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A B S T R A C T

Background: Lung adenocarcinoma (LUAD) is one of the most frequent types of lung cancer, with a high mortality
and recurrence rate. This study aimed to design a RiskScore to predict the prognosis and immunotherapy response
of LUAD patients due to a lack of metabolic and immune-related prognostic models.
Methods: To identify prognostic genes and generate a RiskScore, we conducted differential gene expression
analysis, bulk survival analysis, Lasso regression analysis, and univariate and multivariate Cox regression analysis
using TCGA-LUAD as a training subset. GSE31210 and GSE50081 were used as validation subsets to validate the
constructed RiskScore. Following that, we explored the connection between RiskScore and clinicopathological
characteristics, immune cells infiltration, and immunotherapy. In addition, we investigated into RiskScore's
biological roles and constructed a Nomogram model.
Results: A RiskScore was identified consisting of five genes (DKK1, CCL20, NPAS2, GNPNAT1 and MELTF). In the
RiskScore-high group, LUAD patients showed decreased overall survival rates and shorter progression-free sur-
vival. Multiple clinicopathological characteristics and immune cells infiltration in TME, in particular, have been
linked to RiskScore. Of note, RiskScore-related genes have been implicated to substance metabolism, carcino-
genesis, and immunological pathways, among other things. Finally, the C-index of the RiskScore-based Nomo-
gram model was 0.804 (95% CI: 0.783–0.825), and time-dependent ROC predicted probabilities of 1-, 3- and 5-
year survival for LUAD patients were 0.850, 0.848 and 0.825, respectively.
Conclusion: The RiskScore, which integrated metabolic and immunological features with DKK1, CCL20, NPAS2,
GNPNAT1, and MELTF, could reliably predict prognosis and immunotherapy response in LUAD patients. More-
over, the RiskScore-based Nomogram model had a promising clinical application.
1. Introduction radiotherapy, or immunotherapy can be used, but drug resistance still
Despite breakthroughs in early detection, lung cancer remains the
most common cause of cancer death globally [1]. LUAD is the most
frequent histologic subtype of primary lung cancer, accounting for almost
40% of all cases, and it is also one of the most aggressive and swiftly
deadly tumor types, with an overall survival rate of fewer than 5 years [2].
Surgical resection of early primary adenocarcinoma remains the preferred
treatment approach, with a minimal risk of recurrence [3]. Unfortunately,
because lung adenocarcinoma is generally identified in advanced stages or
even in the presence of metastases, only conventional chemotherapy,
).
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leads to a poor prognosis [2]. As a result, identifying novel LUAD bio-
markers that can be used to predict patient survival and immunotherapy
response is critical. These biomarkers could provide valuable clinical in-
formation which could be used to assess a patient's overall health and
provide personalized treatment for precision medicine.

In contrast to the once-dominant tumor-centered concept of cancer,
the tumor microenvironment (TME) is becoming incredibly prominent
[4]. Tumor genesis, growth, invasion, metastasis, and response to ther-
apy can all be reprogrammed by the stromal cells and non-cellular
components of the TME [5]. It is, nevertheless, genetically stable,
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making it a promising therapeutic target for reducing treatment resis-
tance and the probability of tumor recurrence [6]. The detailed investi-
gation of infiltrating immune cells in TME, in particular, contributes to
the discovery of cancer immune evasion mechanisms, allowing for the
creation of new therapeutic options [7].

With the constant advancement of sequencing technology in recent
years, a large amount of expression profile data has amassed, and its re-
examination and identification can surely aid in the advancement of
medicine. Two main databases were utilized in this study: the Cancer
Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) data-
bases. First, the TCGA-LUAD cohort was used to screen prognostic genes,
and a RiskScore was generated using the Cox regression coefficient.
Second, the GSE31210 and GSE50081 cohorts were used to validate the
findings. The link between RiskScore and clinicopathological character-
istics, immune cells infiltration in TME, and immunotherapy response
was then investigated. Finally, a Nomogram model was constructed, and
the model's predictive capacity was confirmed using time-dependent
receiver operator characteristic curve (ROC), calibration curve, and de-
cision curve analysis (DCA).

2. Materials and methods

2.1. Data source

RNA-seq data and clinical information from 59 normal and 535 lung
adenocarcinoma patients were retrieved from the TCGA-LUAD dataset
(https://portal.gdc.cancer.gov/) as of March 2022. GSE31210,
GSE50081 and GSE135222 datasets obtained from the GEO database (htt
p://www.ncbi.nlm.nih.gov/geo/). GSE31210 and GSE50081 contained
RNA-seq data and corresponding clinical information for 226 and 127
LUAD patients, respectively, while GSE135222 comprised 25 patients
with non-small cell lung cancer (NSCLC) who were treated with anti-PD-
1/PD-L1. Missing values were defined as missing or unknown clinical
characteristics. This study analyzed data from publicly available data-
bases and did not necessitate a re-evaluation of medical ethics.

