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A B S T R A C T   

The global poultry industry plays a pivotal role in providing eggs and meat for human consumption. However, 
outbreaks of viral disease, especially Newcastle virus disease (NDV), within poultry farms have detrimental ef
fects on various zootechnical parameters, such as body weight gain, feed intake, feed conversion ratio, as well as 
the quality of egg and meat production. Cases of vaccine failure have been reported in regions where highly 
pathogenic strains of NDV are prevalent. To tackle this challenge, virus-like particles (VLPs) have emerged as a 
potential solution. VLPs closely resemble natural viruses, offering biocompatibility and immune-stimulating 
properties that make them highly promising for therapeutic applications against NDV. Hence, this review em
phasizes the significance of NDV and the need for effective treatments. The manuscript will contain several key 
aspects, starting with an exploration of the structure and properties of NDV. Subsequently, the paper will delve 
into the characteristics and benefits of VLPs compared to conventional drug delivery systems. A comprehensive 
analysis of VLPs as potential vaccine candidates targeting NDV will be presented, along with a discussion on 
strategies for loading cargo into these NDV-targeting VLPs. The review will also examine various expression 
systems utilized in the production of NDV-targeting VLPs. Additionally, the manuscript will address future 
prospects and challenges in the field, concluding with recommendations for further research.   

1. Introduction 

Newcastle disease virus (NDV) is a highly contagious poultry disease 
that affects the respiratory, nervous, and digestive systems, causing 
significant losses to the poultry industry [1]. The disease is well- 
documented, with 18 genotypes and over 236 susceptible avian spe
cies reported worldwide [1–3]. The disease is characterized by respi
ratory, neurological, and gastrointestinal symptoms, leading to high 
morbidity and mortality rates in infected birds [4]. The ongoing chal
lenge in the development of NDV vaccines lies in the ever-changing 
nature of genetically varied genotypes that are widely dispersed across 
different regions [5]. Vaccines, including live attenuated and inacti
vated formulations, are commonly used to protect poultry from NDV 
[6]. However, the administration of live vaccines can lead to respiratory 
symptoms, and the occurrence of frequent vaccine failures can be 
attributed to pre-existing conditions and the interference caused by 
maternal antibodies [7]. To address these challenges, recombinant viral 
vector vaccines have been developed, utilizing various vectors such as 
Fowlpox virus (FPV) and Herdwicks visna maedi virus (HVT) expressing 

NDV proteins [5]. These vaccines offer advantages in terms of stability, 
in vivo replication, and the ability to co-express multiple heterologous 
proteins [5]. NDV itself is used as a viral vector for bivalent vaccines, 
demonstrating its potential for creating vaccines against other avian 
pathogens [8,9]. Additionally, a linear immunodominant epitope in the 
NDV protein has been identified, showing promise for epitope-based 
vaccine development [10]. However, viral vector vaccines entail a 
more intricate manufacturing process and carry the risk of genomic 
integration. Moreover, the immune response to these vaccines can be 
dampened by pre-existing immunity against the vector [11]. 

In recent years, virus-like particles (VLPs) can be emerged as a 
promising tool for the cargo delivery or vaccine against NDV. VLPs are 
intricate formations composed of viral structural proteins that closely 
resemble both the physical structure and antigenic properties of actual 
viruses. However, they do not contain the viral genome [12]. This 
unique characteristic makes VLPs non-infectious and safe for thera
peutic applications. Moreover, the utilization of VLPs as cargo delivery 
systems presents several advantages compared to traditional nano
particles. Firstly, VLPs can be engineered to display specific viral surface 
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proteins, enabling targeted delivery of antiviral drugs to the infected 
cells. By exploiting the natural tropism of NDV, VLPs can be designed to 
selectively bind to the viral receptors expressed on the surface of the 
infected cells, thereby enhancing drug uptake and reducing off-target 
effects [13]. Secondly, VLPs provide a stable and protective environ
ment for encapsulating antiviral drugs, shielding them from degradation 
and improving their stability during circulation [14]. This encapsulation 
not only enhances drug solubility but also enables controlled release at 
the site of infection, ensuring sustained therapeutic concentrations of 
the drug [14]. Third, VLPs can be easily modified and functionalized to 
enhance their drug delivery capabilities. Surface modifications, such as 
the addition of targeting ligands or PEGylation, can improve the phar
macokinetics, biodistribution, and cellular uptake of VLPs [15], further 
enhancing their therapeutic potential against Newcastle virus. Further
more, VLPs have inherent immunomodulatory properties due to their 
structural similarity to native viruses [16]. They can stimulate the im
mune system, leading to enhanced immune responses and potential 
synergistic effects with antiviral drugs [16]. Finally, VLPs are generally 
considered biocompatible and well-tolerated by the body [17]. They 
have a low risk of inducing adverse immune reactions or toxicity, 
making them suitable for therapeutic applications [17]. Therefore, the 
unique characteristics and advantages of VLPs make them promising 
carriers for antiviral drugs against NDV. 

In this comprehensive review, the objective is to provide a detailed 
overview of the utilization of virus-like particles (VLPs) as vaccines 
against Newcastle disease virus (NDV). The paper will cover various 
aspects including the structure and properties of NDV, the characteris
tics and advantages of VLPs as compared to conventional drug delivery 
systems. A thorough examination of NDV-targeting VLPs as potential 
vaccine candidates will be presented, followed by a discussion on stra
tegies for cargo loading into NDV-targeting VLPs. The review will also 
explore different expression systems employed for the production of 
NDV-targeting VLPs. Furthermore, future prospects and challenges in 
the field will be addressed, along with recommendations for further 
research. By exploring the potential of VLPs as an innovative cargo de
livery platform for antiviral therapy against NDV [18], this review aims 
to contribute towards the development of more effective and targeted 
treatments for NDV, thereby minimizing its impact on both the poultry 
industry and public health. 

