of 9,125,927 tests. We identified 588 significant taxon-gene associations (BH FDR � 10%),
comprising of 46 taxa and 121 genes (see Table S1 in the supplemental material).

Finally, we analyzed the validation experiment performed with the spike-in of Collinsella aerofaciens.
In order to identify genes that were differentially expressed because of the presence of Collinsella
aerofaciens, we used the model that included increasing abundances of Collinsella aerofaciens. We
identified 1,570 genes that showed changes in expression levels (BH FDR � 10%) (Table S1; see also
Fig. S2F) depending on the abundance of Collinsella aerofaciens.
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16S rRNA gene sequencing and analysis of the microbiome. Half of the volume of each culturing
well and the full volume of wells with microbiota samples cultured alone were used for extraction of
microbial DNA by the use of a PowerSoil kit (Mo Bio Laboratories) as directed, with a few modifications
(found in the supplemental material). Microbial DNA was also extracted from the uncultured microbial
samples. 16S rRNA gene amplification and sequencing were performed at the University of Minnesota
Genomics Center (UMGC), as described previously by Burns et al. (21).

The trimmed 16S rRNA gene sequence pairs were quality filtered (q score of �20, using QIIME 1.8.0),
resulting in 1.41, 1.06, and 1.53 million high-quality reads for sample replicates 1, 2, and 3, respectively
(65, 66). Operational taxonomic units (OTUs) were picked using the closed reference algorithm against
the Greengenes database (August 2013 release) (21, 65–67). The resulting OTU table was analyzed to
determine microbial community diversity using QIIME scripts and rarefaction to 141,000 reads.

We verified that the fecal samples that we utilized were similar to other healthy samples by
comparing the OTUs detected to data from the Human Microbiome Project (1, 42). 16S V4 OTU and HMP
V1V3 OTU tables (https://www.hmpdacc.org/HMQCP/, final OTU table) were run through QIIME’s sum-
marize_taxa.py algorithm and consolidated at the L3 class level.

Determining effect of colonocytes on microbiota composition. OTUs were collapsed to the genus
level using scripts in QIIME 1.9.1. In total, 292 taxa were detected across all samples and treatments. After
performing filtering on the data representing the relative abundances of each taxon, we focused on 112
taxa. We used the most recent version of QIIME throughout our analysis, and the version was updated
while we were working on the project. The change in version does not affect the results (running
summarize_taxa.py and alpha_diversity.py from the two versions of QIIME on the OTU table produced
exactly the same output tables).

To assess how each taxon changed in response to culturing with colonocytes, we ran two linear
models (including or excluding the effect of colonocytes) and compared the goodness-of-fit data using
a likelihood ratio test. The model yielded 13/112 taxa that changed significantly due to treatment, with
a BH FDR of �10% (Fig. S2C).

ATAC-seq in colonocytes exposed to gut microbiota. Colonocytes were treated as described
above. We treated colonocytes in a six-well plate with one of each of the five microbiota samples; as a
control, one additional well was left untreated and yet was maintained under the same culturing
conditions. This setup was used in duplicate, leading to the use of a total of 12 wells for the experiment.
Thus, in total, the experiment consisted of five biological replicates, performed with two technical
replicates each. Following 2 h of exposure to the microbiome, cells were collected by scraping the plate
on ice. The contents of each well were counted to enable the removal of 50,000 cells to be used for
ATAC-seq. We followed a previously reported protocol (40) to lyse 50,000 cells and prepare ATAC-seq
libraries, with the exceptions that we used an Illumina Nextera index kit (catalog no. 15055290) in the
PCR enrichment step and the cells were not lysed with 0.1% IGEPAL CA-630 before addition of the
transposase to begin the ATAC-seq protocol. Individual library fragment distributions were assessed on
an Agilent Bioanalyzer, and pooling proportions were determined using a quantitative PCR (qPCR) library
quantification kit (Kapa Biosystems). Library pools were run on an Illumina NextSeq 500 desktop
sequencer in the Luca/Pique-Regi laboratory. Barcoded libraries of ATAC-seq samples were pooled and
sequenced in multiple sequencing runs for 130 million 38-bp PE reads (maximum, 159 million; minimum,
105 million). One sample, derived from treatment of the colonocytes with microbiota from individual 3,
was removed from later analysis due to low sequencing coverage (63 million reads).

