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Alzheimer’s disease (AD) is a pervasive neurodegenerative disease that affects millions
worldwide and is most prominently associated with broad cognitive decline, including
language impairment. Picture description tasks are routinely used to monitor language
impairment in AD. Due to the high amount of manual resources needed for an
in-depth analysis of thereby-produced spontaneous speech, advanced natural language
processing (NLP) combined with machine learning (ML) represents a promising
opportunity. In this applied research field though, NLP and ML methodology do
not necessarily ensure robust clinically actionable insights into cognitive language
impairment in AD and additional precautions must be taken to ensure clinical-validity and
generalizability of results. In this study, we add generalizability through multilingual feature
statistics to computational approaches for the detection of language impairment in AD.
We include 154 participants (78 healthy subjects, 76 patients with AD) from two different
languages (106 English speaking and 47 French speaking). Each participant completed
a picture description task, in addition to a battery of neuropsychological tests. Each
response was recorded and manually transcribed. From this, task-specific, semantic,
syntactic and paralinguistic features are extracted using NLP resources. Using inferential
statistics, we determined language features, excluding task specific features, that are
significant in both languages and therefore represent “generalizable” signs for cognitive
language impairment in AD. In a second step, we evaluated all features as well as the
generalizable ones for English, French and both languages in a binary discrimination
ML scenario (AD vs. healthy) using a variety of classifiers. The generalizable language
feature set outperforms the all language feature set in English, French and the multilingual
scenarios. Semantic features are the most generalizable while paralinguistic features
show no overlap between languages. The multilingual model shows an equal distribution
of error in both English and French. By leveraging multilingual statistics combined with
a theory-driven approach, we identify AD-related language impairment that generalizes
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beyond a single corpus or language to model language impairment as a clinically-relevant
cognitive symptom. We find a primary impairment in semantics in addition to mild
syntactic impairment, possibly confounded by additional impaired cognitive functions.

Keywords: Alzheimer’s disease, dementia, spontaneous speech, language impairment, picture description,
natural language processing, explainability, multilingual machine learning

INTRODUCTION

Alzheimer’s disease (AD) is a pervasive neurodegenerative
disease that affect millions worldwide and is the
most recognizable through its primarily cognitive
syndrome—dementia. From 2008 to 2018, over 200 medical
trials failed to develop a cure for AD dementia (Ferreira et al.,
2018) emphasizing that early detection and intervention is still
the best course for managing AD.

AD dementia is most prominently associated with
heterogeneous and broad cognitive impairment; the typical
and earliest-observable hallmarks are impaired memory and
executive functions (Buckner, 2004). However, language
impairments have been reported occurring in preclinical AD
as well as mild, moderate, and severe AD dementia (Kempler,
1995; Klimova et al., 2015) possibly providing a window for
screening, continuous monitoring and disease management
that can help improve quality of life (Taler and Phillips, 2008;
Le et al., 2011; Berisha et al., 2015; Klimova et al., 2015). As
language is a pervasive aspect of daily living, language-based
AD dementia assessment is ecologically valid and, from the
patient perspective, one of the least intrusive ways to assess
symptoms of AD dementia. This situates language impairment
as an interesting behavioral biomarker from both a clinical and
patient perspective (Ferris and Farlow, 2013).

Evidence for language impairment in AD dementia
stems from studies using a variety of assessments ranging
from structured, clinically-validated tasks to unstructured
conversation (for an overview, see Szatloczki et al., 2015). An
example of a structured task would be a naming task where a
person is shown images on cards and asked to name the object.
However, naming tasks do not represent the structure or nuance
of natural language. In comparison, an unstructured clinical
interview between a clinician and patient produces spontaneous
speech in its full variance but is difficult and costly to compare
and evaluate for minimal changes in cognition, including
language, on a qualitative level. Therefore, many reported studies
use a standardized experimental setup to elicit spontaneous
speech from subjects; often, this is done by picture description
tasks (for an overview, see Mueller et al., 2018). In the middle of
this spectrum, the picture description task is a clinically-validated
task where a patient is asked to describe a standardized picture.
This produces spontaneous speech about an anticipated set of
topics that is comparable among populations.

With an emphasis on available picture description data, AD
detection has been a popular field for applied automatic speech
processing and advanced natural language processing (NLP).
The goal of such studies is to ultimately discriminate between
a form of dementia and healthy control subjects (HC). In a

fully automatic system, an audio recording is automatically
transcribed with automatic speech recognition (ASR; König et al.,
2015). This creates two sources of information from the file:
(1) the sound recording; and (2) the text transcription. To
model these sources of information, features are either implicitly
represented (Orimaye et al., 2014) or explicitly engineered to
automate clinical qualitative analysis (Fraser et al., 2016) and
extracted from both components of the task. These features are
then used to train supervised machine learning (ML) classifiers
to discriminated conditions between a pathological patient group
and healthy subjects (Yancheva et al., 2015; Yancheva and
Rudzicz, 2016; Fraser et al., 2019).

These recent computational approaches represent significant
advances for a better understanding of the AD dementia-related
language impairment and including the technical challenge
to efficiently assess spontaneous speech, but we argue that
there are still multiple caveats. With advanced computational
techniques and ML methods, there is an increased complexity
added to understand the classifiers’ decisions and the entailed
clinical assumptions. In other words, good ML performance
alone does not necessarily entail clinical evidence for language
impairment as a cognitive symptom in AD dementia. Additional
methodological precautions must be taken to ensure that
findings are clinically-valid, generalizable and do not over
fit to a single corpus or language. Hence, limitations in
current research have been attributed to lacking standardization
and comparability between diagnostic settings as well as a
growing gulf between how computational features actually model
clinically-observable change (de la Fuente Garcia et al., 2020).
The result being a lack of translation between NLP research and
clinical application.

We state, that a major research gap is present between
the clinical understanding of language impairment (as a
neurocognitive function impairment) apparent in everyday
spontaneous speech and recent NLP techniques used together
with ML for speech-based classification of AD. To overcome
this, we will: (1) investigate automatically extracted NLP features
from spontaneous picture descriptions with respect to their
ability in robustly capturing clinically valid AD-related language
impairment; and (2) train robust ML models capturing cognitive
language impairment in AD with afore-identified generalizable
and explainable NLP features.

BACKGROUND

In order to model language impairment in AD, we first
investigate which subprocess of language are impaired as
defined by clinical literature. Language impairment in AD
dementia is characterized by declining semantic and pragmatic
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processes and reduced syntactic complexity. Semantic processes
refer to the meaning of language. A reduction in semantic
processes is often indicated by difficulty finding a specific
word, loss of comprehension, finding the incorrect word, using
ambiguous referents, creating new words, and loss of verbal
fluency. Pragmatic processes refer to adapting language to a
specific situation. Pragmatic deficits can result in a person
with AD dementia language impairment speaking too loudly,
speaking at in appropriate times, repeating themselves or
digressing from the topic. Syntactic processes are associated
with the underlying structure of language and sometimes
grouped together with grammaticality. In early stages,
syntactic processes and speech processes remain preserved
(Savundranayagam et al., 2005; Ferris and Farlow, 2013;
Klimova et al., 2015). However, complexity of syntax in written
language has been shown to be significantly associated with
cognitive impairment (Aronsson et al., 2020). In addition, ML
classification experiments have identified syntactic impairment
in the AD Dementia groups (Fraser et al., 2016). Beyond
identifying known language impairment, it is crucial to
consider that speech and language processes do not occur
in isolation and are intertwined with other cognitive and
physical processes.

Impaired Language vs. Impaired Speech
Impaired speech is the physical process of speaking involving
the lungs, trachea, vocal chords and mouth whereas impaired
language refers to deficits in the cognitive process of forming
language with structure and meaning. While ML approaches
are a powerful tool to estimate the utility of spontaneous
speech features, interpreting them in a neuropsychological sense
remains challenging. Although speech features are extracted
from spoken language, this does not necessarily entail that
they reflect language as a neurocognitive function as speech is
confounded with multiple neurocognitive processes as well as
gender, age and culture. As a result, not all well discriminating
speech features can be assumed as evidence for the cognitive
aspects of language deficits in AD dementia.