2.2. Data processing

Transcriptome expression data and corresponding clinical informa-
tion were downloaded from the TCGA database in the data format
HTSeq-Counts for differential gene expression analysis between LUAD
and normal lung tissue and between RiskScore-high and -low. Then, data
formatted as HTSeq FPKM was downloaded and converted to TPM for
subsequent analyses. In addition, log 2 conversion was performed on all
RNA-seq data prior to all analyses.

2.3. Screening for prognostic genes

Differential gene expression analysis was performed using 535 LUAD
tissues and 59 paracancer tissues from the TCGA-LUAD cohort using the
R package “DESeq2” and the R package “ggplot2” for volcano plotting
with a threshold value of |log 2 FC|�1 and P< 0.05. For the bulk survival
analysis, the R package “survivor” was used. The Lasso regression anal-
ysis was performed using the R package “glmnet” and “survival” with
seed number 2022, and the method used ten-fold cross-validation,
selecting the lambda value corresponding to the smallest mean value of
the cross-validation error as the truncation value. Univariate and multi-
variate Cox regression analyses were performed using the R package
“survival” and the R package “ggplot2” was used to visualize the forest
plots, and a RiskScore was constructed from the regression coefficients.

2.4. Prognostic value of RiskScore

The 526 LUAD patients in the TCGA-LUAD cohort served as the
training subset, 226 LUAD patients from the GSE31210 cohort as the
validation subset 1 and 127 LUAD patients from the GSE50081 cohort as
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the validation subset 2. LUAD patients were divided into RiskScore-high
and -low groups according to the median of RiskScore. The scatter plot
was visualized by the R package “ggplot2”, Kaplan-Meier survival anal-
ysis was performed by the R package “survival”, and the R package
“survminer” was used for visualization. Time-dependent ROC curve was
analyzed by the R package “timeROC” and visualized by the R package
“ggplot2”.

2.5. Biological functions of RiskScore

First, LUAD patients in the TCGA database were divided into high and
low groups according to the median of RiskScore, and then differential
gene expression analysis was performed with a threshold of |log 2 FC|�1
and P < 0.05. The volcano plot was visualized using the R package
“ggplot2”. Gene ontology (GO) functional analysis was conducted to
identify the unique biological properties, including biological processes
(BP), cellular components (CC), and molecular functions (MF). All up-
regulated genes were extracted for GO and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analysis, analyzed by R
package “clusterProfiler” and visualized by R package “ggplot2”.

Next, correlation analysis of these five genes included in the Risk-
Score with oncogenes (KRAS, BRAF, EGFR, ERBB2, PIK3CA, FGFR1,
DDR2, RET, MYC, RB1, NF1, ROS1) driving lung cancer progression was
performed using the R package “ggplot2” for visualization using the
TCGA-LUAD cohort. In addition, KRAS and TP53 mutation data were
downloaded from TCGA database through the UCSC Xena web tool (https
://xenabrowser.net/datapages/).

2.6. Role of RiskScore in the TME

First, the relative infiltration levels of immune cells in the TME were
quantified using the ssGSEA algorithm in the R package “GSVA”, and the
specific markers and classifications of the 24 immune cells were identi-
fied in a paper by Bindea et al. [8]. Based on the GSVA algorithm, LUAD
patients in the TCGA database were divided into high and low score
groups according to the median immune cell enrichment scores, and
survival analysis was performed using the R package “survival” and the R
package “survminer” for visualization. In addition, transcriptome data
from the TCGA-LUAD cohort were uploaded to the CIBERSORTx web tool
(https://cibersortx.stanford.edu/index.php) to obtain immune cell infil-
tration scores based on the cibersort algorithm. Data on the immune
subtypes of LUAD patients in TCGA were obtained from the paper pub-
lished by Thorsson V. et al. [9].

2.7. RiskScore response to immunotherapy and tumor relapse

First, the differential expression of four immunosuppressive check-
points (PD-1, PD-L1, PD-L2 and CTLA4) were compared in the RiskScore-
high and -low groups. Then, RNA-seq and corresponding clinical infor-
mation for NSCLC patients receiving anti-PD-1/PD-L1 therapy in the
GSE135222 dataset were downloaded. Patients were divided into two
groups for survival analysis based on the median RiskScore. Finally,
LUAD patients in the RiskScore-high group were further divided into four
groups based on quartiles of RiskScore using the TCGA database, with the
top 25% being the extremely high-risk group (n ¼ 67) and the bottom
25% being the high-risk group (n ¼ 66) for relapse-free survival (RFS)
analysis.

