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ABSTRACT
This study aimed to explore the potential role of autophagy-related genes in kidney renal clear 
cell carcinoma (KIRC) and develop a new prognostic-related risk model. In our research, we used 
multiple bioinformatics methods to perform a pan-cancer analysis of the CNV, SNV, mRNA 
expression, and overall survival of autophagy-related genes, and displayed the results in the 
form of heat maps. We then performed cluster analysis and LASSO regression analysis on these 
autophagy-related genes in KIRC. In the cluster analysis, we successfully divided patients with KIRC 
into five clusters and found that there was a clear correlation between the classification and two 
clinicopathological features: tumor, and stage. In LASSO regression analysis, we used 13 genes to 
create a new prognostic-related risk model in KIRC. The model showed that the survival rate of 
patients with KIRC in the high-risk group was significantly lower than that in the low-risk group, 
and that there was a correlation between this grouping and the patients’ metastasis, tumor, stage, 
grade, and fustat. The results of the ROC curve suggested that this model has good prediction 
accuracy. The results of multivariate Cox analysis show that the risk score of this model can be 
used as an independent risk factor for patients with KIRC. In summary, we believe that this 
research provides valuable data supporting future clinical treatment and scientific research.
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1. Introduction

In the past few decades, research related to autop-
hagy in the field of tumor medicine has continued. 
Autophagy is an evolutionarily conserved catabolic 
process in the cell that can deliver cytoplasmic 
macromolecules, aggregated proteins, damaged 
organelles, or pathogens to the lysosome, where 
they are digested by hydrolytic enzymes in the 
lysosome to produce nucleotides, amino acids, 
fatty acids, sugars, and ATP, ultimately recycling 
the materials [1–3]. The main processes involved 
in autophagy are initiation (nucleation), elonga-
tion-maturation, fusion, and degradation [4–6]. 
There is a close relationship between autophagy 
and many human diseases, such as cancer, neuro-
degenerative diseases, and autoimmune diseases 

[6,7]. Autophagy is a potential regulator of cell 
death; thus, it is a therapeutic target for cancer 
[8–10]. Tumor cells are often associated with 
abnormal autophagy activity. In the early stage of 
tumor development, the loss of autophagy func-
tion can lead to malignant transformation of cells 
and can promote tumorigenesis and growth. In the 
late stage of tumor development, as the tumor 
volume increases, the cells are in a state of hypoxia 
and nutritional deprivation. Activation of autop-
hagy as a survival mechanism maintains the ability 
of tumor cells to survive in unfavorable environ-
ments. It is shown that it affects both the time and 
space required for tumor growth [11–13]. 
Therefore, cell autophagy is closely related to the 
occurrence and development of tumors.

*CONTACT Feng Chen dmuchenfeng@163.com Department of Urology, The First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan 
Road, Dalian, Liaoning, 116011, China; Tel: +86-18098876037 

#First authors: Guangzhen Wu and Yingkun Xu contributed equally to this study.
Supplemental data for this article can be accessed here.

BIOENGINEERED
2021, VOL. 12, NO. 1, 7805–7819
https://doi.org/10.1080/21655979.2021.1976050

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0002-0100-9117
https://doi.org/10.1080/21655979.2021.1976050
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/21655979.2021.1976050&domain=pdf&date_stamp=2021-10-07


Renal cell carcinoma (RCC) is a malignant 
tumor of the renal tubular epithelial cell system 
that originates in kidney tissue. It is often referred 
to as kidney cancer and is one of the most com-
mon tumors of the urinary system. Global cancer 
statistics from 2018 showed that 403,262 new cases 
of kidney cancer occur each year, with a reported 
175,098 deaths [14,15]. There are three main sub-
types of RCC: kidney renal clear cell carcinoma 
(KIRC), kidney renal papillary cell carcinoma 
(KIRP), and kidney chromophobe (KICH). KIRC 
accounts for 75–80% of all RCC [16]. As the early 
clinical symptoms of kidney cancer are relatively 
difficult to detect, more than 30% of patients have 
metastasis after diagnosis. Moreover, radiotherapy, 
chemotherapy, and endocrine treatment of 
patients with renal cancer are not ideal. Surgery 
is the only possible cure, but 20% of patients still 
experience recurrence and metastasis after surgery 
[17,18]. Therefore, developing an accurate and 
reliable risk model has become an important 
research direction to improve the prognosis of 
renal cancer.