Compound Cognitive Processes and the
Picture Description Task
Cognitive, language, and speech processes are interdependent
employing multiple aspects of cognition: retrieval from semantic
and episodic memory, sustaining and dividing attention for error
monitoring, as well as working memory for syntax production
(Mueller et al., 2018). For instance, inability to recall a specific
word—a semantic deficit—can result in a person with AD not
being able to maintain concentration on the task—a pragmatic
issue (Ferris and Farlow, 2013).

Since spontaneous descriptions of pictures are a compound
cognitive performance of multiple neurocognitive functions and
do not purely represent language impairment, when modeling
impaired language processes embedded in speech, additional
theoretical guidance and architecture within the ML experiments
are needed to interpret speech-based features. It is not safe to
assume that all well-discriminatingML features (in an AD vs. HC
setup) are intuitively explainable, or even relevant, with respect

to underlying cognitive processes. Spontaneous speech from the
picture descriptions task is a compound of cognitive functions
including language. Therefore, careful feature curation is needed
to ensure that features are truly measuring language impairment
and not just task performance.

Natural Language Processing and the
Picture Description Task
Most qualitative analyses of spontaneous speech picture
descriptions try to model cognitive impairment by leveraging
a variety of computationally extracted features. Calz et al.
(2021) reviewed 51 studies for dementia detection from
the very common Cookie Theft Picture Description Task
(CTP; Goodglass et al., 2001), collected and split 87 features
into: rhythmic, acoustic, lexical, morpho-syntactic, and
syntactic subgroups. Fraser et al. (2016) engineered features
and categorized them into: part of speech, syntactic,
grammatical constituency, psycholinguistics, vocabulary
richness, information content, repetitiveness, and acoustic
subgroups. Using factor analysis, they conclude on findings
of semantic impairment, syntactic impairment, information
impairment, and acoustic abnormality. For our analysis, we
build off this finding to create four feature subsets: task-specific,
semantic, syntactic and paralinguistic features (see also Figure 1).
While it is arguably impossible to fully disambiguate each feature
into a single category (Savundranayagam et al., 2005; Ferris
and Farlow, 2013), we argue to evaluate features based on the
following structure.

Task-Specific Features
In clinical practice, the CTP task is scored by counting the
number of unique entities that a person mentions in the picture,
referred to as information units (IUs). The individual counts of
IUs in the CTP task (e.g., the number of times someone says
cookie) are often used in automatic classification scenarios for
cognitive impairment (Zraick et al., 2011; Fraser et al., 2016, 2019;
Eyigoz et al., 2020). However, we argued that these individual
counts are not indicative of semantically-motivated language
impairment but rather represent task-specific performance or
task completion. This is underpinned by the finding that most
of the individual IU count features are not correlated with other
classic psychometric language function assessments (Kavé and
Goral, 2016). Fraser et al. (2016) found that including these
features in ML experiment could be explained by information
impairment as well as semantic impairment and represents a
joint effort of multiple neurocognitive functions. In addition,
IU count-based features are currently recognized as being
task-specific also in state-of-the-art work on this topic (Robin
et al., 2020). Thus, these features are treated as a measurement
of general task performance in this study and not as indications
of language impairment.

Semantic Features
It is generally accepted that one of the earliest characterizable
impairments caused by AD dementia are semantic processes
(Appell et al., 1982; Martin and Fedio, 1983; Bucks et al., 2000;
Savundranayagam et al., 2005; Ferris and Farlow, 2013; Klimova
et al., 2015). When modeling semantics, features are engineered
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FIGURE 1 | A schematic overview of feature kinds that are typically extracted from spontaneous speech picture descriptions. Some of them involve extensive
pre-processing steps such as automatic speech recognition (ASR), part of speech tagging or sentence parsing and additional linguistic resources for calibration,
others not.

to capture what is being said. In the CTP task, the semantics
are constrained to what is happening in the image, allowing
features to be extracted in an automatic and anticipated fashion.
Here, semantic features are defined in the CTP as the high-level
grouping of named IUs, commonly used by clinicians use to
evaluate the task, and not the individual count of each IU. As
an example, the number of times the patient says ‘‘girl’’ is not a
generalizable representation of semantics but the total number of
named IUs in the image can be used to measure ability to explore
the semantic space. It has been shown that semantic measures,
usually implemented in predefined IUs that represent the content
of the to-describe picture, yield across the board good results
in classifying between AD dementia and HC (for a review, see
Mueller et al., 2018). Previous studies have reported that the AD
group reports generic IU features (e.g., girl) without exploring
more specific terms (e.g., sister, daughter; Eyigoz et al., 2020).We
expect semantic impairment to be prevalent and evident between
corpora and languages.

Syntactic Features
In this automatic scenario, syntactic features are engineered
to represent the structure of language. This can manifest in
a quantifiable way such as differences of sentence complexity
or increased use of certain parts of speech. Other studies have
reported significant AD dementia-related language impairments
from picture descriptions as measured by syntactic features
(Lyons et al., 1994; Kempler et al., 1998; Ahmed et al.,
2013; Fraser et al., 2016; Yancheva and Rudzicz, 2016). This
representation of language requires language specific resources
in order to be calculated. We hypothesize these features to be
moderately language dependent but some features to represent
syntactic impairment that overlaps between languages.

Paralinguistic Features
Paralinguistic features—sometimes also referred to as acoustic,
audio or speech features—are specifically appealing for
automated speech analysis as they require minimal to no
pre-processing and in theory capture the full variance of the
acoustic signal and therefore the pathological speech behavior.
The calculation of the features is often borrowed and repurposed
from ASR systems, where the measures are done on the
physical representation of the speech signal. There are multiple
examples that successfully use paralinguistic features extracted
from spontaneous speech picture descriptions to effectively
discriminate between dementia and HC (Pakhomov et al., 2010;
Satt et al., 2014; König et al., 2015; Fraser et al., 2016, 2019;
Yancheva and Rudzicz, 2016). Due to the limited involvement of
error-prone pre-processing steps (e.g., ASR to derive transcripts
for further linguistic analysis) the use of paralinguistic features
is often regarded as particularly robust and generalizable (Satt
et al., 2014). In contrast, other studies found that paralinguistic
features are particularly bad at modeling longitudinal trajectory
of dementia or predict established clinical staging scores
(Yancheva et al., 2015). From a theoretical point of view, we
argue that paralinguistic features have great potential to model
differences between AD dementia and HC within a certain data
set but at the same time bear an equally great risk of over fitting
to the particular language or data set. In terms of monitoring
language impairment, it is very unlikely a clean proxy for
language impairment in AD dementia can be obtained from
speech features but at most for other cognitive (attention or
executive functions), physical (lung capacity, vocal tract length)
or pathological correlates (affective symptoms) associated with
AD dementia (Alario et al., 2006; Baese-Berk and Goldrick, 2009;
König et al., 2019).
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MATERIALS AND METHODS

To investigate explainable and generalizable NLP approaches
for automatically classifying between AD related language
impairment and healthy controls, implemented the following
three-step methodology:

1. First, a multilingual corpus of English and French
spontaneous speech picture descriptions is introduced.
Then, features are engineered and sorted into subgroups
(task-specific, semantic, syntactic, paralinguistic) based on
the aforementioned theoretical considerations. For each
corpus, an identical set of features are extracted.

2. In a second step, taking advantage of the multilingual
corpora, an inspection of cross-language correlations and
statistical significance testing is done. Following the idea
that well-differentiating features that model generalizable
language impairment as a neurocognitive construct should be
significant in both languages.

3. To arrive at explainable and generalizable classification
results, ML experiments are conducted separately in the two
different languages and in a multilingual setting. For each
setting, a classification is done among all semantic, syntactic
and paralinguistic features. This is compared to classification
results where only ‘‘generalizable language’’ features are used.
Generalizable language features are defined as semantic,
syntactic and paralinguistics features that are significant in
both languages.

By leveraging a multilingual approach, we aim to identify
AD related language impairment that generalizes beyond a
single corpus or language and models the processes of clinically
observable language impairment.

Participants
In this article we include 154 participants (78 healthy subjects)
from two different languages (106 English speaking and
47 French speaking) drawn from two different available corpora
(English, 2020 ADReSS INTERSPEECH challenge and French,
EIT-Digital ELEMENT project); for a comprehensive overview
of all demographics see Table 1.