2.8. Construction and evaluation of nomogram model

Based on the TCGA-LUAD cohort, univariate and multivariate Cox
regressions were used to screen independent predictors of prognosis, and
then Nomogram model and calibration curve were constructed and
evaluated using the R packages “rms” and “survival”. Time-dependent
ROC curve was analyzed using the R package “timeROC” and
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visualized using the R package “ggplot2”. Decision curve analysis was
analyzed and visualized using the R package “survival” and the “stdca.R”.

2.9. Statistical analysis

All statistical analyses were processed on R Studio software and P <

0.05 was considered statistically significant. In this study, patients with
LUAD were classified into RiskScore-high and –low groups based on the
median RiskScore of each separate cohort as the cut-off value. Weltch't
test andWilcoxon rank sum test were used for comparison of two groups.
Spearman's test was applied in all correlation analysis. Cox regression
and Log-rank P were performed for survival analysis.

3. Results

3.1. Screening for prognostic genes in lung adenocarcinoma

The overview of the process used in our studywas shown in Figure 1. In
LUAD tissues, differential gene expression analysis revealed that 3416
geneswere up-regulated and1966 geneswere down-regulated (Figure 2A).
Bulk survival analysis showed that the number of genes meeting HR> 1.5
and P < 0.05 was 630. All up-regulated genes were extracted and inter-
sected with potential prognostic genes, yielding a total of 298 genes up-
regulated in LUAD and linked to prognosis (Figure 2B). Then, a total of
13 candidate genes were identified using Lasso regression analysis
(Figure 2C). Finally, univariate and multivariate Cox regression analyses
identified DKK1, CCL20, NPAS2, GNPNAT1, and MELTF as LUAD-
associated prognostic genes (Figure 2D, E). We generated a RiskScore
using the TCGA training subset based on the regression coefficients of these
five genes. The following formula was used to calculate the RiskScore:

RiskScore ¼ 0.13 � DKK1 þ 0.12 � CCL20 þ 0.18 � NPAS2 þ 0.31 �
GNPNAT1 þ 0.16 � MELTF
Figure 1. Flow cha
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3.2. Validating the prognostic value of RiskScore

To investigate the prognostic value of RiskScore, the TCGA-LUAD
cohort was employed as the training subset, GSE31210 and GSE50081
were applied as the validation subset 1 and validation subset 2, respec-
tively. First, scatter plots were performed to estimate the survival status
and expression of five prognostic genes in LUAD patients in the RiskScore-
high and -low groups, and the result was that patients in the RiskScore-
high group had more deaths and slightly shorter survival (Figure 3A–C).
According to Kaplan-Meier curves, LUAD patients in the RiskScore-high
group had a worse overall survival rate than those in the -low group
(Figure 3D–F). In the TCGA-LUAD cohort, time-dependent ROC curves
revealed that the probability of RiskScore predicting 1-, 3-, and 5-year
survival in LUAD patients was 0.769, 0.729, and 0.682, respectively
(Figure 3G). In addition, the prediction efficiency of RiskScore was almost
always above 0.600 in all cases of the GSE31210 and GSE50081 cohorts
(Figure 3H, I), indicating that the prediction results were more reliable.
3.3. Relationship between RiskScore and clinicopathological characteristics

Next, we evaluated the relationship between clinicopathological
characteristics and RiskScore using TCGA-LUAD cohort. As shown in
Figure 4, high-RiskScore was associated with pathological stage (stage II
vs. stage I, P¼ 0.01; stage III vs. stage I, P< 0.001), T-stage (T2 vs. T1, P¼
0.005; T3 vs. T1, P ¼ 0.02; T4 vs. T1, P ¼ 0.01), N-stage (N1 vs. N0, P ¼
0.04), tumor status (with tumor vs. tumor free, P< 0.001), residual tumor
(R1 vs. R0, P ¼ 0.05), and treatment outcome (PD vs. CR, P < 0.001).
3.4. Identification of the biological functions of RiskScore-related genes

To explore the biological function of RiskScore-related genes, we
separated patients in the TCGA-LUAD cohort into two groups based on
rt of this study.