In view of the progress in precision medicine, 
higher requirements are imposed on clinical diag-
nosis and treatment. The establishment of prog-
nostic models in clinical cancer management has 
become increasingly critical because doctors can 
use these models to intervene promptly in high- 
risk patients while avoiding the overtreatment of 
low-risk patients [19]. To improve the accuracy of 
the prognostic evaluation guidelines in the current 
practices of clinical diagnosis and treatment, they 
are continuously modified, while taking into 
account the ease of use of clinical use [20–22]. In 
this study, to explore the potential biological role 
of autophagy-related genes in KIRC, we conducted 
CNV, SNV, mRNA expression and overall survival 
analysis for these genes in KIRC. Most impor-
tantly, we used cluster analysis to successfully 
divide KIRC patients into five clusters. In addition, 
we use LASSO regression analysis to establish 
a new prognostic-related risk model in KIRC. 
This model contained 13 genes: ATG4A, 
GABARAPL2, ATG10, ATG12, ATG2B, ATG4C, 
ATG5, ULK1, ATG16L2, ATG2A, ATG13, 
MAP1LC3C, and GABARAP. In previous studies, 
some researchers have used autophagy-related 
genes to establish new prognostic-related risk 

models in esophageal adenocarcinoma and hepa-
tocellular carcinoma [23,24]. Different from these 
research works, in this study, we used autophagy- 
related genes to perform a large number of pan- 
cancer analyses, and used cluster analysis to suc-
cessfully divide KIRC patients into five clusters. 
We believe that the results of our study have 
provided valuable and reliable data for future 
scientific research and clinical diagnosis and 
treatment.

2. Materials and methods

2.1. Data collection

The Cancer Genome Atlas (TCGA) program was 
launched in 2006 by the National Cancer and 
Cancer Institute (NCI) and the National Human 
Genome Institute (NHGRI). The goal of the pro-
gram is to map cancer gene maps, understand the 
molecular mechanisms of cancer, and improve our 
ability to prevent, diagnose, and treat cancer. In 
this study, CNV, SNV, and mRNA expression 
profiles and clinical data of pan-cancer transcrip-
tomes were downloaded and compiled from the 
TCGA database. The KIRC database contains 539 
tumor tissues and 72 normal tissues. Then, we 
collected 29 autophagy-related genes from an 
important review related to autophagy [1].

2.2. Oncomine database

The Oncomine database is a gene chip-based data-
base and integrated data-mining platform, which 
is used mainly to collect, standardize, analyze can-
cer transcriptome data and share results within the 
biomedical research community (https://www. 
oncomine.org/) [25]. In this study, we used this 
database to perform a pan-cancer analysis of the 
expression of autophagy-related genes.

2.3. GEPIA website

The GEPIA website is a tool that provides rapid 
analysis of differential expression, draws contour 
maps, analyses patient survival, and detects similar 
genes based on TCGA and GTEx data (http:// 
gepia2.cancer-pku.cn/#index) [26]. In this study, 
we used the GEPIA database to explore the 
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expression of the candidate gene ATG9B in var-
ious tumors.

2.4. Generation of PPI networks

The String database analyses known and predicted 
protein-protein interactions. Currently, the data-
base contains 9,643,763 proteins from 2031 organ-
isms, and has information on direct (physical) and 
indirect (functional) interactions (https://string- 
db.org/) [27]. Cytoscape, an open-source bioinfor-
matics software platform, can visualize molecular 
interaction networks by constructing protein 
interaction networks [28]. We used the String 
website to obtain the protein interaction networks 
of autophagy-related genes, exported the results in 
TSV format, and imported the resulting source file 
into Cytoscape for visual analysis.

2.5. GSCALite website

GSCALite is a website that integrates TCGA, 
GDSC, CTRP, and GTEx data for genome analysis. 
It can be used for dynamic analysis and visualiza-
tion of the cancer genome and to determine cor-
relations with drug sensitivity. Cancer researchers 
can use this website for cancer genome analysis 
(http://bioinfo.life.hust.edu.cn/web/GSCALite/) 
[29]. We used this tool to explore the relationship 
between the methylation levels of all autophagy- 
related genes and the overall survival of patients 
with multiple tumors, and then analyzed the rela-
tionship between these genes and cancer pathways. 
Finally, the GDSC data from this website were 
used to analyze the sensitivity between these 
genes and anticancer drugs.