The English ADReSS sample (Luz et al., 2020) is a balanced
(age- and gender-matched) subset of English DementiaBank
(Macwhinney et al., 2011) of 53 HC and 54 confirmed
AD patients. There are a total of 106 normalized recording
and manually annotated transcripts of the cookie theft
picture description task. This subset is derived from the
DementiaBank corpus, which is part of the larger TalkBank
project (Macwhinney et al., 2011). Patients were assessed between
1983 and 1988 as part of the Alzheimer Research Program at the
University of Pittsburgh (for a detailed description of the cohort
see Becker et al., 1994). Participants were referred directly from
the Benedum Geriatric Center at the University of Pittsburgh
Medical Center, and others were recruited through the Allegheny
County Medical Society, local neurologists and psychiatrists, and
public service messages on local media. Inclusion criteria were
as follows: above 44 years of age, at least 7 years of education,
no history of nervous system disorders or be taking neuroleptic

medication, initial Mini-Mental State Exam (MMSE) score of
10 or greater and had to be able to give informed consent.
Participants with dementia had a relative or caregiver acting
as an informant. Participants received neuropsychological and
physical assessment and were assigned to the ‘‘patient’’ group
primarily based on a history of cognitive and functional decline,
and the results of a mental status examination. In 1992—after the
end of the study—the diagnosis of each patient was confirmed
through clinical record and if available autopsy.

The French ELEMENT sample (König et al., 2018) contains
47 participants that completed the cookie theft picture
description task. The initial participant pool was 179 subjects
but only 47 participants were given the CPT task while
the others were given a different spontaneous speech picture
description and therefore are not considered in this study.
Participants were recruited within the framework of a clinical
study carried out for the EIT-Digital project ELEMENT, speech
recordings were conducted at the Memory Clinic located at
the Institut Claude Pompidou and the University Hospital
in Nice, France. The Nice Ethics Committee approved the
study. Each participant gave informed consent before the
assessment. Speech recordings of participants were collected
using an automated recording app which was installed on an
iPad. The application was provided by researchers from the
University of Toronto, Canada, and the company Winterlight
Labs. Each participant underwent the standardized process in
FrenchMemory clinics. After an initial medical consultation with
a geriatrician, neurologist or psychiatrist, a neuropsychological
assessment was performed. Following this, participants were
categorized into different groups: control participants (HC)
that were diagnosed as cognitively healthy after the clinical
consultation and patients that were diagnosed as suffering from
Alzheimer’s disease and related disorders (AD). For the AD,
the diagnosis was determined using the ICD-10 classification of
mental and behavioral disorders (World Health Organization,
1992). Participants were excluded if they were not native
speakers or had any major hearing or language problems, history
of head trauma, loss of consciousness, addiction including
alcoholism, psychotic or aberrant motor behavior or were
prescribed medication influencing psychomotor skills. Among
the 47 participants that performed the CPT, 22 participants were
diagnosed with Alzheimer’s disease or related dementias (AD)
and 25 participants with subjective memory complaints but no
detectable dementia. A Kruskal–Wallis H test revealed significant
age differences (χ2

(1) = 9.79, p< 0.01) but no significant difference
for education level.

Spontaneous Speech Procedure
In both samples (DementiaBank subset and Dem@Care subset)
participants completed a comprehensive protocol of assessments
of which for this research only the recordings of the Cookie Theft
Picture description task are relevant. In both samples, subjects
provided informed consent to be recorded while describing the
‘‘Cookie Theft’’ picture from the Boston Diagnostic Aphasia
Examination (Goodglass and Kaplan, 1983).

In this task, participants are shown a black and white image
of a kitchen with multiple on-going antics while being instructed
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TABLE 1 | Sample characteristics for English and French samples.

Language Diagnosis N (M/F) Age Education MMSE

English N = 106 HC 52 (23/29) 66.13 (6.52) - 29.10 (1.00)
AD 54 (24/30) 66.76 (6.61) - 11.06 (5.49)

French N = 47 HC 25 (6/19) 75.40 (7.00) 12.80 (2.08) 28.56 (1.42)
AD 22 (9/13) 81.59 (4.52) 10.91 (3.94) 18.36 (4.29)

Age in years (SD), Education in years (SD) and score on MMSE cognitive screening with a max score of 30 (SD). Abbreviations: HC, Healthy Controls; AD, Alzheimer’s disease; MMSE,
Mini Mental State Examination.

to ‘‘Tell me everything you see going on in this picture.’’ Testing
personnel generally is not meant to provide any feedback during
the descriptions of the participants. However, in some cases
there is interaction recorded if for example the initial response
of the patient is unreasonably brief, such as only a single
sentence. Recordings had amean duration of 62.63 s (SD = 35.83)
sometimes including prompts from the examiner. The English
corpus has an average duration of 70.92 s (SD = 36.92) and the
French corpus has an average duration of 43.95 s (SD = 24.82).
All recordings are transcribed according to CHAT protocol
(Macwhinney, 1991).

Feature Engineering
For each of the four categories defined previously (semantics,
syntax, task-specific, and paralinguistic) features were engineered
and then calculated using a program written in the Python
programming language (Van Rossum and Drake, 2009; Version
3.7). The following section describes the computation of the
features by sub-group. If a language-specific resource is used, the
equivalent resource is used for each language in the data.

Task-Specific Features (N = 107)
Croisile et al. (1996) defined a set of general IUs that appear in
the CTP task (e.g., girl, boy) and these IUs are mapped to a larger
set of synonymous keywords (e.g., brother, girl). For instance, the
boy in the picture may also be referred to as brother or son. This
is done for the following IUs: boy, girl, woman, kitchen, exterior,
cookie, jar, stool, sink, plate, dishcloth, water, window, cupboard,
dish, curtain. A table of the mappings for each IU category to its
keywords is provided in the Supplementary Materials for both
French and English. For each IU, three features are computed:
a binary value to see if the IU is mentioned, the count of times
the IU is mentioned, and the ratio of the IU to all mentioned
IUs. For spatial features, the CTP image is divided into different
subgroups1. Three divisions of the image are considered: halves,
quadrants and vertical stripes. Halves is where IUs are defined as
being on the left side or right side. Quadrants breaks the image
into four equal squares, north-east, north-west, south-east and
south-west. Vertical stripes cut the image vertically into most-
left, center-left, center-right and most-right (Goodglass and
Kaplan, 1972). For each of the subsections the following features
are calculated: word count, type-to-token ratio, keyword-to-
word ratio, and percent uttered. For the division in halves, the
number of switches between the sides is considered.

1Implementation based on https://github.com/vmasrani/dementia_classifier

Semantic Features (N = 20)
Some semantic features utilize task specific resources, but model
semantics by combining the defined IUs—and their mapped
keywords—into refined, global semantic features rather than
counting individual IUs. A table with the mappings between
the IU and the keywords that make up the IU are provided
in the Supplementary Materials for both English and French.
Semantic features calculated with the IUs and keywordmappings
are defined in Table 2. In addition to the features in the table,
semantic features that do not rely on the IU definitions are
also calculated. The Word Frequency package for python (Speer
et al., 2018) is used to determine the mean, median, and max
word frequency of all words as well as mentioned keywords. In
addition, the mean, median and max word length is calculated
for all words as well as the keywords. To gauge lexical richness
of the responses, the type-to-token ratio (TTR) is calculated
by dividing all unique words said by the total word count.
The Moving-Average-Type-Token Ratio (MATTR) is calculated
using a fixed window size of 10. For this measurement, a ratio of
the number of distinct words in the sliding window is divided
by the total count of words. For example, the TTR for words
1–10 is estimated followed by the TTR for words 2–11, then 3–12,
and so on. The resulting TTRs are averaged, the estimated TTRs
are averaged. Conceptually, the moving-average type–token ratio
MATTR (Covington and Mcfall, 2010) calculates the TTR while
reducing the influence that the length of the text has on
the measure.