Figure 2. Screening for prognostic genes in LUAD using the TCGA-LUAD cohort. (A) Volcano map showing differentially expressed genes in LUAD tissue and normal
lung tissue. (B) Venn diagram showing genes that are up-regulated in LUAD tissue and associated with prognosis. Lasso regression (C), univariate (D) and multivariate
Cox regression analyses (E) were performed to screen candidate genes.
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the median RiskScore. In total, 274 up-regulated genes and 631 down-
regulated genes were identified (Figure 5A). Following that, we extrac-
ted all up-regulated genes for KEGG pathway enrichment analysis and
found RiskScore-related genes were mainly implicated in substance
metabolism, including retinol metabolism, ascorbate and aldarate
metabolism, porphyrin and chlorophyll metabolism, and drug meta-
bolism. This was followed by oncogenic and immune pathways, such as
chemical carcinogenesis and the IL-17 signaling pathway (Figure 5B).
Furthermore, GO analysis indicated that RiskScore-related genes mainly
participated in keratinization and epidermal cell differentiation, fol-
lowed by still metabolism-related pathways, and was also associated with
humoral immune response (Figure 5C). The majority of molecular
functions were found in the activities of several metabolic enzymes and
membrane transporters (Figure 5D). Transcription proteins were mostly
located in the extracellular matrix and various lumens (Figure 5E).

Next, to investigate whether these five genes show co-expression with
critical oncogenes, we selected a subset of key genes driving lung cancer
progression and performed a correlation analysis. The results were that
NPAS2 was positively associated with almost all oncogenes, followed by
MELTF and GNPNAT1, but DKK1 and CCL20 were not related to the vast
majority of oncogenes. Interestingly, the oncogenes KRAS and PIK3CA
were closely linked to these five genes (Figure 5F). Among them, KRAS is
a commonmutation site in LUAD, and almost 30% of LUAD are driven by
activated KRAS mutations [10]. Here, we found that the expression of
CCL20 and NPAS2 were significantly higher in the KRAS mutant group
than in the wild-type group, while the opposite was true for MELTF
(Figure 5G). Furthermore, tumor suppressors undergoing genomic al-
terations, such as TP53, have also emerged as central determinants of
oncogene-driven molecular and clinical heterogeneity in subgroups of
4

lung cancer [11]. Strikingly, the expression of GNPNAT1 and MELTF was
significantly elevated when TP53 was mutated (Figure 5H).

3.5. Relationship between RiskScore and immune cells infiltration in TME

Given that RiskScore-related genes were linked to immunological
pathways, such as the IL-17 signaling pathway and humoral immune
response. Therefore, we proceeded to explore the relationship between
RiskScore and immune cells in TME. Firstly, based on the GSVA algo-
rithm, RiskScore was mainly positively correlated with Th2 cells and
negatively correlated with T follicular helper cells and mast cells as
shown in Figure 6A and Table 1. In addition, neutrophils, aDC, NK
CD56dim, Tgd, Th1, Th2 and Treg cells were significantly enriched in the
RiskScore-high group, while B cells, CD8þ T cells, eosinophils, mast cells
and T follicular helper cells were more abundant in the -low group
(Figure 6B, C). Second, based on the cibersort algorithm, RiskScore was
mainly positively correlated with macrophage M0 and T cells CD4
memory activated, and negatively correlated with mast cells resting and
B cells memory as shown in Figure 6D and Table 1. Moreover, macro-
phages M0, macrophages M2, T cells CD4memory activated, neutrophils,
and NK cell resting were more infiltrated in the RiskScore-high group,
while mast cells resting, B cells memory, plasma cells, T cells CD4
memory resting, dendritic cells resting, and mast cells activated were
more abundant in the -low group (Figure 6D, E). Overall, the results
based on these two algorithms were mostly consistent, but there were
still differences. Thus, a beneficial combination of the two may
contribute to a clearer understanding of the role of RiskScore in TME.

According to the GSVA algorithm, infiltration of B cells, T follicular
helper cells and mast cells favored prolonged overall survival in LUAD



Figure 3. Prognostic value of RiskScore. The scatterplot of RiskScore, TCGA-LUAD cohort was the training subset (A), GSE31210 (B) and GSE50081 (C) cohorts were
the validation subset 1 and validation subset 2, respectively. (D–F) Kaplan–Meier curves demonstrated the overall survival of LUAD patients in the RiskScore-high and
-low groups, and statistical tests were performed using Cox regression analysis. (G–I) Time-dependent ROC curves demonstrated the ability of RiskScore to predict 1-,
3-, and 5-year overall survival in LUAD patients.
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patients (Figure 6G–I), whereas Th2 cells were detrimental (Figure 6J).
Next, we explored the correlation between the RiskScore-high and -low
groups and the six previously reported pan-cancer immune subtypes
(C1–C6), in which LUAD was mainly concentrated in C1, C2, C3, C4 and
C6 [9]. As shown in Figure 6K, the proportion of immune subtypes C1
and C2 was higher and the proportion of C3 was lower in the
RiskScore-high group compared to the -low group. Of these, C3 was
associated with a better prognosis, while C1 and C2 indicated a poorer
prognosis. These results correspond to a longer survival of LUAD patients
in the RiskScore-low than in the -high group. Interestingly, immune cells
in C1 and C2 subtypes were predominantly Th2 cells and macrophages,
5

respectively, which further validated the conclusion based on GSVA and
cibersort algorithms that the abundance of Th2 cells and macrophages
was higher in the RiskScore-high group.