2.6. Data processing and analysis

We downloaded the latest version of the freely 
available official R software from CRAN (https:// 
www.r-project.org/). As the environment provided 
by R software is complex to navigate, we used 
RStudio, which is a simple and powerful 
R language operation platform (https://www.rstu 
dio.com/). The data processing and data analysis 
part of this research was performed using Perl and 
multiple R language packages. The heat map in 

this study was drawn by running the Pheatmap 
package, and then further processed by TBtools 
(https://github.com/CJ-Chen/TBtools). The differ-
ence analysis was performed using the Limma 
package. Co-expression analysis was performed 
using the Corrplot package. In addition, for the 
cluster analysis of this study, we mainly used the 
Consensus Cluster Plus package. LASSO regres-
sion analysis was mainly implemented with the 
help of the Glmnet and Survival packages. The 
Survival package was used to draw survival curves, 
and the Survival ROC package was used to analyze 
and draw ROC curves. Finally, under this risk 
model, univariate cox analysis and multivariate 
cox analysis with clinical characteristics were per-
formed. A P-value of <0.05 was considered statis-
tically significant.

3. Results

3.1. Pan-cancer overview of variation of 
autophagy-related genes

Although many autophagy-related genes have 
been explored in tumors, the mutations of these 
genes in a variety of tumors are not well summar-
ized [30,31]. In this study, to perform a pan-cancer 
investigation of the mutation of autophagy-related 
genes, we analyzed high-throughput CNV and 
SNV data collected from the TCGA database and 
presented it as a heat map. From the response heat 
map of the CNV gain frequency, it can be seen 
that autophagy-related genes have higher frequen-
cies of gain mutations in KICH, ACC, KIRP, and 
OV. WIPI2, ATG9B, MAP1LC3A, and RB1CC1 
have higher frequencies of gain mutation frequen-
cies in the pan-cancer analysis (Figure 1a, Table 
S1). In addition, from the heat map of CNV loss 
frequency, autophagy-related genes had a higher 
frequency of loss mutations in UVM, UCS, OV, 
and KICH. ATG5, GABARAP, ATG7, and ULK2 
had a higher frequency of loss mutations in the 
pan-cancer analysis (Figure 1b, Table S2). In the 
heat map generated from the SNV data from 
TCGA, autophagy-related genes had higher fre-
quencies of mutation in UCEC, STAD, COAD, 
and SKCM. ATG2B, ATG2A, ULK1, and 
RB1CC1 had a wide range of mutation frequencies 
in the pan-cancer analysis (Figure 1c, Table S3).
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3.2. Pan-cancer overview of the mRNA 
expression of autophagy-related genes

Modern cancer research believes that abnormal 
gene expression may imply that the gene may 
play an important role in the development of the 
disease. To perform a pan-cancer investigation of 
the mRNA expression of autophagy-related genes, 
we used gene expression data from the TCGA 
database to draw a heat map. ATG9B and 
ATG12 were highly expressed in various cancers. 
In contrast, the expression of MAP1LC3C and 
GABARAPL1 in multiple cancers was low. 
Simultaneously, most autophagy-related genes 
were activated in both CHOL and LIHC 

(Figure 2a, Table S4). To show the gene expression 
changes more clearly, a new heat map was gener-
ated using the negative log P-value. In this heat 
map, we can see a relatively high degree of changes 
in expression in KIRC, LIHC, and LUSC cancers. 
Three genes, WIPI2, ATG16L1, and GABARAPL1, 
showed comparable changes in various cancers 
(Figure 2b, Table S5). Then, we explored the 
expression of these genes in multiple tumors 
through the Oncomine database (Figure 2c). In 
particular, we explored the expression of ATG9B 
in various tumors through the tools available on 
the GEPIA website, and combining the TCGA and 
GTEx databases, and presented the data as box 

Figure 1. Panoramic view of the mutation of autophagy-related genes in pan-cancer. (a) Copy number variation gain frequency 
across cancer types. The redder the color, the higher the mutation frequency of the corresponding molecule in corresponding 
cancer. (b) Copy number variation loss frequency across cancer types. The bluer the color, the higher the loss frequency of the 
corresponding molecule in corresponding cancer. (c) Single nucleotide variation in pan-cancer. As the frequency of the mutation 
increases, the color on the small square changes from blue to red.
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diagrams. ATG9B is highly expressed in most 
cancers (Figure 2d).