2. Structure and properties of Newcastle virus 

Newcastle disease virus (NDV) belongs to the genus Avulavirus 
within the Paramyxoviridae family. The virus possesses an enveloped 
structure and harbors a non-segmented, negative-sense RNA genome 
spanning approximately 15,192 bp [19]. The viral particle consists of 
several structural components that contribute to its infectivity and 
pathogenicity [19,20]. 

The body of the virus consists of envelope proteins, matrix protein, 
and ribonucleoprotein complex [21]. The envelope of NDV is derived 
from the host cell membrane during the process of viral budding. The 
envelope proteins contain viral glycoproteins, including the 
hemagglutinin-neuraminidase (HN) and fusion (F) proteins, which play 
key roles in viral entry, attachment, and fusion with host cells [22]. The 
HN protein is a multifunctional glycoprotein present on the surface of 
NDV and mediates the attachment of the virus to sialic acid-containing 
receptors on host cells. Additionally, the HN protein facilitates the 
release of newly generated virions from infected cells due to its neur
aminidase activity [22]. Upon attachment, the F protein takes on the 
role of merging the viral envelope with the host cell membrane [23]. It 
undergoes conformational alterations upon binding to receptors, initi
ating the fusion of viral and cellular membranes, and enabling the viral 
genome to enter the host cell. The matrix protein (M) lies beneath the 
viral envelope and provides structural integrity to the virus [24]. It is 
involved in viral assembly, budding, and regulation of viral RNA syn
thesis. The Ribonucleoprotein Complex (RNP) comprises the viral RNA 

genome associated with nucleoprotein (NP), phosphoprotein (P), and 
large polymerase protein (L) [22]. Once inside the host cell, the viral 
RNA is released, and the viral RNP complex is uncoated. The viral RNA 
serves as a template for both genome replication and synthesis of viral 
mRNAs by using the P and L proteins [25]. Subsequently, the viral 
mRNAs are translated by host cell ribosomes to produce viral proteins, 
including non-structural and structural proteins [22]. The structural 
proteins, such as NP, P, and L, are involved in viral particle assembly 
[25]. The newly synthesized viral components are transported to the 
plasma membrane, where viral budding occurs, resulting in the release 
of mature viral particles [20]. 

NDV is a viral pathogen capable of infecting over 200 species of wild 
birds and domestic poultry [26]. It spreads when infected birds release 
the virus through their mouth and rear opening, and other birds can 
catch it by breathing it in or eating it [27]. The presentation of NDV 
symptoms can vary based on the specific virus strain and the species of 
bird affected. These symptoms range from reduced food intake and 
decreased egg production in layer hens to an exceptionally high mor
tality rate, reaching up to 100 % in unvaccinated birds [26]. Scientists 
use four categories to describe how harmful the different types of NDV 
are when they experimentally infect chickens that don’t have any other 
diseases. These categories are determined by how strong the virus is in 
infecting chickens, i.e. velogenic with high morbidity and mortality, 
mesogenic with high morbidity and low mortality, lentogenic with low 
morbidity and mortality, and asymptomatic enteric [26]. Although all 
NDV are part of the same group, they have different genes and proteins 
and keep changing over time [27,28]. The symptoms of NDV usually 
appear within two to fifteen days after a bird gets infected, but some
times it can take up to four weeks [26]. Scientists have found that NDV 
can be divided into two groups based on their full genome sequence: one 
group is mainly not very harmful, and the other has 20 subgroups with 
different levels of harmfulness [27,28]. These subgroups have prefer
ences for infecting certain bird species and are found in different places 
around the world [27,28]. Because the number of NDV cases is 
increasing, and the viruses are changing a lot over time [3,26], it’s 
crucial to have effective ways to control and prevent the disease. Un
derstanding the structure and properties of NDV is crucial for developing 
effective antiviral strategies. This knowledge provides a foundation for 
exploring the potential of VLPs for cargo delivery against NDV, which 
will be further discussed in subsequent sections. 

3. Understanding virus-like particles (VLPs) 

Since VLPs are comprised of structural proteins from viruses that self- 
assemble into well-organized structures, they possess the morphology 
and antigenic properties similar to those present in natural viruses 
[29–32]. The resulting VLPs resemble intact viruses in terms of size, 
shape, and surface antigens, making them ideal candidates for various 
applications, including drug delivery and vaccine [33–36]. 

VLPs possess several important characteristics that contribute to 
their suitability as drug carriers [37–39]: (i) lack the viral genome 
necessary for replication and are therefore non-infectious, resulting in 
enhanced their safety profile, minimizing the risk of causing disease in 
recipients. (ii) possess inherent self-assembly properties, meaning they 
spontaneously form from the viral structural proteins without the need 
for additional components, which attribute simplifies their production 
and enhances their stability during storage and circulation. (iii) can 
elicit robust immune responses due to their structural similarity to 
native viruses and activate both innate and adaptive immune responses, 
making them valuable tools for vaccine development and 
immunotherapy. 