3.6. RiskScore prediction of response to immunotherapy and tumor relapse

To explore the response of RiskScore to immunotherapy, we first
evaluated its relationship with clinically significant immunosuppressive
checkpoints. Of note, the expression of PD-1, PD-L1 and PD-L2 was
significantly higher in the RiskScore-high group than in the -low group (P
< 0.001) (Figure 7A–C), while CTLA4 expression was not statistically



Figure 4. Correlation analysis of RiskScore with clinicopathological characteristics using the TCGA-LUAD cohort. RiskScore was related to pathological stage (A), T-
stage (B), N-stage (C), tumor status (D), residual tumor (E), and treatment outcome (F). Statistical tests were performed using the Wilcoxon rank sum test. CR, complete
remission/response; PD, progressive disease; PR, partial remission/response; SD, stable disease.
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different between the two groups (Figure 7D). Subsequently, we included
25 patients with NSCLC receiving anti-PD-1/PD-L1 immunotherapy in
the GSE135222 dataset. Strikingly, Kaplan-Meier curve demonstrated
that patients with a low RiskScore had a greater progression-free survival
rate than those with a high RiskScore (Figure 7E).

Next, to investigate the effect of RiskScore on relapse-free survival in
LUAD patients, we further divided LUAD patients in the RiskScore-high
group into four groups according to the quartiles of RiskScore by using
the TCGA database, with the top 25% being the extremely high-risk
group (n ¼ 67) and the bottom 25% being the high-risk group (n ¼
66) for RFS analysis. The result was that patients in the extremely high-
risk group had a significantly shorter relapse-free survival than those in
the high-risk group (Figure 7F).

3.7. Construction and evaluation of nomogram model based on RiskScore

To find independent predictors of prognosis, we performed uni-
variate and multivariate Cox regression analyses using the RiskScore
and clinical data of LUAD patients based on TCGA-LUAD cohort. As
shown in Table 2, RiskScore, T-stage, tumor status, and treatment
outcome were key independent predictors of LUAD prognosis and used
to construct a Nomogram model (Figure 8A), which allows for a more
accurate and personalized assessment of the probability of survival in
LUAD patients.

To assess the reliability of the model, we first employed time-
dependent ROC curves to show that the model predicted 1-, 3-, and 5-
year survival rates for LUAD patients with probabilities of 0.850,
0.848, and 0.825, respectively (Figure 8B). Kaplan-Meier curve showed
that LUAD patients in the high-risk group had significantly lower survival
6

rates than those in the low-risk group (Figure 8C). Then, we calculated
the C-index of the model as 0.804 (95% CI: 0.783–0.825) and plotted the
calibration curves for 1-, 3-, and 5-year (Figure 8D–F). In addition, ROC
curves can only assess the goodness of a model by sensitivity and spec-
ificity, whereas decision analysis curves consider the clinical utility or
patient benefit aspects of the model. Thus, we further evaluated the
reliability of the model using DCA curves and found that the curves of the
Nomogram model were found to be higher than all positive and negative
control lines within a certain range, and all were consistently higher than
the curves of the RiskScore (Figure 8G–I), further suggesting that the
Nomogrammodel has better clinical application in predicting the overall
survival of patients than using RiskScore alone.

4. Discussion

The most frequent subtype of lung cancer is lung adenocarcinoma,
which has a dismal 5-year survival rate. Evidence currently demonstrated
that biomarkers development and implementation can provide potential
prognostic value in order to guide sensible clinical treatment [12].
Consequently, understanding the evolution of lung adenocarcinoma ne-
cessitates the screening and identification of biomarkers linked to etiol-
ogy and prognosis. RiskScore, consisting of five genes, DKK1, CCL20,
NPAS2, GNPNAT1 and MELTF, was discovered to be an ideal predictive
predictor for LUAD in this study. The TNM stage of the tumor was
positively connected with RiskScore, implying that RiskScore may have a
pro-tumorigenic effect, hastening the progression of LUAD patients to
advanced stages of the disease. What's more, LUAD patients with a high
RiskScore had a worse survival rate, and the Nomogram model based on
RiskScore possessed a high prediction accuracy as measured by