3.3. Correlation between autophagy-related 
genes and their relationship with methylation 
levels, cancer pathways, and drug sensitivity

Recent studies have shown that epigenetic 
mechanisms are essential for maintaining specific 
gene expression patterns and the normal develop-
ment and growth of living individuals [32,33]. 
Among them, changes in the level of methylation 
can interfere with the expression and function of 
normal genes, thereby inducing the occurrence 
and development of various diseases such as 

cancer. To understand the potential functions of 
these molecules in tumors, we used the String 
website and Cytoscape software to map the PPI 
network of these genes and quantify their relation-
ships. These molecules have a very close relation-
ship (Figure 3a-b). The co-expression of these 
genes in various types of tumors was then investi-
gated. Among them, the positive correlation 
between ATG14 and ATG2B was the highest, 
with a COR value of 0.599 (Figure 3c-d). Finally, 
we used the GSCALite website to investigate the 
methylation levels of these genes in various tumors 
(Figure 3e). We also explored the relationship 
between methylation levels and the overall survival 
of patients with cancer (figure 3f). We used 

Figure 2. Panoramic view of the expression of autophagy-related genes in pan-cancer. (a) Gene expression across cancer types. (b) 
To more clearly show the difference in expression of these autophagy-related genes in tumors, a heat map of the corresponding – 
logP value of each gene in each tumor was constructed. The redder the color, the more intense the corresponding change in gene 
expression in corresponding cancer. (c) Gene expression across the oncomine database wherein red means activated and blue 
means suppressed. The larger the number, the darker the color, the greater the degree of change in its expression. (d) ATG9B gene 
expression in multiple tumors. Red represents tumor tissue and blue represents normal tissue.
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another tool available from this website to explore 
the relationship between these autophagy-related 
genes and cancer pathways. We identified a major 

role of ATG4C in the hormone-ER pathway, and 
GABARAPL1 had a strong inhibitory effect on the 
cell cycle pathway (Figure 3g). We also used the 

Figure 3. Correlation between autophagy-related genes and their relationship with methylation levels, cancer pathways, and drug 
sensitivity. (a) PPI networks between autophagy-related proteins. (b) Quantitative table of interactions between autophagy-related 
proteins. (c) Gene co-expression relationship across cancer types. Red represents a positive correlation and blue represents 
a negative correlation. (d) Co-expression relationship between ATG14 and ATG2B. (e) Methylation difference between tumor and 
normal samples. Red represents high expression and blue represents low expression. (f) Overall survival difference between 
hypermethylation and hypomethylation. Red represents high methylation levels as a high-risk factor, and blue represents high 
methylation levels as a low-risk factor. (g) Pathways analysis across 33 cancer types. Red represents activation and blue represents 
inhibition. (h) Sensitivity analysis of autophagy-related genes and mainstream anti-cancer drugs.
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integrated GDSC database from this website to 
investigate the sensitivity of these genes to antic-
ancer drugs. We found that GABARAPL1 was 
more sensitive to navitoclax (Figure 3h).

3.4. Pan-cancer analysis of the hazard ratio (HR) 
of autophagy-related genes

In medical and public health research, hazard ratio 
(HR) is often used to express the risk difference 
between the experimental group and the control 
group. To understand the effect of autophagy- 
related genes from a pan-cancer perspective, we 
analyzed the HR of these genes (Figure 4a, Table 
S6). To confirm the credibility of the above data, 
we used the logP value to draw a new heat map 
(Figure 4b, Table S7). To display the expression of 
these autophagy-related genes in KIRC in more 
detail, we used the KIRC gene expression data 
from TCGA to draw a heat map (Figure 4c). In 
particular, we accurately displayed the HR of 
autophagy-related genes in KIRC in the form of 
a forest map. Of these genes, ATG13, MAP1LC3C, 
ATG16L2, and ULK1 were potential risk factors in 
KIRC. In contrast, BECN1, ATG2B, ATG4A, 
ATG4C, MAP1LC3B, GABARAPL2, and ATG10 
may be protective factors (Figure 4d, Table S8).

3.5. Cluster analysis of autophagy-related genes 
in KIRC and its clinical relevance

Cluster analysis is to group data objects based 
on the information found in the data describing 
objects and their relationships. In cancer 
research, cluster analysis can provide theoretical 
support for the precise treatment of cancer 
treatment. In particular, we performed cluster 
analysis based on the expression of these autop-
hagy-related genes in KIRC patients. 
A consensus matrix was generated at k = 5, 
which showed a relatively good clustering effect, 
and the results were verified if necessary 
(Figure 5a-c). Then, we generated the survival 
curve of KIRC patients based on the results of 
the cluster analysis (P = 0.139) (Figure 5d). We 
found that there was a statistical significance 
between the results of the cluster analysis and 
the tumor stage of KIRC patients (Figure 5e).