VLPs are classified into three main groups based on their structural 
diversity: non-enveloped, enveloped, and chimeric (Fig. 1). Enveloped 
VLPs, complex structures with a host-cell-derived membrane and gly
coproteins, have been utilized for drug delivery and vaccine develop
ment [40]. In a specific case, Rous sarcoma virus (RSV) enveloped VLPs 
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Fig. 1. Schematic diagram of the recombinant production process and variety structures of enveloped, non-enveloped, and chimeric VLPs. Image was . 
adapted from [41] 
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were modified to display a humanized CC49 antibody fragment (hCC49) 
on silkworm larvae. This modification allowed the targeted delivery of 
doxorubicin to human colon carcinoma cells. The drug was loaded into 
the hCC49-modified RSV VLPs using electroporation (Fig. 2) [40]. Sec
ond group, non-enveloped VLPs, are nano-constructs comprised of sin
gle or multiple capsid proteins, lacking cell membranes [41]. They offer 
the advantage of surface manipulation through chemical and genetic 
methods, allowing them to expose peptides or epitopes on their surfaces. 
This manipulation enables them to elicit broader immunological re
sponses [41]. For example, non-enveloped VLPs obtained from the 
coxsackievirus B3 antigen have been observed to elicit improved hu
moral immune responses and confer protection against myocarditis in 
murine models [42]. Finally, chimeric VLPs are nano-constructs that 
combine structural proteins from different viral serotypes [43], allowing 
for the modification of the VLP core with antigens and the encapsulation 
of multiple therapeutic or diagnostic molecules [44]. They offer a range 
of benefits such as presenting foreign epitopes, encapsulating diagnostic 
molecules or multiple therapeutic, and specifically targeting cells, tis
sues, or organs [45]. In a particular study, chimeric VLPs were synthe
sized using two capsid proteins, gag and M1, obtained from the 
influenza virus A/swine flu/Iowa/15/30/H1N1, within silkworms [46]. 
These chimeric VLPs were modified to contain a 
glycosylphosphatidylinositol-anchored single-chain variable fragment 
region, enabling specific targeting of colon carcinoma cells [20]. Addi
tionally, these VLPs were employed as carriers for the delivery of 
doxorubicin at a concentration of 13.7 nM [46]. However, the 

production of chimeric VLPs is influenced by factors such as glycosyla
tion patterns, steric effects, protein conjugation, antigen length, and cell 
type [39]. 

Since NDV is an enveloped virus, the VLPs produced from it possess 
surface glycoproteins that exhibit correct folding and insertion into 
membranes, displaying repeating patterns characteristic of enveloped 
viruses [25]. Studies have indicated that paramyxovirus VLPs can be 
generated through the expression of either the M protein alone or in 
combination with different glycoproteins and NP [47–50]. In fact, cells 
that express the NDV HN, F, NP, and M proteins are capable of releasing 
particles that exhibit both structural and functional similarities to 
authentic virus particles [51,52]. The distinctive characteristic of ND 
VLPs, setting them apart from other paramyxovirus VLPs and numerous 
other types of VLPs, is their remarkable efficiency of release [52]. In 
previous studies, the efficiency of release for various paramyxovirus 
VLPs, as determined by the release of M protein, has been reported to 
range between 10 % and 50 % [49,50], while ND VLPs exhibit an 
impressive release efficiency of 84 % [51]. Consequently, it is relatively 
straightforward to generate substantial quantities of these particles, 
even from cells that have undergone transient transfection [51,53]. 
Hence, the M protein is positioned on the inner surface of the NDV en
velope and plays a crucial role in the production of ND VLPs [52]. The M 
protein alone is capable of facilitating VLP assembly. Nevertheless, for 
efficient VLP budding, it is necessary to co-express the N protein along 
with either the F or HN glycoprotein in conjunction with the M protein 
[54]. Therefore, the presence of biologically active glycoproteins within 

Fig. 2. Schematic presentation of the application of an enveloped VLP in drug delivery. Image was . 
adapted from [40] 
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ND VLPs suggests that these proteins have properly folded into an 
authentic conformation during the process of VLP assembly. Much like 
the HN protein associated with virions, the HN protein associated with 
VLPs plays a role in cell binding and exhibits neuraminidase activity 
[51]. Similar to the F protein associated with virions, the F protein 
associated with VLPs is capable of facilitating the fusion between the 
VLP membrane and red blood cell membranes [51]. Furthermore, the 
assembly of NDV glycoproteins (HN and F proteins) into VLPs is 
attributed to the specific interactions between the cytoplasmic (CT) and 
transmembrane (TM) domains of the glycoproteins and the core proteins 
of NDV. In contrast, the ectodomain of the glycoproteins has minimal 
influence on the assembly process [55]. In a study conducted by Gravel, 
McGinnes [56], it was demonstrated that the precise sequence of the 
transmembrane (TM) domain in the NDV F protein plays a crucial role in 
determining the conformation of the ectodomain in its preactivation 
form. This sequence also influences the interactions between the F 
protein and the HN protein, as well as the fusion activity of the protein. 

4. The possibility of VLPs as anti-NDV compounds carriers 

The preferred approach to prevent the NDV involves the utilization 
of killed or live attenuated vaccines. Instances of vaccination failure 

have been documented in areas where the highly pathogenic strains of 
NDV are prevalent [3,57,58]. However, the continuous emergence of 
new variants and their ability to cause outbreaks, even in vaccinated 
chickens [59], highlights the high mutation rate of NDV. Addressing this 
issue, an alternative solution would be the administration of antiviral 
drugs targeting NDV using VLPs, although currently, such drugs are not 
accessible on the market. 

While numerous antiviral compounds have the ability to freely 
permeate cells and diffuse randomly, there is a need to achieve a more 
targeted concentration of the drug in specific cells. This targeted de
livery aims to enhance drug efficacy and minimize potential side effects 
[60]. Based on the aforementioned characteristics, VLPs emerge as a 
prime candidate for this purpose. Promising anti-NDV agents from 
diverse sources are highlighted in Table 1, demonstrating effective ef
ficacy against NDV. Despite the natural tropism of VLPs, their efficacy 
and ability to target specific cells are commonly enhanced through 
chemical modifications of their surface to present anti-NDV agents and 
signal molecules, respectively [61]. Current antiviral candidates against 
NDV face limitations such as drug resistance, potential side effects, and 
restricted efficacy against diverse viral strains [62]. However, utilizing 
VLP formulation may show potential in addressing these challenges. To 
date, there have been no documented instances of incorporating 

Table 1 
Potential candidate anti-NDV agents derived from various sources.  