Figure 5. Explore the biological functions of RiskScore using the TCGA-LUAD cohort. (A) Volcano plot showing differentially expressed genes (DEGs) in the
RiskScore-high and -low groups. (B) KEGG analysis of DEGs in the RiskScore-high group. GO analysis of DEGs in the RiskScore-high group, BP (C), MF (D), CC (E). (F)
Correlation analysis of DKK1, CCL20, NPAS2, GNPNAT1 and MELTF with critical oncogenes in LUAD respectively, statistical tests were performed by Spearman's test.
(G, H) DKK1, CCL20, NPAS2, GNPNAT1 and MELTF were differentially expressed in KRAS and TP53 mutant and wild-type groups, and statistical tests were performed
using the Wilcoxon rank sum test.
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Figure 7. Relationship of RiskScore to immunosuppressive checkpoints and response to immunotherapy and tumor relapse. PD-1 (A), PD-L1 (B), PD-L2 (C), and
CTLA4 (D) were differentially expressed in the RiskScore-high and -low groups using the TCGA-LUAD cohort, and statistical tests were performed using Weltch't test.
(E) Kaplan-Meier curve showed the difference in progression-free survival between 25 patients receiving anti-PD-1/PD-L1 therapy in the RiskScore-high and -low
groups using the GSE135222 cohort, and statistical test was performed using Log-rank P test. (F) LUAD patients in the RiskScore-high group were further divided into
four groups based on quartiles of RiskScore using the TCGA database, with the top 25% being the extremely high-risk group (n ¼ 67) and the bottom 25% being the
high-risk group (n ¼ 66) for RFS analysis, and statistical test was performed using Log-rank P test.
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numerous methodologies, suggesting that it could be a valuable tool for
clinical diagnosis.

Recent studies revealed that DKK1 promoted the migration and in-
vasion of non-small cell lung and ovarian cancers through the β-catenin
and P-JNK1 signaling pathways, respectively [13, 14], and was associ-
ated with poor prognosis in pancreatic ductal adenocarcinoma, bladder
cancer, and hepatocellular carcinoma [15, 16, 17]. In addition, CCL20
exerted tumor-promoting effects in the tumor microenvironment. High
expression of CCL20 in liver cancer tissues facilitated angiogenesis and
leaded to enhance tumor recurrence and decrease patient survival [18,
19], and CCL20 potentiated the invasion of breast cancer cells and
resistance to the chemotherapeutic agent taxane [20, 21], and was also
implicated in poor prognosis in colorectal, prostate, and lung cancers [22,
Figure 6. Role of RiskScore in the TME was analyzed using the TCGA-LUAD cohort. B
infiltration in TME, and statistical tests were performed by Spearman’ test. (B) The
RiskScore-high and -low groups, and statistical tests were performed using the Wilcox
the RiskScore-high and -low groups. Red font indicates that immune cells are infiltra
opposite is true for blue font. Based on cibersort algorithm: (D) Relationship betw
performed by Spearman's test. (E) The infiltration abundance of immune cells was d
tests were performed using the Wilcoxon rank sum test. (F) Heat map showing the enr
T follicular helper cells (H), mast cells (I) and Th2 cells (J) were associated with overa
were performed using Cox regression analysis. (K) Differences in immune subtypes b
dominant, C3: inflammatory, C4: lymphocyte depleted, C6: TGF-β dominant.
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23, 24]. NPAS2 was demonstrated to be a potential prognostic biomarker
in colorectal and breast cancers [25, 26], and facilitated cell survival in
hepatocellular carcinoma through trans-activation of CDC25A [27].
Several studies had collectively indicated that GNPNAT1 was closely
related to poor prognosis in lung adenocarcinoma [28, 29], and MELTF
can be considered as a prognostic marker in lung adenocarcinoma and
gastric cancer [30, 31]. In summary, many studies have shown that five
genes, DKK1, CCL20, NPAS2, GNPNAT1 and MELTF, are engaged in the
pathogenesis and progression of multiple tumors.

Altered metabolism was a hallmark of cancer, and reprogramming of
energy metabolism had historically been considered a common phe-
nomenon in tumors [32], as well as affecting tumor proliferation and
migration [33]. In this study, KEGG enrichment analysis revealed genes
ased on GSVA algorithm: (A) Relationship between RiskScore and immune cells
infiltration abundance of immune cells was differentially distributed between
on rank sum test. (C) Heat map showing the enrichment score of immune cells in
ted in higher abundance in the RiskScore-high group than in the low group. The
een RiskScore and immune cells infiltration in TME, and statistical tests were
ifferentially distributed between RiskScore-high and -low groups, and statistical
ichment score of immune cells in the RiskScore-high and -low groups. B cells (G),
ll survival in LUAD patients according to the GSVA algorithm, and statistical tests
etween the RiskScore-high and -low groups. C1: wound healing, C2: IFN-gamma



Table 1. Correlation analysis of RiskScore and immune cells infiltration in TME using the TCGA database.