Syntactic Features (N = 41)
To evaluate syntax, the mean words per sentence, word count
and number of sentences are calculated. In addition, Spacy
models are used to calculate the mean dependency length,
median dependency length, max dependency length (Honnibal
and Montani, 2017)2. Using Spacy language models, each
participant’s response is part-of-speech tagged. The count of
each tag, as well as the ratio of the POS tag count to total
word count are computed. The following tags are considered:
Adjective (ADJ), Adposition (ADP), Adverb (ADV), Auxiliary
(AUX), Coordination Conjunction (CCONJ), Determiner
(DET), Interjection (INTJ), Noun (NOUN), Numeral (NUM),
Particle (PART), Pronoun (PRON), Proper Noun (PROPN),
Punctuation (PUNCT), Subordinating Conjunction (SCONJ),
Symbol (SYM), Verb (VERB, and Other (X). Specific ratios are
calculated between nouns (NOUN) and verbs (VERB), pronouns
(PRON) and nouns (NOUN), and determiners (DET) and nouns

2https://universaldependencies.org/u/pos/
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TABLE 2 | Explanation of semantic features.

Example: There is a boy. The boy is a brother. He is stealing a cookie. The sister is watching.

Feature name Explanation Example

Number of Unique IU (num_unique_IU) The number of unique IU mentioned
Higher means they mentioned more IU in the picture

3, boy and cookie, sister

Number of Unique Keywords
(num_unique_keywords)

The number of unique keywords mention
Higher means they either used more IU and/or used more lexical
variety to describe the IU.

4, boy, brother, sister and cookie

Number of Total keywords
(num_total_keywords)

Counts all mentions of the IU from the mapped keywords.
Higher means they said more overall about the image.

5, boy, boy, brother, cookie, sister

Unique IU Density (unique_IU_density) The number of unique IU (num_unique_IU) mentioned divided by the
word count

num_unique_IU = 3;
Word count = 18
3/18 = 0.1667

Total IU Density (total_IU_density) Number of total IU (num_total_IU) divided by the word count. num_total_IU = 5;
Word count = 18
5/18 = 0.2778

Keyword to non-keyword ratio
(keyword_to_non_keyword_ratio)

num total keywords
word count − num total keywords

num_total_keywords = 5;
Word count = 18
5/(18–5) = 0.3846

Unique IU efficiency
(unique_IU_efficiency)

The number of unique keywords (num_unique_keywords) divided
by the word count.

num_unique_keywords = 4;
Word count = 18
4/18 = 0.22

percentage of IU mentioned
(percentage_of_keywords_mentioned)

The number of unique IU (num_unique_IU) mentioned divided by the
total count of all IU words available in the image.

num_unique_IU = 3, all_IU_words = 16
3/16 = 0.1875

Keyword Type Token Ratio (keyword_TTR) The number of unique keywords (num_unique_keywords) divided
by the number of total IU (num_total_IU) mentioned.

num_unique_keywords = 4;
num_total_IU = 5
4/5 = 0.8

total IU efficiency
(total_IU_efficiency)

Number of total IU (num_total_IU) divided by the duration in
seconds of the participant’s response.

num_total_IU = 5; duration = 15 s
5/15 = 0.33

unique IU efficiency
(unique_IU_efficiency)

The number of unique IU (num_unique_IU) divided by the duration in
seconds of the participant’s response.

num_unique_IU = 3; duration = 15 s
3/15 = 0.2

Feature name contains the name of the feature in the text and the name of each feature use in images in parentheses. The explanation column explains how the feature is calculated.
At the top of the table there is an example which is used in the example column to explain how each feature is calculated.

(NOUN). The open (ADJ, ADV, INTJ, NOUN, PROPN, VERB)
to closed (ADP, AUX, CON, DET, NUM, PART, PRON) class
ratio is also computed.

Paralinguistic Features (N = 208)
To extract paralinguistic features from the normalized wav files
free, open-source python libraries, and praat (Boersma and
Weenink, 2009) are used.

To characterize the temporal and content features of speech,
the My Voice Analysis package3 is used. This package is
developed by the Sab-AI lab in Japan to develop acoustic models
of linguistics. This package interfaces the speech analysis research
tool praat (Boersma and Weenink, 2009) with python, allowing
the following features to be extracted from the wav recording:
speech rate, syllable count, rate of articulation, speaking duration,
total duration, pronunciation posteriori probability percentage
score, and ratio of speaking to non-speaking. This package is
also used to extract some prosodic features, specifically the
mean, standard deviation, minimum, maximum, upper and
lower quartile of the F0 value, or what is sometimes referred to
as the pitch, in Hertz (Hz).

To represent the sound wave itself, features are borrowed
from the ASR community using the Python Speech Features

3https://pypi.org/project/my-voice-analysis/

library. The original sound recording undergoes a series of
transformations that yield a representation of the sound called
the Mel Frequency Cepstrum (MFC). The MFC describes two
crucial points of information from the voice to human anatomy;
the first is the source (e.g., the lungs) and the second is the filter
(e.g., place of articulation). The first transformation separates
the source and filter from the signal and then maps this to the
Mel scale which approximates the sensitivity of the human ear
(Fraser et al., 2018). Typically, up to the first 14 coefficients
are used as they represent the lower range frequencies of the
vocal tract and yield most of the information (Hernández-
Domínguez et al., 2018). This has been shown to be effective at
identifying AD patients in previous literature (Dessouky et al.,
2014; Rudzicz et al., 2014; Satt et al., 2014; Fraser et al., 2018;
Panyavaraporn and Paramate, 2018; de la Fuente Garcia et al.,
2020; Meghanani and Ramakrishnan, 2021). From this new
representation, the first 14 coefficients of the MFC are extracted
and the mean, variance, skewness and kurtosis are calculated
for the energy (static coefficient), velocity (first differential), and
acceleration (second differential). These are also calculated for
the velocity and acceleration, where velocity is the difference
between consecutive time steps, and acceleration is the difference
between consecutive time steps for each velocity. Additionally,
the mean, maximum, minimum and standard deviation of the
root mean square value (RMS), centroid, bandwidth, flatness,

Frontiers in Aging Neuroscience | www.frontiersin.org 7 May 2021 | Volume 13 | Article 642033

https://pypi.org/project/my-voice-analysis/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Lindsay et al. Generalizable Language Impairment in AD

zero crossing rate (ZCR), flatness, loudness, and flux of the
spectrogram are calculated with the Librosa4 package.

Inferential Statistical Analysis
After extracting identical feature sets from both corpora, features
are evaluated with regard to their significance in differentiating
between the two groups (AD and HC) using non-parametric
group comparison and correlation analysis.

Significance Testing
For group comparisons, a non-parametric Kruskal–WallisH-test
for significance is done for each feature to test for significant
group differences between the HC and AD samples. Due to
the number of performed significance tests, we also report a
Bonferroni adjusted probability. This is done separately for each
language, meaning each feature has four significance values:
English p-value, English adjusted p-value, French p-value, and
French adjusted p-value. Significance was set at p< 0.05.

Correlation Analysis
Correlation analysis was used to arrive at a continuous numeric
variable describing the ability of a feature in discriminating
between AD and HC (AD/HC × feature value) which is at the
same time comparable between both languages/samples; this is
mainly relevant for plotting the discriminative power of feature
in both languages and better visualizing the generalizability of
the extracted features. For correlation values, a point-biserial
correlation is calculated between each feature and the nominal
group condition.

Machine Learning Experiments
For all ML experiments, we investigate three classifiers: a classic
logistic regression (LR) with an L2 regularization, a Support
Vector Machine Classifier (SVM), and a simple neural approach
with a multilayer Perceptron (MLP) using a logistic activation
function and the regularization term (alpha) set to 0.01. All
other parameters are left at their default setting. Due to the
small size of the data sets in this article, we opted to maximize
the available data using leave one out cross validation. For
this method, one sample is held for testing and all other data
points are used for training. This is repeated so that every
sample in the data has been held out one time. While leave-
pair-out cross validation is considered to be a less biased
approach for binary classification because it exhaustively tries
every possible combination, leave-one-out cross validation is a
common training-testing split in this line of research (Cohen and
Pakhomov, 2020; de la Fuente Garcia et al., 2020; Luz et al., 2020).
Even on very small datasets, leave-pair-out cross validation is
computationally expensive (Maleki et al., 2020). In order to keep
our work comparable with prior and future studies, we opted
to use leave one out cross validation as the best method for
maximizing the available data while reducing training bias and
maintaining reproducibility (Pahikkala et al., 2008; Fraser et al.,
2019; Maleki et al., 2020).