Anti-NDV compound Source Efficacy Characterizations Ref. 

Nitazoxanide An approved medication IC50 = 60 μM Mode of action against NDV and other viruses: (i) impeding 
influenza virus replication by hindering the maturation of the 
hemagglutinin protein, (ii) causing misfolding of the Sendai virus F 
protein followed by preventing its transport to the plasma 
membrane, (iii) reducing the size of viroplasm in rotavirus and 
resulting in a decrease in dsRNA formation, (iv) the activation of 
the protein kinase R (PKR) of Hepatitis C virus, subsequently 
triggering the phosphorylation of eukaryotic initiation factor 2α 
(eIF2-α), and (v) disrupting the replication of bovine viral diarrhea 
virus by triggering endoplasmic reticulum stress. 

[110–115] 

n-Docosanol An FDA-approved saturated fatty 
alcohol 

Survival rate 
from 37.4 % to 
53.2 % 

Reducing the NDV load in digestive tissues (26.2 % to 33.9 %), 
respiratory tissues (38.3 % to 63 %), nervous tissues (26.7 % to 
51.1 %), and lymphatic tissues (16.4 % to 29.1 %); decreasing virus 
shedding in oropharyngeal discharge and feces, effectively 
restricting the spread of NDV. 

[116] 

Propolis flavone Derived from plants, or collected 
and processed by bees 

– A valuable adjunct and antiviral agent, particularly in chickens 
administered inactivated or activated vaccines; exhibits the 
capacity to enhance both humoral and cellular immune responses, 
thereby bolstering immune activity; successfully developed live 
vaccines against NDV using chitosan nanoparticles. 

[117,118] 

Fucoidan A sulfated polysaccharide found in 
the cell wall of brown algae 

IS50 > 2000 Revealed a 48 % reduction in viral infection and decreased 
expression of the NDV HN protein. 

[119] 

C4- and C5-substituted 2,3-unsat
urated sialic acid derivatives 

Synthesized compounds IC50 values 
ranging from 
0.03 to 13 μM 

Decrease in the infection of NDV within Vero cells through 
inhibitory activity against neuraminidase; exhibited minimal 
toxicity. 

[120] 

9-butyl-harmol β-carboline derivatives – Targeting the GSK-3β and HSP90β, thereby suppressing the 
infection of NDV. 

[121] 

Maackiain (SR-1) and 
echinoisoflavanone (SR-2) 

Flavonoids extracted from Sophora 
interrupta Bedd. plant 

– Inhibit viral entry, replication, and transcription against NDV. [122] 

Telomycin Derived from Streptomyces 
coeruleorubidus 

– Inhibit the hemagglutination activity of NDV strain (MN635617) 
with log106 infectivity titers (EID50/mL). 

[123] 

Diethyl phthalate derived from Streptomyces 
misakimycin 

– Inhibition of the hemagglutination (HI) activity of NDV strain 
(MN635617) at log107 infectivity titers (EID50/mL). 

[124] 

Limonin Derived from citrus fruits – Reduces NDV replication in various cell lines and down-regulates 
the expression of NDV HN and matrix genes. 

[125] 

Solomonseal Polysaccharide (PS) 
and Sulfated Polysaccharide 
(sPS) 

Derived from Codonopsis pilosula – Killing the virus and suppressing the expression of viral antigen 
during in vitro tests; Lowest mortality and morbidity rates, with the 
highest cure rate during in vivo tests. 

[126] 

Ulvan A sulfated polysaccharide derived 
from Ulva clathrate 

IC50 value of 0.1 
μg/mL 

Inhibiting cell–cell spread through direct interaction with the F0 
protein. 

[127] 

Lithium Chloride A chemical compound – Effectively inhibited NDV replication and reduced the levels of a 
stress-inducible protein called GRP78 

[128] 

Emetine A natural product derived from 
Hedera helix, Alangium longiflorum, 
and other organisms 

– Inhibit the replication of NDV viral RNA at noncytotoxic 
concentrations; impede viral entry into host cells; decrease in the 
synthesis of viral polymerase. 

[129] 

Degraded β-chitosan Derived from crustaceans – Effectively reduces the hemagglutination titer to zero, indicating 
its strong antiviral properties 

[130]  
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antiviral compounds specific to NDV into VLPs. However, this concept 
holds promise for future investigations, as the combination of VLPs and 
antiviral candidates can achieve synergistic effects. Hence, the immu
nomodulatory properties of VLPs can enhance the antiviral activity of 
candidates by promoting immune activation and reducing viral repli
cation. This combined approach holds promise for improving thera
peutic outcomes and overcoming drug resistance. The use of VLPs as 
drug carriers presents an innovative strategy to enhance drug delivery, 
improve efficacy, and potentially minimize side effects associated with 
conventional drug formulations [34]. This approach holds promise for 
advancing antiviral therapies against NDV. 