Reads were aligned to the hg19 human reference genome using HISAT2 (68) (https://github.com/,
version hisat2-2.0.4) and the Ensemble reference transcriptome (hg19) with the options HISAT2 -x
�genome� -1 �fastq_R1.gz� -2 �fastq_R2.gz�, where �genome� represents the
location of the genome file and �fastqs_R1.gz� and �fastqs_R2.gz� represent the fastq files.

The multiple-sequencing runs were merged for each sample using samtools (version 2.25.0). We
further removed reads with a quality score of �10 (equating to reads mapped to multiple locations) and
removed duplicate reads using samtools rmdup (http://github.com/samtools/).

Transcription factor binding footprints detection with CENTIPEDE. To detect which transcription
factor motifs had footprints under each set of conditions, we adapted CENTIPEDE (54) to use the
fragment length information contained in ATAC-seq in the footprint model and to jointly use in parallel
the treatment conditions and control conditions in order to ensure that the same footprint shape would
be used for the same motifs under both sets of conditions.

As described for CENTIPEDE, we needed to start from candidate binding sites for a given motif model.
For each transcription factor, we scanned the entire human genome (hg19) for matches to its DNA
recognition motif using position weight matrix (PWM) models from TRANSFAC and JASPAR as previously
described (54). Then, for each candidate location l, we collected all the ATAC-seq fragments which were
partitioned into four binding groups on the basis of the fragment length as follows: (i) 39 to 99 bp, (ii)
100 to 139 bp, (iii) 140 to 179 bp, and (iv) 180 to 250 bp. For each fragment, the two Tn5 insertion sites
were calculated as the position 4 bp after the 5= end in the 5= to 3= direction. Then, for each candidate
motif, a matrix (X) was constructed to count Tn5 insertion events; each row represented a sequence
match to a motif in the genome (a motif instance) and each column a specific cleavage site at the relative
base pair and orientation with respect to the motif instance. We built a matrix [�Xl�l�1

4 ] for each fragment
length bin, each using a window a half-size S value of 150 bp, resulting in (2 � S � W) � 2 columns,
where W represents the length of the motif in base pairs.

Finally, we fitted the CENTIPEDE model in a subset of instances to determine which motifs have active
binding (i.e., show footprints) with a Z value of �5 as described previously (69). The statistical significance
was assessed by calculating a Z-score corresponding to the PWM effect in the prior probability in the
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CENTIPEDE’s logistic hierarchical prior. Then we used CENTIPEDE and motif instances with posterior
probabilities higher than 0.99 to denote locations where the transcription factors are bound.

Identification of differentially accessible regions following inoculation with microbiota. To
identify differentially accessible regions, we used DESeq2 (64) (R version 3.2.1, DESeq2 version 1.8.1). We
separated the genome into 300-bp regions, and coverageBed was used to count reads in these regions. A
total of 65,000 regions with �0.25 reads per million were then utilized in DESeq2 using the following model:

Gene expression � treatment

Yjn � �
t

�jt
MMtn

where Yjn represents the internal DEseq mean accessibility parameter for region j and experiment n, Mn

is the treatment indicator (control or microbiome), and the �jt
M parameter is the microbiome effect. With

this model, we identified 234 regions that change in the host following exposure to the gut microbiota,
with BH FDR of �20%. These regions were then compared to gene annotations from Ensembl version
75 to identify those that were within 50 kb of a transcription start site. We found enrichment for
differentially accessible regions close to DE genes at 4 h (P value � 3.96 � 10�4, OR � 2.13) (Fig. 4A). In
order to identify transcription factors which are important for response to microbiome exposure, we
calculated enrichment scores for each active motif in regions of differentially accessible chromatin. A
total of 40 motifs were found to have been significantly enriched or depleted (nominal P value � 0.05;
see Table S4). Because we identified factors which were enriched or depleted for differentially accessible
regions, we calculated a stratified FDR for regions tested for differential levels of chromatin accessibility
by motif (70). For each transcription factor motif, we used the footprinting results from CENTIPEDE to
classify subsets of regions containing that footprint from the DESeq2 test for differential chromatin
accessibility. We then adjusted the FDR using the Benjamini-Hochberg procedure (71) for each motif
separately. Combining the results from all motifs, we identified 209 regions displaying levels of differ-
ential chromatin accessibility with an FDR of �10%.

To identify transcription factor footprints enriched in differentially expressed genes, we used a
logistic model for each of the 397 active factors within 50 kb upstream and downstream of each gene
transcription start site as follows:

log(Prob. gene DE ⁄ Prob. gene not DE) � �0 � �1(footprint count near gene)

We performed Benjamini-Hochberg multiple-test correction and defined significant factors as cor-
responding to FDR values of �10%.
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