3.6. Risk analysis of autophagy-related genes in 
KIRC and its clinical relevance

To use these autophagy-related genes to build 
a risk model for KIRC, we first performed 
a LASSO regression analysis on these genes 
and verified their usability (Figure 6a-b). We 
derived a risk model consisting of 13 genes, 
including ATG4A, GABARAPL2, ATG10, 
ATG12, ATG2B, ATG4C, ATG5, ULK1, 
ATG16L2, ATG2A, ATG13, MAP1LC3C, and 
GABARAP. Based on the expression of these 
genes, we divided KIRC patients into high-risk 
and low-risk groups and plotted survival curves 
(P = 1.401e-11) (Figure 6c). We then plotted 
the ROC curve for this risk model and found 
that the ROC value for 5 years was 0.738 and 
that for 10 years was 0.764 (Figure 6d-e), indi-
cating that this risk model is highly accurate. 
We then combined this risk model with the 
clinical characteristics of KIRC patients and 
displayed them in the form of a heat map. We 
found that the risk model has strong statistical 
significance with the five clinical features 
including metastasis, tumor, stage, grade, and 
fustat in KIRC patients (figure 6f). Finally, we 
performed univariate Cox analysis and multi-
variate Cox analysis based on this model 
(Figure 7a-b, Table S9, S10). We found that 
age, grade, stage, and risk score are independent 
risk factors for KIRC patients. Based on this 
risk signature, a nomogram that can predict 
the risks of KIRC patients in 5-, 7- and 10- 
year is drawn (Figure 7c). The value of each 
variable gets a score on the points scale axis. 
The nomogram generates a total of nine rows. 
The second, third, fourth and fifth rows repre-
sent age, grade, stage and riskScore respectively. 
The sixth row’s total points are accumulated 
from each score assigned to age, grade, stage, 
and riskScore. We can easily estimate the 5-, 7- 
and 10-year survival rates of KIRC patients 
from the total points.

4. Discussion

Under normal physiological conditions, autop-
hagy can remove damaged organelles and pro-
teins from the cells to maintain cell homeostasis. 
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Under abnormal pathological conditions, autop-
hagy is related to the occurrence and develop-
ment of Parkinson’s disease, malignant tumors, 
and other diseases. Autophagy plays a dual role 
in the appearance and development of malignant 
tumors [6,34]. In the early growth of malignant 
tumors, autophagy can inhibit the continuous 
growth of precancerous cells, thereby inhibiting 
the growth of malignant tumors[35]. In the later 
stages of the development of malignant tumors, 
malignant tumor cells are in a state of hypoxia 
and nutritional deficiency [34,36]. The clinical 
trials that have been carried out have demon-
strated the feasibility and potential benefits of 
inhibiting autophagy in a variety of cancer mod-
els, including glioblastoma, pancreatic cancer, 
melanoma, sarcoma, and multiple myeloma 
[37–42]. Autophagy provides energy for the 
growth of tumors by degrading proteins, orga-
nelles, and macromolecular substances in the 

cells, thereby promoting the development of 
malignant tumors[43].

KIRC is a disease of the renal parenchymal urin-
ary tubule epithelial system, and its pathogenesis is 
very complicated. Tumor cells begin to grow from 
within the kidney parenchyma. As the disease pro-
gresses, the tumor volume gradually becomes larger, 
and tumor cells start to compress and infiltrate the 
surrounding renal pelvis and calyx, thereby destroy-
ing the extrarenal capsule area [44]. In most cases, 
KIRC is relatively resistant to radiotherapy and che-
motherapy, and surgery is the primary treatment. 
Despite the early surgical treatment, 30% of tumor 
patients eventually metastasize [45]. To improve the 
prognosis of kidney cancer patients, we comprehen-
sively used bioinformatics to determine the expres-
sion, mutation, and overall survival of autophagy- 
related genes in pan-cancer, and to establish a model 
that is closely related to the prognosis of KIRC 
patients.