5. Application of VLPs for combating against NDV 

Vaccination plays a critical role in combating viral infections. 
However, vaccines developed for NDV have primarily relied on lento
genic genotype II NDV strains, such as clone 30, B1, and LaSota, pro
vided many years ago [63]. The genetic distances between these vaccine 
strains and the currently prevalent genotype VII strains range from 18.3 
% to 26.6 % [27]. While these vaccines effectively prevent clinical 
symptoms, they do not completely suppress virus shedding in in
dividuals infected with virulent NDV strains [3]. VLPs not only possess 
immunogenic properties but also have the potential for cargo delivery 
and gene therapy by carrying and encapsulating various molecules, 
enabling targeted delivery to specific cells, tissues, or organs [64]. Cells 
employ receptor-mediated endocytosis to uptake VLPs, which are then 
transported through endosomes and lysosomes for degradation [64]. 
However, this limits drug delivery efficacy. To overcome this, VLPs are 
utilized as nanocarriers due to their capacity to evade lysosomal 
degradation, enhancing cargo delivery potential [64]. To address the 
limitations of current inactivated commercial vaccines for NDV, re
searchers developed dendritic cell (DC)-targeting strategies to enhance 
adaptive and mucosal immune responses against respiratory pathogens 
[65]. During a study, chimeric VLPs decorated with a DC-binding pep
tide (DCpep) were created, incorporating haemag
glutinin–neuraminidase (HN) derived from NDV and haemagglutinin 
(HA) derived from avian influenza virus (AIV) [65]. The DCpep- 
decorated chimeric VLPs effectively stimulated DCs in vitro and eli
cited robust immune responses in chickens, including increased secre
tion of secretory immunoglobulin A (sIgA) and differentiation of splenic 
T-cells [65]. Administration of 40 μg of chimeric VLPs provided com
plete protection against both heterologous and homologous NDV strains, 
as well as AIV H9N2 [65]. Moreover, intranasal administration of 
DCpep-decorated chimeric VLPs resulted in superior immune responses 
compared to intramuscular administration, as evidenced by enhanced 
secretion of sIgA and reduced shedding period of virus [65]. Overall, 
these chimeric VLPs hold promise as vaccine candidates for controlling 
AIV H9N2 and NDV, offering a versatile platform with multivalent an
tigens. Importantly, in cases of infection with a homologous NDV strain, 
the use of H9/F-DCpep-cVLPsIN led to a 100 % protection rate, ensuring 
survival without any viral shedding [66]. In contrast, the inactivated 
NDV vaccine exhibited an approximate 90 % protection rate [66]. In 
another investigation, the immunostimulatory effects of VLPs incorpo
rating the M and HN proteins of genotype VII NDV were examined on 
DCs in vitro [67]. Subsequently, the immunogenicity of these VLPs was 
evaluated in mice. The findings revealed that when stimulated by VLPs, 
immature bone marrow-derived dendritic cells (BMDCs) exhibited an 
up-regulation in the expressions of MHC II, CD86, CD80, and CD40 
molecules [67]. Additionally, VLPs induced increased secretion of IFN-γ, 
TNF-α, IL-12p70, and IL-6 cytokines by BMDCs [67]. Moreover, VLPs 
elicited the immunostimulatory potential of DCs, resulting in the pro
liferation of autologous T-cells [67]. Furthermore, VLPs demonstrated 
the ability to elicit strong cellular and humoral immune responses [67]. 
The administration of VLPs In C57BL/6 mice resulted in the recruitment 
of mature DCs to the spleen. This was supported by a notable 
enhancement in the proliferation of CD11c + CD86 + cells, indicating 

their double-positive phenotype [67]. In an independent study, VLPs 
were constructed by assembling the three key structural proteins of 
velogenic NDV, which include HN, F, and M glycoproteins [68]. Mice 
receiving three doses of NDV VLPs with a 10-day interval between each 
vaccination exhibited significantly elevated levels of IFN-γ, TNF-α, IL10, 
and IL2 (p ≤ 0.05) in their splenocyte suspension cells as assessed by 
ELISA, while mice receiving two doses of NDV VLPs with the same in
terval and mice receiving a B1 live vaccine booster displayed compar
atively lower cytokine levels [68]. The group of chickens that received 
only NDV VLPs had higher levels of CD8 + cells, and all of them survived 
when exposed to NDV sub-genotype VII, whereas two out of six chickens 
that received NDV VLPs followed by a B1 live vaccine did not survive the 
infection. In conclusion, these findings strongly suggest that the T-cell 
immune response is more crucial than the B-cell response in NDV 
infection [68]. A study was undertaken to develop a bivalent vaccine 
capable of providing a single immunization against both AIV and NDV 
[69]. The researchers constructed a chimeric VLP by combining the M1 
protein and HA protein of AIV with a chimeric protein containing the 
cytoplasmic and transmembrane domains of AIV neuraminidase protein 
(NA) and the ectodomain of NDV HN protein (NA/HN) [69]. When 
chickens were immunized with this chimeric VLP vaccine, they pro
duced antibodies specific to both AIV H5 and NDV. The hemagglutina
tion inhibition (HI) titers and specific antibodies elicited by the chimeric 
VLPs were comparable, in a statistically significant manner, to those 
induced by the respective commercial monovalent vaccines [69]. 
Furthermore, chickens that received the chimeric VLP vaccine and were 
subsequently challenged with the NDV F48E9 displayed complete pro
tection [69]. In another study, an approach was employed the infectious 
bronchitis virus (IBV) S1 protein and the ectodomain of NDV F protein 
were separately fused with the transmembrane and carboxy-terminal 
domain of IBV S protein (STMCT) [70]. This resulted in the creation 
of two distinct components, rS and rF. These components were then 
combined with the IBV M protein to construct a chimeric VLPs (IBV-NDV 
VLPs). The findings revealed that immunization with the chimeric IBV- 
NDV VLPs effectively stimulated both humoral and cellular immune 
responses [70]. Furthermore, in a challenge study, administration of 
100 μg VLP of the chimeric IBV-NDV VLPs provided complete protection 
(100 %) against virulent challenges of both IBV and NDV, resulting in a 
significant reduction in viral RNA levels in tissues and swabs [70]. 
Overall, these findings highlight the highly immunogenic nature of the 
chimeric IBV-NDV VLPs and their ability to completely protect against 
virulent challenges of IBV and NDV [70]. In another study, a bac-to-bac 
expression system was utilized to create VLPs based on a genotype VII 
strain of NDV [71]. The NDV VLPs were constructed using the NDV M 
protein as a structural framework, with protective antigen NH and F 
glycoproteins exposed on the surface [71]. The immunization assay 
conducted in the study demonstrated that NDV VLPs provided a longer 
duration of protection, reduced virus presence in tissues, and a shorter 
period of virus shedding compared to the commercially available 
LaSota-based vaccine when challenged with a genotype VII NDV strain 
[71]. These findings suggest that NDV VLPs have the potential to serve 
as an alternative to current live vaccines that may not match the 
circulating genotypes, offering improved control and elimination of 
NDV in avian populations. In a separate investigation, a bivalent VLPs 
vaccine was generated, consisting of the M1 and HA glycoproteins 
derived from the AIV H5N1, alongside a hybrid protein integrating the 
ectodomain of the F protein derived from NDV with the transmembrane 
and cytoplasmic domains of the HA protein derived from AIV [72]. 
Chickens immunized with this chimeric VLP vaccine demonstrated high 
levels of antibodies against H5N1 AIV and NDV, as well as protection 
against subsequent lethal infections caused by both viruses [72]. These 
results suggest that the chimeric VLP vaccine holds promise as a strategy 
for simultaneously controlling AIV and NDV in poultry. In a different 
research, researchers produced NDV VLPs composing the NDV F and AIV 
M1 proteins using the baculovirus/insect cell expression platform [73]. 
The healthy chickens were then vaccinated with NDV VLP vaccines 
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formulated with oil emulsion, containing different doses of VLPs [73]. 
The vaccines induced the production of antibodies against NDV and 
offered protection against a lethal challenge in a dose-dependent 
manner. A single vaccination with NDV VLP vaccine at concentration 
of 10 or 50 μg resulted in complete protection of chickens from a lethal 
challenge and significantly reduced the amount of virus shed during the 
challenge [73]. Through a separate study, researchers examined VLPs 
produced by NDV proteins strain AV, including NP, M, HN, and F [51]. 
The VLPs were produced in specific quantities and given to BALB/c mice 
as an immunization agent without any adjuvant [51]. The resulting 
immune responses were similar to those obtained with equal quantities 
of inactivated NDV vaccine. Additionally, the researchers successfully 
incorporated F and HN glycoproteins derived from NDV B1 strain into 
these VLPs [51]. Moreover, the successful integration of foreign peptides 
into the VLPs was achieved by fusing them with the HN or NP protein 
[51]. Significantly, the ectodomain of the Nipah virus G protein was 
effectively integrated into NDV VLPs by combining it with the trans
membrane and cytoplasmic domains of the NDV HN protein [51]. Ac
cording to described methodologies, the application of VLPs for 
combating against NDV holds significant promise. Further research and 
development efforts are needed to optimize VLP design, improve tar
geting strategies, evaluate long-term safety, and translate these ap
proaches into practical clinical applications. 