4https://github.com/librosa/librosa

Reported scores are the average across all iterations of the
classification experiment. All ML experiments are implemented
using the python library, scikit-learn5 (Pedregosa et al., 2011).

Selecting Generalizable Features
To determine which features capture language impairment that is
not corpus-specific, the uncorrected Kruskal–Wallis significance
testing described previously in statistical analysis (‘‘Significance
Testing’’ section) is used. Features are selected from each
subgroup if they were found to be significant (p < 0.05)
in both French and English and added to the ‘‘generalizable
language’’ feature set. Task-specific features are excluded. The
‘‘generalizable language’’ features are listed in Table 3.

Experiment Scenarios
Thus far, we have presented two datasets, French and English
(‘‘Participants’’ section, Table 1). By concatenating these
two datasets, we generate a third multilingual dataset. In
addition, two feature groupings have been proposed; Language
features defined as all features in the semantic, syntactic and
paralinguistic features [for reference see ‘‘Semantic Features
(N = 20),’’ ‘‘Syntactic Features (N = 41)’’ and ‘‘Paralinguistic
Features (N = 208)’’ sections, and Figure 1] and a subset of
these features that are considered to be the generalizable language
feature set (‘‘Selecting Generalizable Features’’ section).

To investigate the performance of the generalizable language
feature set, six experimental scenarios are conducted in a
binary classification scenario (HC vs. AD). For the first
three experiments, English, French and multilingual models
are trained using all language features. For the next three
experiments, English, French and multilingual models are
trained using the generalizable language features. We then
compare the performance of the language feature set and the
generalizable language feature set to see if the generalizable
features help or hurt classification performance.

Establishing a Baseline
To relate these experiments to previous work, we train a baseline
model that uses all feature subgroups (semantic, syntactic,
task-specific and paralinguistic) in a classification with the
previously described English dataset. This situates our methods
and results in comparison to the recent ADReSS challenge
at Interspeech 2020. The goal of this challenge was to use
spontaneous speech picture descriptions to differentiate between
AD and HC.

In addition to the experimental scenarios and baseline, we
create a baseline classification experiment using only age to
consider the affects that the unmatched French population has
on the multilingual ML experiment.

Evaluation
For classification performance, Area Under the Receiver
Operator Curve (AUC) is reported for each experiment
scenario described in ‘‘Experiment Scenarios’’ section. Confusion
matrices (Bateman et al., 2012; König et al., 2018) are reported for
the multilingual model with the generalizable language feature
set. A matrix is reported for the overall classification and then

5scikit-learn version 0.23.2
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TABLE 3 | Statistics as per feature set and language.

Semantic features

English French

Feature rPB mHC mAD χ2 p pcorr. rPB mHC mAD χ2 p pcorr.

keyword_to_non_keyword_ratio −0.43 0.16 0.11 19.3 ∗∗∗ ∗∗∗
−0.42 0.15 0.11 8.1 ∗∗ 0.10

max_word_frequency_IU −0.27 0.0003 0.0003 7.5 ∗∗∗ 0.13 −0.34 0.0003 0.0002 5.3 ∗ 0.47
mean_word_frequency_all −0.37 0.0089 0.0072 14.7 ∗∗∗ ∗∗∗

−0.38 0.0075 0.0066 6.8 ∗∗ 0.20
num_unique_IU −0.60 10.94 6.87 37.8 ∗∗∗ ∗∗∗

−0.64 10.24 5.50 18.6 ∗∗∗ ∗∗∗

num_unique_keywords −0.60 11.83 7.26 37.3 ∗∗∗ ∗∗∗
−0.60 11.40 5.73 16.6 ∗∗∗ ∗∗

percentage_of_keywords_mentioned −0.60 0.10 0.06 37.3 ∗∗∗ ∗∗∗
−0.60 0.07 0.04 16.6 ∗∗∗ ∗∗

total_IU_density −0.42 0.14 0.10 18.7 ∗∗∗ ∗∗∗
−0.36 0.14 0.11 5.9 ∗∗ 0.34

total_IU_efficiency −0.54 0.26 0.16 30.2 ∗∗∗ ∗∗∗
−0.46 0.34 0.21 9.8 ∗∗ ∗

num_total_keywords −0.43 15.42 10.46 19.3 ∗∗∗ ∗∗∗
−0.57 13.44 6.41 15.1 ∗∗∗ ∗∗

unique_IU efficiency −0.56 0.18 0.10 32.4 ∗∗∗ ∗∗∗
−0.40 0.27 0.17 7.2 ∗∗ 0.16

unique_IU ratio −0.45 0.10 0.07 21.2 ∗∗∗ ∗∗∗
−0.34 0.11 0.09 5.5 ∗ 0.43

Syntactic features

English French

Feature rPB mHC mAD χ2 p pcorr. rPB mHC mAD χ2 p pcorr.

ADP_count −0.28 7.83 5.39 8.0 ∗∗ 0.20 −0.50 14.44 6.95 11.4 ∗∗∗ ∗

ADP_ratio −0.34 0.06 0.05 12.3 ∗∗∗ ∗
−0.51 0.13 0.09 11.9 ∗∗∗ ∗

AUX_ratio −0.35 0.10 0.09 12.7 ∗∗∗ ∗ 0.30 0.04 0.06 4.1 ∗ 1.00
DET_count −0.26 17.35 13.52 7.3 ∗∗ 0.31 −0.45 17.72 9.95 9.4 ∗∗ 0.09
DET_ratio −0.43 0.15 0.12 19.3 ∗∗∗ ∗∗∗

−0.32 0.17 0.14 4.7 ∗ 1.00
NOUN_count −0.34 21.12 15.59 11.9 ∗∗∗ ∗

−0.49 20.76 11.09 11.0 ∗∗∗ ∗

NOUN_ratio −0.48 0.18 0.14 23.8 ∗∗∗ ∗∗∗
−0.38 0.19 0.15 6.7 ∗∗ 0.42

PRON_ratio 0.25 0.07 0.09 6.4 ∗ 0.51 0.51 0.11 0.18 12.1 ∗∗∗ ∗

PUNCT_count 0.21 15.15 20.69 4.7 ∗ 1.00 −0.38 1.06 0.32 6.5 ∗ 0.47
PUNCT_ratio 0.36 0.13 0.18 13.8 ∗∗∗ ∗∗

−0.34 0.01 0.00 5.4 ∗ 0.91

Paralinguistic features

English French

Feature rPB mHC mAD χ2 p pcorr. rPB mHC mAD χ2 p pcorr.

bandwidth_mean 0.22 2,022.85 2,153.46 5.0 ∗ 1.00 0.32 2,176.25 2,323.75 4.8 ∗ 1.00
energy_skewness 0.23 0.17 0.32 5.4 ∗ 1.00 0.47 −0.26 0.49 10.4 ∗∗ 0.26
mfcc1_mean −0.20 −1.87 −4.43 4.4 ∗ 1.00 −0.36 −5.14 −7.87 6.0 ∗ 1.00
mfcc1_skewness 0.23 0.19 0.48 5.8 ∗ 1.00 0.44 −0.31 0.12 8.8 ∗∗ 0.63
mfcc10_kurtosis 0.23 0.73 1.00 5.5 ∗ 1.00 0.37 0.40 0.67 6.4 ∗ 1.00
mfcc4_kurtosis 0.22 0.92 1.47 4.9 ∗ 1.00 0.41 0.51 1.02 7.7 ∗∗ 1.00
normalized_loudness_std −0.34 0.20 0.18 11.8 ∗∗∗ 0.12 −0.56 0.23 0.20 14.4 ∗∗∗ ∗

ratio_speaking −0.27 0.46 0.37 7.6 ∗∗ 1.00 −0.57 0.64 0.48 15.2 ∗∗∗ ∗

speech_rate −0.28 1.92 1.41 8.5 ∗∗ 0.73 −0.47 3.12 2.32 10.2 ∗∗∗ 0.28

Point-biserial correlation coefficient rPB, correlating each feature with the nominal group variable (AD, HC), feature means for HC and AD, χ2 value of the non-parametric Kruskal–Wallis
H-test for group differences between AD and HC, p-value and Bonferroni-corrected p-value. Significances: ∗∗∗ <0.001, ∗∗ <0.01, ∗ <0.05. Feature names in Bold indicate that they
are significant after Bonferroni-correction in both languages.

the error is broken down by individual language to investigate
if the multilingually trained classifier performs equally in
both languages.