Immune cells Cor/P-value Immune cells Cor/P-value Immune cells Cor/P-value

GSVA algorithm

T follicular helper cells �0.239/*** Central memory T cells �0.065/ns Macrophages 0.053/ns

Mast cells �0.211/*** NK CD56 bright cells �0.062/ns Type 1 helper cells 0.082/ns

Eosinophils �0.130/** Dendritic cells �0.046/ns Regulatory T cells 0.109/*

B cells �0.123/** T cells �0.032/ns Activated dendritic cells 0.169/***

CD8 T cells �0.122/** Cytotoxic cells �0.029/ns Gamma delta T cells 0.200/***

Immature dendritic cells �0.099/* Effector memory T cells 0/ns Neutrophils 0.209/***

Plasmacytoid dendritic cells �0.093/* Natural killer cells 0.011/ns NK CD56dim cells 0.211/***

Type 17 helper cells �0.069/ns T helper cells 0.015/ns Type 2 helper cells 0.471/***

Cibersort algorithm

Mast cells resting �0.222/*** T cells follicular helper �0.042/ns Neutrophils 0.128/**

B cells memory �0.180/*** NK cells activated �0.035/ns Mast cells activated 0.130/**

Plasma cells �0.113/** T cells CD8 �0.025/ns NK cells resting 0.174/***

Dendritic cells resting �0.102/* Macrophages M1 �0.024/ns Macrophages M2 0.199/***

T cells CD4 memory resting �0.098/* Dendritic cells activated �0.001/ns T cells CD4 memory activated 0.258/***

Monocytes �0.096/* T cells CD4_naive 0/ns Macrophages M0 0.260/***

T cells gamma_delta �0.060/ns T cells regulatory 0.033/ns

B cells naïve �0.059/ns Eosinophils 0.037/ns

*P < 0.05, **P < 0.01, and ***P < 0.001; ns, no statistical significance.

X. Tang et al. Heliyon 8 (2022) e10164
in the RiskScore-high group involved in energy metabolism, such as
glucagon signaling pathway and pentose and glucuronate in-
terconversions, implying that RiskScore may modify the metabolic state
of malignancies. Additionally, it was relevant to the drug metabolism.
Table 2. | Univariate and multivariate Cox regression analysis of clinical data of LUA

Characteristics Total (N) Univariate Cox r

Hazard ratio (95

RiskScore 526 2.718 (2.197–3.

Pathologic stage 518

Stage I 290 Reference

Stage II 121 2.418 (1.691–3.

Stage III 81 3.544 (2.437–5.

Stage IV 26 3.790 (2.193–6.

T stage 523

T1 175 Reference

T2 282 1.521 (1.068–2.

T3 47 2.937 (1.746–4.

T4 19 3.326 (1.751–6.

N stage 510

N0 343 Reference

N1 94 2.381 (1.695–3.

N2 71 3.108 (2.136–4.

N3 2 0.000 (0.000–)

Residual tumor 363

R0 347 Reference

R1 13 3.255 (1.694–6.

R2 3 11.085 (3.443–3

Therapy outcome 439

CR 326 Reference

SD 37 1.126 (0.566–2.

PD 71 3.710 (2.584–5.

PR 5 2.606 (0.639–10

M stage (M1 vs. M0) 377 2.136 (1.248–3.

Tumor status (with tumor vs. tumor free) 472 6.430 (4.418–9.

Gender (female vs. male) 526 0.934 (0.701–1.

Age (�65 vs. <65) 516 1.143 (0.854–1.

Bold text indicates statistical significance.
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Chemotherapy and tyrosine kinase inhibitors were the mainstays of
lung cancer treatment in the past. Because the mechanism of tumor cell
immune escape has been explained in recent years, immune checkpoint
inhibitor therapy has emerged as a novel hope for cancer patients who
D patients using the TCGA database (OS).