6. Strategies for loading cargo within NDV-targeting VLPs 

Efficiently loading cargo VLPs is a critical step in the development of 
VLP-based delivery systems. This process can be accomplished through a 
range of approaches, including chemical, biological, and physical stra
tegies. For a comprehensive understanding of these strategies, a detailed 
review is available elsewhere [60], providing thorough insights into 
their implementation and effectiveness. These strategies contain a range 
of techniques, including fusion of foreign proteins with VLPs 
[25,53,55,74], de novo packaging with nucleic acids [75], osmotic 
shock [76], polymer-mediated adsorption [77–80], disassembly and 
reassembly [81–83], chemical linking [84–86], and physical interaction 
between VLPs and cargo [87–89]. However, among these techniques, 

the current method firstly employed for loading cargos into VLPs 
designed for NDV entails the fusion of a foreign protein to the VLPs [90]. 
To enable the delivery of cargo proteins, they are either fused to or 
inserted into the component proteins of VLPs using a linker [90]. Once 
incorporated, these cargo proteins are transported to the target cells or 
cell nuclei and subsequently released, aided by viral protease or other 
mechanisms [90]. In a specific study, the sequences of F glycoprotein 
derived from the NDV NA-1 strain and HA glycoprotein derived from the 
AIV H9N2 strain were applied for the purpose of cargo loading into VLPs 
[65]. A fusion sequence, referred to as H9/F, was created, which enco
ded the ectodomain of HA and the transmembrane domain of F [65]. In 
order to improve cargo loading efficiency, the DCpep sequence (FYP
SYHSTPQRP) and the melittin signal peptide derived from the baculo
virus expression vector pFastBac1-HM were added at the 5′ end of H9/F 
and then inserted into the pFastBac1 vector [65]. The Bac-to-Bac 
baculovirus/insect expression platform was utilized to generate rBV- 
H9/F and rBV-H9/FDCpep. Co-transfection of rBV-H9/F, rBV-HN, and 
rBV-M resulted in the production of H9/F-cVLPs, whereas co- 
transfection of rBV-H9/F-DCpep, rBV-HN, and rBV-M led to the pro
duction of H9/F-DCpep-cVLPs (Fig. 3) [65]. This approach has been 
employed not only for antigen presentation but also for loading and 
delivering proteins with various characteristics and functions, including 
antibodies, transcription factors, and enzymes [60]. Initially, the pack
aging and delivery of relatively small proteins within VLPs were con
strained by the limited space and size of the VLPs. However, in recent 
years, the field has witnessed significant advancements in gene editing 
technology for therapeutic applications. This progress has sparked 
growing interest among researchers in exploring the protein delivery or 
protein fusion with larger molecular weights, such as dCas9-base editors 
and Cas9 proteins [91–94]. However, it remains unclear whether the 
function or dynamics of the cargo is affected by the scaffold protein. 
Other techniques for cargo delivery using NDV-targeting VLPs have not 
been fully explored yet, but hold potential for future research. 