RESULTS

Results are reported from the two methodological scenarios:
inferential statistical analysis and ML experiments.

Inferential Statistical Analysis
Comparing the overall correlation and significance trends in
Figures 2, 3, semantic and task-specific features display similar
patterns. In general, these features are negatively correlated in
both French and English where AD has lower averages than

healthy controls. For syntactic and paralinguistic features, both
negative and positive correlations are observed. Paralinguistic
features show the most language-specific behaviors, where a
mild language preference can also be seen in syntactic features,
indicated by points that are far from the dashed line.

Following our above-introduced feature categories, we
evaluated statistical significance in differentiating between both
groups, AD and HC. Of all features calculated, 30% of task-
specific, 28% semantic, 39% syntactic features and 65% of
paralinguistics features are not significant in either French or
English before significance correction. Before correction, 43%
of task-specific, 52% of semantic, 24% of syntactic, and 4%
of paralinguistic features of the initially extracted features are
significant in both French and English (see also Table 3).
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FIGURE 2 | Points are plotted by correlation values (point-biserial correlation coefficient rPB, correlating the feature with the group AD vs. HC) with French on the
Y-axis and English on the X-axis for each feature subgroup. The significance value (as by Kruskal–Wallis non-corrected significance test p < 0.05) is visualized by
point color for French and point size for English. Points closer to the dashed line perform equally well in both languages. This figure contains all features that are
significant in EITHER French or English, not necessarily both.

However, due to the large amount features tested (Ntotal = 377),
after Bonferroni correction only a fraction of the features remain
significant in both languages; 9% task-specific, 24% of semantic,
5% syntactic, and 0% paralinguistic.

Task-Specific Features
Among 107 calculated task-specific features, 32 features are
not significant in either French or English, roughly 30%. With
significance correction, 75 features are significant in either
French or English; 46 features in Both, 20 features in French-
only, and nine features in English-only. After significance
correction, 10 features remain significant for both languages,
approximately 9% of all task-specific features.

Semantic Features
Among 21 calculated features, 15 features are significant in either
French or English; two features in French-only, two features
in English-only and 11 features in both. While the semantic
subgroup has the least calculated features, it has the highest
percentage of significant features (approximately 24%) after
Bonferroni correction: number of unique IU, number of unique
keywords, percentage of keywordsmentioned, total IU efficiency,

and number of total keywords. For all the significant features in
English and French, the AD condition shows lower averages in
comparison to the control group (HC).

Syntactic Features
In either language, 25 of the 41 syntactic features are significant
in either French or English; 10 features in both, two features in
French-only, and 13 features in English-only. After significance
correction, noun count and adposition ratio are significant in
both languages. For both features, the AD group shows lower
averages than healthy controls.

Paralinguistic Features
In either French or English, 72 features among 208 calculated
paralinguistic features are significant: nine features in both,
45 features in French-only, 18 features in English-only After
significance correction, no features are significant in English and
two features are significant in French; ratio of speaking to the
full sample duration and the standard deviation of normalized
loudness. In both cases, the AD group shows lower averages in
comparison to the control averages.
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FIGURE 3 | Points are plotted by correlation values (point-biserial correlation coefficient rPB, correlating the feature with the group AD vs. HC) with French on the
Y-axis and English on the X-axis for each feature subgroup. The significance value (as by Kruskal–Wallis non-corrected significance test p < 0.05) is visualized by
point color for French and point size for English. Points closer to the dashed line perform equally well in both languages. This figure contains all features that are
significant in BOTH French AND English. Feature labels are added to each point.

In the paralinguistic subplot of Figure 2, features are highly
polarized as shown by the clustering of points on either
side of the dashed line, indicating very little feature overlap
between the languages with weaker correlations—especially for
English—in comparison to the other feature subsets. By looking
at Figure 3 where features are significant in English and French,
lower correlations and the features that are highly polarizes
towards one language do not appear in the sub-graph. Among
208 features, only nine features are significant, before correction,
and the remaining features are more highly correlated with
French than English.

Machine Learning Experiments
Machine learning model performances are visualized for the
baseline and experimental scenarios in Figure 4. Not included in
the graph is the addition classifier for age. All the multilingual
experiments were below chance (AUC = 0.5) for age: LR had
an AUC of 0.49, SVM had an AUC of 0.38, and the MLP
had an AUC of 0.40. This leads us to believe that age is
not a good distinguisher between the HC and AD groups for

the generalizable experiments. However, it does not eliminate
age as a factor from this research and future experiments
studies should replicate these findings with age, gender and
education balanced data sets to control for possible external
conflicting factors.

For the experiments with the LR, all of themodels trained with
generalizable language features outperform both their respective
All language feature models and the English all features baseline.
The baseline scenario, the English model with all features, is
shown in a solid gray and performs with an AUC of 0.7. English
gains 18 points, French gains 23 points, multilingual gains
14 points of AUC over their ALL models. The highest AUC score
is nearly tied for the English selected with an AUC of 0.87 and
both selected model with an AUC of 0.86. The French select is
close in performance with an AUC of 0.85.

For experiments using the SVM, the multilingual
generalizable model out-performs all other models reaching
an AUC of 0.86. This model improves 10% over the all language
feature model. In both English and French, the single language
generalizable models outperform their respective all language
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FIGURE 4 | Area Under Curve (AUC) performance results of the machine
learning (ML) experiments. English and French for the respective samples
separately, multilingual is for the joint classification, multilingual significance
testing for feature selection (Generalizable) or using all features (ALL) and
using only semantic, syntactic, and paralinguistic features (Language
Features). The gray dashed line indicates chance performance of the models.
The English (blue), French (orange), and Both (green) models trained with
semantic, syntactic, and paralinguistic features are shown with a dashed line.
The English, French and Multilingual models trained with the significant,
generalizable features in English and French are indicated by the solid lines in
the same color, respectively.

feature models. This is more so the case for French where there
is an improvement of 15 points, whereas English only improves
by 1 point.

For the experiments using the MLP, we see a minor
performance drop between the model with ALL baseline features
and only generalizable language features. However, in both
English and French we see a large performance increase when
using only the generalizable features, with both the French and
English models reaching an AUC of 0.85. For the multilingual
MLP model, we see a mirrored pattern with the LR but

slightly lower performance. Overall, we see a 23-point AUC
increase when using the generalizable language features in the
multilingual scenario, yielding a 0.84 AUC.

We see a similar pattern of error for both the LR, SVM,
and MLP models. For the multilingual LR model trained
with generalizable language features, the overall error rate is
22.22% and English (22.64%) and French (21.28%) exhibit
roughly the same level of error. For the SVM, a slightly
lower error of 20.26% is found with a similar split of
error between English (20.75%) and French (19.15%). The
same result is achieved using the MLP, with a 21.56%
overall error and a slightly high, although still comparable,
level of the error in both languages (20.75%) English and
(23.40%) French.

For both model types, the number of false positives—the case
of classifying a control as AD—by language in the multilingual
select model make up roughly 30% for French error (27%
for the MLP) and 54% for English (59% for the MLP) error.
In both models, the English samples have a balanced split of
error, but the French model suffers from elevated false positive
error. However, this is not the case for the SVM where French
(43%) and English (47%) are more balanced in their false
positive rate.

DISCUSSION

This article addresses the research gap between the clinical
understanding of language impairment (as a neurocognitive
functions impairment) apparent in everyday spontaneous speech
and recent NLP techniques used together with ML for speech-
based classification of AD against healthy control subjects.
We propose to: (1) gain insights into AD-related language
impairment and its cognitive sub-processes through multilingual
NLP feature statistics (generalizing beyond one single language
as a cultural phenomenon); and (2) train robust ML models
capturing cognitive language impairment in AD with these
generalizable features and compare to other methods on the
same dataset.

Generalizable NLP Features of Language
Impairment in AD
Semantic Features
While the semantic subgroup consists of the lowest number of
features, it has the largest number of significant features after
Bonferroni correction: number of unique IU, number of unique
keywords, percentage of keywordsmentioned, total IU efficiency,
and number of total keywords. For all the significant features in
English and French, the AD condition shows lower averages in
comparison to the control group (HC).