Figure 4. Hazard ratio analysis of autophagy-related genes in pan-cancer. (a) Risk analysis of autophagy-related genes in pan-cancer. 
Red represents the molecule acting as a risk factor in the corresponding tumor, and blue represents the molecule acting as 
a protective factor in the corresponding tumor. (b) A heat map corresponding to – logP value was drawn to more clearly show the 
results of risk analysis of autophagy-related genes in pan-cancer. The redder the color, the higher the credibility. (c) Expression of 
autophagy-related genes in KIRC patients. The redder the color, the higher the expression level, and the bluer the color, the lower 
the expression level. (d) Univariate Cox analysis of autophagy-related genes in KIRC patients. *P < 0.05, **P < 0.01, and ***P < 0.001.
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In our study, we used a large number of bioin-
formatics-related tools to conduct an in-depth 
exploration of the pan-cancer’s autophagy-related 
genes. For the first time, the expression, variation, 
and overall survival of these genes in pan-cancer 
have been displayed in the form of a heat map, 
which provides many potential research directions 
for future research on autophagy-related cancer. 
Since we focused on KIRC, we conducted more in- 
depth research on KIRC. Cluster analysis and risk 
analysis were performed on KIRC patients. In 
cluster analysis, we divided KIRC patients into 
five clusters and found a clear correlation between 
them and the two clinical features including tumor 
type and stage. In the risk analysis, we created 
a risk model among KIRC patients. This risk 
model contains 13 genes, including ATG4A, 
GABARAPL2, ATG10, ATG12, ATG2B, ATG4C, 

ATG5, ULK1, ATG16L2, ATG2A, ATG13, 
MAP1LC3C, and GABARAP. We divided KIRC 
patients into high- and low-risk groups, and found 
that the prognosis of patients in the high-risk 
group is significantly worse than that of the low- 
risk group. We found that there is a correlation 
between this risk model and the patient’s five 
clinical characteristics including metastasis, 
tumor, stage, grade, and fustat. The AUC value 
of the 5-year ROC curve of this risk model is 
0.738, and the AUC value of the 10-year ROC 
curve is 0.764. Both of them exceed 0.7, indicating 
that this risk model is very accurate and reliable.

Next, we conducted an in-depth analysis of the 
role of these 13 autophagy-related genes as 
potential prognostic targets in cancer. The func-
tion of ATG2 was unknown for a long time after 
it was discovered. However, in a recent study, 

Figure 5. Cluster analysis of autophagy-related genes and their clinical relevance. (a) Consensus clustering matrix for k = 5. (b-c) 
Relative change in area under the cumulative distribution function (CDF) curve for k = 2–9. Consensus clustering CDF for k = 2–9. (d) 
Survival curves under different clusters. (e) Heat map between clinical features under different clusters. *P < 0.05.
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Valverde et al. reported that it is likely to be 
a lipid transfer protein, which plays a role in 
maintaining the lipid homeostasis of autophago-
somes, supporting the biological behavior of 
organelles [46]. ATG2A/B mutation loss during 
biological evolution can induce non-classical cas-
pase-8 activation and apoptosis [47]. ATG2A has 
been reported as a target of miRNA-541, and its 
imbalance in hepatocellular carcinoma plays 
a crucial role in patients’ response to sorafenib 
treatment. Modulating ATG2A expression can 
prolong the overall survival of patients with 
hepatocellular carcinoma by eliminating drug 
resistance [48]. ATG4 protease is a cysteine pro-
tease that plays an essential role in the lipidation 
and delipidation of LC3 during autophagy. In 
oncology, multiple isoforms of Atg4 protease 
have been identified as potential targets for can-
cer treatment [49]. ATG4A is associated with the 
clinical stage and progression-free survival in 

patients with ovarian cancer [50]. Moreover, 
ATG4A is more highly expressed in gastric can-
cer tissues than in normal tissues and it can 
promote the EMT of gastric cancer cells [51]. 
Other researchers have found that ATG4A is 
associated with drug resistance and stemness in 
tumors [52,53]. Another isoform molecule of 
ATG4, ATG4C, has also been extensively studied 
in the field of cancer. Recently, researchers have 
found that ATG4C is highly expressed in glio-
blastomas, and its expression increased with the 
number of gliomas. Knockdown of ATG4C 
expression in gliomas can induce cell cycle arrest, 
thereby inhibiting cancer cell proliferation [54]. 
Additionally, in breast cancer and hepatocellular 
carcinoma, silencing the ATG4C gene can inhibit 
the occurrence of autophagy, thus affecting 
tumor development [55,56]. All the above find-
ings suggest that the two isoforms of ATG4 play 
an essential role in tumorigenesis and cancer 