egression analysis Multivariate Cox regression analysis

% CI) P value Hazard ratio (95% CI) P value

363) <0.001 1.993 (1.395–2.848) <0.001

457) <0.001 0.388 (0.140–1.071) 0.068

154) <0.001 0.488 (0.079–3.035) 0.442

548) <0.001 0.644 (0.199–2.077) 0.461

166) 0.020 1.011 (0.528–1.935) 0.974

941) <0.001 2.863 (0.938–8.734) 0.065

316) <0.001 8.445 (1.673–42.637) 0.010

346) <0.001 2.534 (0.955–6.727) 0.062

521) <0.001 3.332 (0.651–17.061) 0.149

0.994 0.000 (0.000–) 0.995

251) <0.001 1.333 (0.441–4.026) 0.610

5.689) <0.001

240) 0.736 0.575 (0.198–1.670) 0.309

326) <0.001 3.016 (1.597–5.696) <0.001

.637) 0.182 14.925 (3.175–70.149) <0.001

653) 0.006

359) <0.001 7.572 (4.080–14.053) <0.001

245) 0.642

530) 0.369



Figure 8. Diagnostic efficiency of the Nomogram model. (A) A nomogram model constructed based on the TCGA-LUAD cohort was used to assess the 1-, 3-, and 5-year
overall survival of LUAD patients. (B) Time-dependent ROC curve demonstrated the ability of the model to predict overall survival at 1-, 3- and 5-year in LUAD
patients. (C) Kaplan-Meier curve showing overall survival of LUAD patients in high and low risk groups in the Nomogram model, and statistical tests were performed
using Cox regression analysis. (D–F) The calibration curves of the model were shown for 1-, 3- and 5-year, respectively. (G–I) The DCA curves for Nomogram model
and RiskScore were shown for 1-, 3- and 5-year, respectively.
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have failed numerous lines of treatment [34]. We speculated that Risk-
Score may contribute to immune escape of tumors, which leads to
immunotherapy failure, because LUAD patients in the RiskScore-high
group had significantly higher PD-1 and PD-L1 expression and lower
progression-free survival in receiving immunotherapy in the current
study. Interestingly, Ming Yi et al. [35] constructed a riskscore consisting
of 17 genes that also predicted response to immune checkpoint inhibitors
in LUAD patients based on an IPS scoring scheme and concluded that the
11
relative probability of response to anti-PD-1/PD-L1 and anti-CTLA-4
therapy was higher in the low risk score group. In contrast, RiskScore,
which was applied to predict immunotherapy response in our model,
contained fewer genes and facilitated clinical application. Second, the
GSE135222 dataset we utilized contained patient survival information,
and the effect of predicting immunotherapy was more intuitively
demonstrated by Kaplan-Meier curve. However, there were still some
limitations, such as the small number of patients, which could easily
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introduce bias. The second was that this dataset also has patients with
lung squamous carcinoma, which may differ somewhat from the lung
adenocarcinoma we studied.

In the present study, we utilized GSVA and cibersort algorithms to
evaluate the relationship between immune cells in TME and RiskScore,
respectively. The two algorithms were consistent in that RiskScore was
positively correlated with neutrophils and NK cells, and negatively
associated with mast cells, B cells and dendritic cells. The difference was
that RiskScore was significantly positively relevant to Th2 cells based on
the GSVA algorithm, while RiskScore was positively linked to macro-
phages M0 and M2 based on the cibersort algorithm. Overall, the bene-
ficial combination of both algorithms helps to understand more clearly
the role of RiskScore in the tumor microenvironment. According to the
GSVA algorithm, infiltration of B cells, T follicular helper cells, and mast
cells favored survival of LUAD patients, whereas Th2 cells were detri-
mental. Strikingly, RiskScore was positively correlated with Th2 cells,
and negatively correlated with B cells, T follicular helper cells, and mast
cells. Several studies have shown that increased abundance of Th2 cells
promotes tumor progression, such as in cervical cancer [36] and ovarian
cancer [37]. What's more, M2 polarization of macrophages was associ-
ated with immunosuppression and tumorigenesis and metastasis [38].
These data suggested that RiskScore may be engaged in the regulation of
tumor immunity, resulting in an immunosuppressive microenvironment
that favored tumor cell survival and proliferation.

To prevent low sample size and weaken individual differences, this
work primarily employed the TCGA and GEO databases for screening and
validation of prognostic biomarkers, which were based on big samples
and vast data. The combination of numerous genes to determine prog-
nosis is more accurate and superior to standard individual indicators. Not
only is prognosis useful, but so is immune efficacy prediction. The use of
time-dependent ROC curves, calibration curves, and the DCA curves can
considerably improve the accuracy of the results when judging the
Nomogram model's prediction abilities. However, limitations remain.
First, the vast majority of LUAD patients in the TCGA database are white
or African American, and other races using the model may experience
racial variances. Second, transcriptome data based on different
sequencing platforms will vary somewhat, so basic experiments are
needed to verify the expression of these five genes at the protein level. In
addition, the molecular pathways involved in RiskScore in this study also
require further functional experiments to clarify the underlying mecha-
nisms of the genes. Finally, the relatively small number of patients
included in the RiskScore prediction of immunotherapy response may
reduce the credibility and generalizability of the results. Despite the fact
that this is a retrospective study, it does uncover novel prognostic in-
dicators and treatment options for lung cancer.

In conclusion, we have successfully established a novel metabolic-
immune related model to predict the prognosis and response to immu-
notherapy in LUAD patients.
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