7. Expression systems for producing NDV-targeting VLPs 

Choosing the proper expression system is of utmost importance in 

Fig. 3. A visual representation of the strategy involving the fusion of a foreign protein with VLPs for targeted delivery against NDV. The ectodomain of the NDV F 
protein was substituted with the ectodomain of the AIV H9 protein, resulting in the formation of H9/F. To targeted cargo delivery, the DCpep sequence was fused to 
the amino terminus of the H9/F protein using a GS-linker. The H9/F protein, along with the NDV HN protein, was co-expressed on the surface of NDV VLPs. Image 
was . 
adapted from [65] 
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VLP production to ensure correct protein folding and post-translational 
modifications. These modifications, including glycosylation and phos
phorylation, can significantly affect the quaternary structure of VLP 
proteins, ultimately impacting the immunogenicity of the vaccine [95]. 
A wide range of expression platforms have been employed for this 
purpose, including bacteria, yeast, baculovirus/insect cells, plant cells, 
avian and mammalian cells, and cell-free systems [34]. Among them, 
baculovirus/insect, plant, and avian expression platforms have been 
utilized for the production of NDV-targeting VLPs so far. 

The baculovirus/insect expression system is widely employed for the 
production of VLPs [96]. The presence of baculovirus in this expression 
system offers convenience and rapidity, making it proper for producing 
viral vaccines that frequently alter their surface antigens between out
breaks [97]. Furthermore, insect cell expression systems provide 
numerous advantages for VLP production, including the ability to form 
multi-protein VLPs, high protein yield comparable to bacterial or yeast 
systems, and the ability to make post-translational modifications [95]. 
The insect cell lines derived from Trichoplusia ni (Tn5) and Spodoptera 
frugiperda (Sf9/Sf21) are commonly used for this purpose [96]. Research 
investigations focusing on the production of NDV-targeting VLPs 
consistently indicate that the baculovirus/insect expression system was 
the prevailing choice among expression systems for this purpose. In a 
study, genes encoding M and HN proteins were cloned into the bacu
lovirus pFastBac Dual transfer vectors and recombinant baculovirus was 
produced using baculovirus/sf9 insect expression system, resulting in 
generated 3.5 mg/mL of the purified NDV VLPs [67]. In a separate study, 
the pFast/GFP/F/M/HN construct was introduced into DH10 Bac 
competent cells to generate recombinant Bacmid, which was subse
quently expressed in sf9 insect cell lines. This expression process yielded 
a substantial production of 635 μg/mL of NDV VLPs [68]. Using a similar 
expression system, Shen, Xue [69] successfully generated recombinant 
baculovirus, which led to the production of an impressive 1.56 mg of 
chimeric VLP in a 1 L sf9 cell culture. Similar to previous studies, Noh, 
Park [72] employed the sf9 insect expression system to generate re
combinant baculovirus. However, they utilized the pHAM1F/HA vector 
as their cloning construction in this study. While the baculovirus/insect 
cell platform offers numerous benefits for VLP production, it does have a 
potential drawback. In comparison to mammalian cells, the N-glyco
sylation pattern of expressed glycoproteins in insect cells is relatively 
simpler, which may limit the production of some VLPs [98]. In addition, 
studies indicate a lack of efficient assembly of ND VLPs in insect cells 
[99]. However, a promising approach has been developed to address this 
issue. By enhancing the N-glycosylation machinery of insect cells, 
particularly in specific strains like Ea4, the production of therapeutic 
human glycoproteins can be simplified [100]. This strategy holds po
tential for overcoming the limitations of insect cell-based glycosylation 
and improving the applicability of the baculovirus/insect cell platform 
for diverse VLP applications. 

Plants serve as an attractive option for VLP vaccine manufacturing 
due to their ability to produce abundant recombinant proteins at a low 
cost. They possess the necessary machinery for post-translational mod
ifications, ensuring proper protein folding and assembly. Plant-based 
expression systems carry a lower risk of introducing human pathogens 
compared to other systems. Moreover, plants can perform N-glycosyla
tion, unlike bacteria-based expression systems [101]. Nevertheless, in 
the current study, a plant expression platform was established to pro
duce NDV-targeting VLPs transiently in Nicotiana bethamiana plants 
[102]. Through the expression of the HN and/or F glycoproteins derived 
from a genotype VII.2 strain, NDV VLPs were effectively generated 
within the plant expression system [102]. In this study, genes encoding 
HN, F, and M glycoproteins of NDV were cloned into the pEAQ-HT 
vector and transferred into plant cells using Agrobacterium tumefaciens 
strain AGL-1 [102]. The authors indicated that based on their findings, a 
conservative estimate suggests that 1 Kg of infiltrated leaf material 
would be enough to conduct vaccination for 10,000 chickens. Each dose 
would contain 1024 hemagglutination (HA) units (equivalent to 10 

log2) [102]. In addition, other studies have successfully demonstrated 
that plant expression systems, specifically in potato (0.3–0.6 μg of HN 
protein per mg of total leaf protein) [103], tobacco (3 μg of HN protein 
per mg of total leaf protein) [104], maize (max. 1.66 μg/mL of F protein 
and max. 2.4 μg/mL of HN protein) [105], and rice [106], exhibit 
robustness in producing structural proteins of NDV, including F and HN 
proteins. Hence, these plant expression systems present a viable alter
native for producing plant-based NDV VLPs in future studies. It should 
be noted that plants faced limitations in VLP production due to lower 
yields and unique N-glycosylation patterns, compared to mammalian 
expression systems [107]. Nevertheless, recent advancements in plant 
expression systems and plant glycoengineering have overcome these 
challenges [101]. 