Lower averages in number of unique IU, number of unique
keywords, number of total keywords, and percentage of keywords
mentioned indicates reduced lexical variety and exploration of
the available semantic space by the AD group, which is indicative
of impaired semantic processes. In addition, there is a reduced
semantic efficiency where the AD group is exploring fewer
IUs in the same amount of time as controls. For AD patients
we found lower overall information efficiency of the uttered

Frontiers in Aging Neuroscience | www.frontiersin.org 12 May 2021 | Volume 13 | Article 642033

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Lindsay et al. Generalizable Language Impairment in AD

descriptions (e.g., total IU density) as well as lower lexical variety
with which AD patients described and referred to different
IUs in the picture (ratio of unique keywords to all keywords
mentioned) in both languages. This is in line with earlier
work that finds a decreased semantic efficiency (semantically
empty speech) in AD patients’ spontaneous speech from picture
descriptions (Ahmed et al., 2013; Fraser et al., 2016) but also
from other language production tasks (Snowdon et al., 1996;
Le et al., 2011).

Overall, semantic features indicate generalizable semantic
impairment in AD. Of the feature subgroups, semantic
featuresgeneralize the best between the languages, supporting the
argument that these features or not task-specific but measure
more general semantic abilities. The AD populations, regardless
of language, show deficits in semantic scores compare to the
health control group.

Syntactic Features
Syntactic features show generally weaker correlations with the
pathological state (AD vs. HC) than semantic features. In
comparison to the semantic features, syntactic features display
a trend of mild language specific behavior (compare also the
distance from the dashed line as well as the color/French or
size/English of points in Figure 2). An interesting finding is
the opposing correlation trends for punctuation count and ratio
(positive for English and negative for French) and auxiliary
ratio (negative for English, positive for French) continuing to
indicate that there are syntactic features that are not generalizable
for clinical populations because of language. Previous work
has shown deficits in determiners, auxiliaries and reduced
grammatical structure (Eyigoz et al., 2020). However, the
remaining significant syntactic features after correction are
adposition ratio and noun count. On average, the AD dementia
group use less nouns and adpositions6.

Adpositions, specifically prepositions, are words used before
a noun or pronoun to show time or spatial relationships. For
example, in the sentence the boy is reaching into the cookie
jar, into is a preposition showing the spatial relationship of the
boy to the cookie jar. Preposition deficits for AD have been
found in Brazilian Portuguese (Alegria et al., 2013). Another
study—arguing that spontaneous speech mirroring the decline
of effective spatial reasoning in language production—found
that AD and HC used the same number of locative/stative
prepositions (e.g., in, on, and at) but found significant differences
for directional/dynamic prepositions (e.g., into, onto, from, and
to; Bosse, 2019).

Although pronoun ratio is only significant in French after the
correction, combining this finding with the significant difference
in noun count could produce interesting deductions. Between the
groups, AD dementia group has a lower average noun count but
a greater average pronoun count. Grossman et al. (2007) used
new verb acquisition to show that, in comparison to controls,
AD dementia patients had fragmented knowledge acquisition.
The AD group was able to grammatically use the verb but did

6A combination of prepositions and postpositions. Postpositions in French seldom
occur in spoken language and the only accepted postposition in English is ago.
Therefore, adpositions, in this application, are assumed to be prepositions.

not retain its semantic meaning. This could lend insights into
the increased pronoun ratio and decrease noun count, where the
AD group is not able to recall the semantic names of the IUs in
the picture (e.g., boy, brother) and compensates using pronouns
(e.g., he). This may be directly related to semantic AD-related
language impairment (as described above), where a person uses
ambiguous terms (pronouns) instead of specific lexicals (nouns;
Savundranayagam et al., 2005; Ferris and Farlow, 2013; Klimova
et al., 2015).

While some studies report reduced syntactic complexity in
AD patients in earlier detection ML scenarios for the CTP
(Fraser et al., 2016), others show contrary findings showing
no association between syntactic complexity and cognitive
pathology at early stages (Mueller et al., 2018). Evidence
from other cognitive tasks show impaired syntax early in
disease progression from free spontaneous speech as elicited by
questions (Croisile et al., 1996) or written picture descriptions
(Kemper et al., 2001).

These findings lead us to believe that syntactic impairment
is present but could be confounded as compensation for the
profound semantic deficits or other cognitive processes in AD
dementia related language impairment.

Paralinguistic Features
For the group of paralinguistic features only around 10% of
the initially extracted features were kept after multilingual
significance check. Although paralinguistic features are typically
reported as important well-classifying features in almost all
AD language investigations using computer-aided automatic
speech analysis in combination with ML (Pakhomov et al.,
2010; Satt et al., 2014; König et al., 2015; Fraser et al., 2016,
2019; Yancheva and Rudzicz, 2016) and explicitly mentioned
as robust solutions to the problem (Satt et al., 2014), we
find the contrary: the majority of state-of-the-art paralinguistic
features do not generalize between languages and therefore
are probably not modeling language impairment in AD as a
neurocognitive function. Therefore, we argue that they need
further clinical investigation to be used as an argument about
language impairment in AD.

On the other hand, the question remains why paralinguistic
features model differences between healthy and pathological
spontaneous speech so well in ML classification scenarios. It
could be that they represent variance from other factors such
as affective correlates like apathy, which has been shown to
affect paralinguistic properties of speech and is a common
comorbidity in AD (König et al., 2019), or other non-language
neurocognitive functions such as executive functions. For
example, we found a lower speech rate in AD patients in both
languages which can be interpreted as evidence for a generally
impaired psychomotor speed which is highly related with
additional factors such as age and executive functions (Keys and
White, 2000). However, it is also very likely that from the large
amount of extracted paralinguistic features, the ‘‘significant’’
ones just represent statistical artifacts. This can be argued as
after Bonferroni correction none of the paralinguistic features
yields significance in both languages. This result illustrates
well the paradox of paralinguistic features that are highly
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discriminative in AD vs. healthy control ML experiments but
according to traditional interference statistics standards would be
considered an artifact suffering from alpha error accumulation.
Even without the multilingual generalizability consideration, this
methodological paradox typically is disregard in state-of-the-art
research combining NLP features for AD classification with ML.

After correction, no features were significant in both
languages for English and only two features were significant in
French: the ratio of speaking to the full sample duration and the
standard deviation of normalized loudness. In both cases, the
AD dementia group shows lower average scores than controls.
The AD group speaks less overall which can be interpreted as
a proxy for overall amount of language production in this task.
This possibly reflects semantic, but also multiple other cognitive
processes, as previously stated. A lower standard deviation of
normalized loudness for the AD group indicates less change in
speaking volume as compared to the control group. This could be
indicative of common AD-related affective comorbidities such as
apathy (König et al., 2019) which result in a less expression and
variation in speech patterns.

Overall Findings
Overall, our investigation of generalizable NLP features for
language impairment in AD robustly confirms AD patients’
semantic impairment in terms of low information efficiency and
therefore semantically empty language. This cardinal semantic
syndrome can be also additionally confirmed by increased
syntactic compensation (using ambiguous terms instead of
precise lexical-semantic terminology). Beyond this, we find
reduced usage of prepositions, independent of the language,
which could be indicative of the earlier-reported decreased
complexity in AD language production but more research needs
to be done to determine if this is syntactic impairment or
confounded by other cognitive processes. Finally, we found
almost no paralinguistic features that are indicative of a robust
global hence cognitive language impairment in AD except
for those who proxy either semantic deficits or affective
comorbidities—the latter one indicating a non-causal correlation
rather than a robust signal on language impairment in AD.

Machine Learning Models With
Generalizable and Explainable Features
Comparison to Baseline
The English baseline classifier with all features (on the same data
set as Cummins et al., 2020; Farrús and Codina-Filbà, 2020)
achieved an AUC of 0.72 and accuracy of 69.7% using a LR
classifier. In comparison, the English classifier with generalizable
language features achieved an AUC of 0.87 and an accuracy of
76.4% using a LR model.