Figure 6. Using autophagy-related genes to establish prognostic risk model in KIRC. (a-b) Results of LASSO regression analysis and 
cross-validation. (c) Kaplan–Meier survival analysis between high-risk and low-risk groups according to the optimal cutoff value; (d) 
ROC curve for predicting 5-year survival time; (e) ROC curve for predicting 10-year survival time; (f) Heat map based on the 
correlation of this risk feature with clinical features. **P < 0.01, and ***P < 0.001.
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treatment. The development of specific inhibitors 
of ATG4A and ATG4C may lead to new 
approaches for tumor treatment in the 
future [57].

Some researchers have found that down- 
regulation of ATG5 expression under hypoxic 
conditions can inhibit the expression of EMT mar-
kers N-cadherin and vimentin, thereby inducing 
malignant development of prostate cancer cells 
[58]. Besides, ATG5 can be used as a target of 
lncRNA-ATB to affect the development of hepa-
tocellular carcinoma by affecting autophagy [59]. 
ATG10 is an E2-like enzyme involved in Ub-like 
modification, playing an essential role in the for-
mation of autophagosomes. ATG10 expression is 
considered to be closely related to lymphatic infil-
tration and lymph node metastasis of colorectal 
cancer, and lymphatic infiltration and lymph 
node metastasis can affect the overall survival of 
patients [60–62]. However, in gastric cancer, the 
low expression of ATG10 affects its lymph node 
metastasis [63]. This indicates that ATG10 is 
expressed differently in different types of tumors 

and plays various roles. The specific mechanism 
requires more in-depth study.

Similarly, many studies have shown that regu-
lating the expression level of ATG12 can increase 
tumor cells’ sensitivity to anti-cancer drugs and 
significantly improve the effectiveness of tumor 
treatment [64–66]. Some researchers have used 
the expression level of ATG16L2 to detect the 
response of cells to cisplatin, speculating that it 
may be a biomarker for tumor cells resistant to 
platinum-based drugs [67]. Besides, the abnormal 
activation of ULK1 in non-small cell lung cancer 
can affect the skeletal dynamics of cancer cells and 
release related cell movement effectors, leading to 
distant metastasis [68]. The interaction between 
ATG13 and ULK1 is critical in the biological pro-
cess of autophagy [69]. MAP1LC3C can mediate 
the selective autophagy process of METRTK, 
thereby inhibiting the invasion of cancer cells, 
and may play an essential role in the distant 
metastasis of cancer cells [70]. Some researchers 
have found that GABARAP is abnormally acti-
vated in colorectal cancer tissue, and its 

Figure 7. Analysis of clinical relevance of risk models. (a) Univariate Cox analysis. (b) Multivariate Cox analysis. (c) A new nomogram 
was drawn based on this prognostic risk signature. The value of each variable gets a score on the dot scale axis. The total score can 
be easily calculated by adding up each score and projecting the total score to a lower total score system. We can estimate the risk 
for predicting 5-, 7 – or 10-year survival in KIRC.
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overexpression is positively correlated with the 
malignancy of the tumor, affecting the patient’s 
overall survival [71]. We believe there will be 
more and more drugs targeting autophagy-related 
genes [72]. It can be seen that the 13 target genes 
play various roles in the development of multiple 
tumors. Therefore, these target genes are promis-
ing targets for cancer treatment in the future.

5. Conclusions

In conclusion, in this study, through a series of 
rigorous analyses, we used 13 genes of the autop-
hagy-related genes to construct a new prognostic 
model for KIRC. The AUC value of the 5-year 
ROC curve of this model is 0.738, indicating that it 
can accurately predict the prognosis of KIRC 
patients and is expected to assist doctors in clinical 
diagnosis, decision-making, and monitoring. 
However, the potential molecular mechanism of 
these 13 genes in KIRC requires further study. It is 
undeniable that there are still many shortcomings in 
this study. This study only uses public databases to 
explore the underlying mechanisms of autophagy- 
related genes in cancer, and has not been verified by 
single-center or multi-center clinical data. 
Therefore, in the future, we will continue to explore 
the potential biological role of these key autophagy- 
related genes in KIRC. We also believe that our 
research could provide reliable data for future scien-
tific research on autophagy.
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