Expression systems based on animal cells continue to be highly 
valuable platforms for the production of VLPs [96,97]. These animal cell 
expression platforms are known for their efficiency in generating re
combinant proteins, primarily due to their capability to perform intri
cate and precise post-translational modifications necessary for correct 
protein folding [108]. CHO, ELL-0, CAP-T, HEK293, Vero 9, and BHK-21 
cell lines are widely employed for recombinant VLP production [97]. 
Among them, CHO stands out as the most commonly utilized cell line 
due to its non-human origin, thereby reducing the risk of contamination 
with human viruses [97]. In a specific study, a chimeric VLP was con
structed against NDV [51]. Accordingly, genes encoding NDV NP, M, F, 
and HN proteins were introduced into the pCAGGS expression vector 
[51]. In addition, Nipah virus G protein cDNA was linked into HN gene, 
generating a chimeric construction (HN/NiVG). Subsequently, the 
chimeric construction transfected into the ELL-0 cell lines using Lip
ofectamine to produce chimeric VLPs. The expressed VLP had a yield of 
509 μg/mL [51]. Another study has been investigated the essentiality 
and adequacy of the M protein in the production and budding of NDV 
VLPs [52]. For this purpose, authors cloned genes encoding uncleaved F 
(F-K115Q), M, HN, and NP proteins of NDV into pCAGGS vector and 
transferred into the ELL-0 cell lines using Lipofectamine for evaluating 
the production of NDV VLPs. The findings exhibited that the efficiency 
of VLP release is 83.8 % ± 1.1 % [52]. Nonetheless, the utilization of 
mammalian cell expression systems for clinical material production is 
accompanied by significant potential drawbacks, including prolonged 
expression time, high production costs, low protein yield, and the risk of 
cell lines being contaminated with mammalian pathogens [96]. It 
should be noted that the efficient production of ND VLPs can be 
accomplished in avian cells, eliminating the issues with production in 
mammalian cells [12,69,109]. 

8. Challenges and future perspectives 

Scaling up the production of VLPs for clinical applications presents 
various challenges. The optimization of VLP production systems, 
including cell culture and recombinant protein expression platforms, 
becomes essential to meet the high demand for large-scale 
manufacturing. Addressing regulatory requirements, cost-effectiveness, 
and preserving the integrity and quality of VLPs during scale-up pro
cesses are crucial considerations. VLPs can be susceptible to environ
mental factors, such as temperature, pH, and freeze–thaw cycles, 
making it vital to ensure their stability during storage, transportation, 
and administration, as this directly affects their structural integrity and 
effectiveness in delivering cargo. Strategies to stabilize VLPs and 
establish appropriate storage conditions must be explored. Precisely 
targeting specific cells or tissues infected with Newcastle virus using 
VLPs remains a challenge. Identifying and validating specific receptors 
or biomarkers that can be targeted by VLPs becomes necessary for 
efficient drug delivery. Further research is required to enhance targeting 
specificity and minimize off-target effects. Additionally, VLPs can 
trigger immune responses, which can influence their safety and thera
peutic efficacy. Understanding and controlling the immunogenicity of 
VLPs is crucial to minimize adverse reactions and enable repeated 
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dosing if needed. Strategies such as surface engineering or incorporating 
immunomodulatory agents should be investigated to modulate immune 
responses effectively. 

Looking ahead, the future of VLPs in cargo delivery against NDV 
appears promising, driven by ongoing advancements in genetic engi
neering, chemical conjugation, and hybrid VLP technologies. These 
advancements will enable the creation of more sophisticated and cus
tomizable VLP-based cargo delivery systems. By integrating additional 
functionalities such as stimuli-responsive release, multi-stage targeting, 
or combination therapies, the therapeutic outcomes can be further 
enhanced. Combining VLPs with other antiviral agents like small- 
molecule drugs or nucleic acid-based therapeutics can yield synergistic 
effects and effectively target various aspects of NDV infection, including 
viral replication, immune evasion, and host cell interactions. However, 
to bring these advancements to fruition, extensive preclinical and clin
ical studies are required to evaluate the safety, efficacy, and pharma
cokinetics of VLP-based cargo delivery against NDV. Collaboration 
among researchers, clinicians, and regulatory authorities is crucial to 
expedite the translation of VLP technologies into clinical practice. 
Furthermore, adherence to regulatory guidelines and careful consider
ation of manufacturing, quality control, and product characterization 
are essential. VLP-based cargo delivery systems hold great potential in 
combating NDV infections, and by overcoming current challenges and 
capitalizing on future opportunities, the development of safe, effective, 
and personalized therapies for this viral disease can be realized. 
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[97] Fuenmayor J, Gòdia F, Cervera L. Production of virus-like particles for vaccines. 
N Biotechnol 2017;39:174–80. 

[98] Wu C-Y, Yeh Y-C, Yang Y-C, Chou C, Liu M-T, Wu H-S, et al. Mammalian 
expression of virus-like particles for advanced mimicry of authentic influenza 
virus. PLoS One 2010;5:e9784. 

[99] Palomares LA, Ramírez OT. Challenges for the production of virus-like particles in 
insect cells: the case of rotavirus-like particles. Biochem Eng J 2009;45:158–67. 

[100] Chang G-D, Chen C-J, Lin C-Y, Chen H-C, Chen H. Improvement of glycosylation 
in insect cells with mammalian glycosyltransferases. J Biotechnol 2003;102: 
61–71. 

[101] Chen Q, Lai H. Plant-derived virus-like particles as vaccines. Hum Vaccin 
Immunother 2013;9:26–49. 

[102] Smith T, O’Kennedy MM, Ross CS, Lewis NS, Abolnik C. The production of 
Newcastle disease virus-like particles in Nicotiana benthamiana as potential 
vaccines. Front Plant Sci 2023;14:1130910. 

[103] Berinstein A, Vazquez-Rovere C, Asurmendi S, Gómez E, Zanetti F, Zabal O, et al. 
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