On the balanced DementiaBank dataset using both linguistic
and paralinguistic features, an 87.5% classification accuracy was
achieved using a Random Forest classifier (Farrús and Codina-
Filbà, 2020) and an 85.2% using a fusion deep learning approach
(Cummins et al., 2020). On a different subset of 167 samples from
DementiaBank, combining linguistic and paralinguistic features
yielded an 81% accuracy (Fraser et al., 2016).

For multilingual approaches, only semantic word embeddings
based on IU features were used to classify in a Swedish and
English early detection setting with an 72% accuracy in Swedish
and 63% accuracy in English (Fraser et al., 2018). French and
English were used to train IU-level language models. The authors
report a 0.89 AUC between AD and HC, the best model being
trained on both languages (Fraser et al., 2019). The authors could
not find any studies where a multilingual approach combined
linguistic and paralinguistic features.

Other approaches, not explicitly extracting features,
have been used for high performance classifiers on other
subsets of the DementiaBank data. Namely, modeling the
language of each population and then using perplexity
scores (Fraser et al., 2018; Cohen and Pakhomov, 2020) has
shown promising results producing interpretable models and
reporting AUC scores of 0.93 (Cohen and Pakhomov, 2020).
For a more in-depth overview of other methods used for
automatic classification used for DementiaBank, please see
de la Fuente Garcia et al. (2020).

Model Discussions
Looking at the ML experiments, the multilingual method of
feature selection to identify generalizable language features
drastically improved every ML performance.

For English, between the baseline with all features and using
only language features, there is a small dip in performance
when the task-specific features are removed. However, the
best English, French and multilingual model performances is
with the generalizable language features. More importantly, the
performance increase is not only in the multilingual classifier,
but a similar level of error is maintained between both languages
separately (see Table 4). This finding is backed up by the
confusion matrices that show a similar distribution of error
types across the board. In both languages, as well as in the
overall classifier, a comparable number of AD patients were
wrongly classified as healthy (false negatives) and a comparable
number of healthy subjects got wrongly classified as AD patients
(false positives).

It has been shown early on that ML classification of AD and
healthy subjects can benefit from a transfer learning approach
betweenmultiple languages (Fraser et al., 2019). However, we can
show that in spontaneous speech picture descriptions a theory
driven and generalizable approach to underlying features not
only show good classification results between AD and healthy
subjects but at the same time provides clinically-supported
evidence of language impairment from spontaneous speech
in AD.

Therefore, we conclude that there is evidence of language
impairment in AD in everyday spontaneous speech and that
this impairment could be driven by a language impairment
in the neurocognitive sense. Evidence for this claim is
provided by language-independent language impairments as
robustly measured by linguistic (semantic and syntactic) and
marginally also paralinguistic properties. This is in line with
previous research on AD language impairments from traditional
clinical research (Kempler, 1995; Taler and Phillips, 2008;
Szatloczki et al., 2015).
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TABLE 4 | Confusion matrices for the final robust classifier without task-specific features using multilingual significance feature selection.

LR Results

English and French without task-specific features and feature selection (Error Rate = 22.22%)

Ground Truth (Diagnosis)

True False

Classification Prediction AD (positive) 58 (AD/AD) 16 (AD/HC)
HC (negative) 61 (HC/HC) 18 (HC/AD)

English classifications from the above joint ML scenario (Error Rate = 22.64%)

Match to Ground Truth (Diagnosis)

True False

Classification Prediction AD (Positive) 43 (AD/AD) 13 (AD/HC)
HC (Negative) 39 (HC/HC) 11 (HC/AD)

French classifications from the above joint ML scenario (Error Rate = 21.28%)

Match to Ground Truth (Diagnosis)

True False

Classification Prediction AD (Positive) 15 (AD/AD) 3 (AD/HC)
HC (Negative) 22 (HC/HC) 7 (HC/AD)

SVM Results

English and French without task-specific features and feature selection (Error Rate = 20.26%)

Ground Truth (Diagnosis)

True False

Classification Prediction AD (Positive) 59 (AD/AD) 14 (AD/HC)
HC (Negative) 63 (HC/HC) 17 (HC/AD)

English classifications from the above joint ML scenario (Error Rate = 20.75%)

Match to Ground Truth (Diagnosis)

True False

Classification Prediction AD (Positive) 42 (AD/AD) 10 (AD/HC)
HC (Negative) 42 (HC/HC) 12 (HC/AD)

French classifications from the above joint ML scenario (Error Rate = 19.15%)

Match to Ground Truth (Diagnosis)

True False

Classification Prediction AD (Positive) 17 (AD/AD) 4 (AD/HC)
HC (Negative) 21 (HC/HC) 5 (HC/AD)

MLP Results

English and French without task-specific features and feature selection (Error Rate = 21.56%)

Ground Truth (Diagnosis)

True False

Classification Prediction AD (Positive) 59 (AD/AD) 16 (AD/HC)
HC (Negative) 61 (HC/HC) 17 (HC/AD)

English classifications from the above joint ML scenario (Error Rate = 20.75%)

Match to Ground Truth (Diagnosis)

True False

Classification Prediction AD (Positive) 41 (AD/AD) 13 (AD/HC)
HC (Negative) 39 (HC/HC) 13 (HC/AD)

French classifications from the above joint ML scenario (Error Rate = 23.40%)

Match to Ground Truth (Diagnosis)

True False

Classification Prediction AD (Positive) 14 (AD/AD) 3 (AD/HC)
HC (Negative) 22 (HC/HC) 8 (HC/AD)

The first matrix shows the overall classification result of the model trained on the multilingual data. To ensure this model is not favoring one language, results are further broken down
by language in the following matrices. Error is indicated by the false column where a false positive (AD/HC) is the case where a healthy control is classified as having AD and the False
negative (HC/AD) is classifying a person with AD as a healthy control. The error rate is reported as all falsely classified participants divided by all participants.
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CONCLUSION

This study set out to investigate the robust, generalizable
detection of language impairment from spontaneous speech
in AD dementia through multilingual ML, with the goal of
generating insights between both clinical and NLP researchers.

Based on the proposed methodology, we show possible
language impairment in AD in a neurocognitive sense of
language that is observable in everyday spontaneous speech.
Our approach shows that task-independent language features of
AD deteriorated speech point towards neurocognitive language
impairments. The primary insights are situated in current clinical
understanding of AD dementia related language impairments;
There is a theorized primary semantic deterioration but
also evidence of a milder syntactic impairment that is
confounded by multiple other cognitive processes. In addition,
the results support that language impairment could be measured
by clinically-motivated NLP techniques without sacrificing
overall performance.

The adjacent multilingual feature inspection shows that the
feature categories correlate differently between both languages
with regard to the significance of their features. This observation
is of relevance for the research community interested in detecting
language impairment in AD from spontaneous speech picture
descriptions because language as a neurocognitive symptom
has been found to be impaired in AD for different languages
(Ahmed et al., 2013; Szatloczki et al., 2015; Mueller et al., 2018)
even though AD itself is heterogeneous in the way it effects
individuals (Lam et al., 2013; Ferreira et al., 2018). Hence, we
highlight that by catering for explainability and generalizability
by design of the ML experiments, research can not only
generate efficient clinical applications of NLP methods for AD
detection from spontaneous speech but also result in clinically
actionable insights.

LIMITATIONS AND FUTURE WORK

The authors would like to acknowledge two main limitations
in this study. First, A small clinical data set comes with many
challenges. Ideally, to evaluate theMLmodels, we would use both
a training dataset and held-out test set. Unfortunately, this is not
available for the French data. Due to the lack of a held-out test
set, ML scores could be artificially inflated.

Second, it is possible that poor performance by the
paralinguistic features could be confounded by multiple factors:
such as gender, the significant difference in age for the
French population, and the audio quality of the recordings in
DementiaBank. Age and gender have been shown to influence

speech patterns and pitch range due to anatomical differences.
Future work should investigate what impact these factors has on
the explainability and generalizability of paralinguistic features.
To support the results in this article, future work should try
to replicate this study with more data as well as populations
matched by age, gender, and education.

To validate the results presented in this study, future work
should investigate this methodology on other clinical tasks
that produce spontaneous speech to see if finds hold in
more scenarios.

While we used ML to demonstrate that application of
generalizable language features, we did not try any optimization
techniques to boost results. Future work could look at other
classifiers or tuning techniques to improve classification results.
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