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Abstract

Background: Artificial intelligence (AI) in diagnostic radiology is undergoing rapid development. Its potential utility
to improve diagnostic performance for cardiopulmonary events is widely recognized, but the accuracy and
precision have yet to be demonstrated in the context of current screening modalities. Here, we present findings on
the performance of an AI convolutional neural network (CNN) prototype (AI-RAD Companion, Siemens
Healthineers) that automatically detects pulmonary nodules and quantifies coronary artery calcium volume (CACV)
on low-dose chest CT (LDCT), and compare results to expert radiologists. We also correlate AI findings with adverse
cardiopulmonary outcomes in a retrospective cohort of 117 patients who underwent LDCT.

Methods: A total of 117 patients were enrolled in this study. Two CNNs were used to identify lung nodules and
CACV on LDCT scans. All subjects were used for lung nodule analysis, and 96 subjects met the criteria for coronary
artery calcium volume analysis. Interobserver concordance was measured using ICC and Cohen’s kappa. Multivariate
logistic regression and partial least squares regression were used for outcomes analysis.

Results: Agreement of the AI findings with experts was excellent (CACV ICC = 0.904, lung nodules Cohen’s kappa =
0.846) with high sensitivity and specificity (CACV: sensitivity = .929, specificity = .960; lung nodules: sensitivity = 1,
specificity = 0.708). The AI findings improved the prediction of major cardiopulmonary outcomes at 1-year follow-up
including major adverse cardiac events and lung cancer (AUCMACE = 0.911, AUCLung Cancer = 0.942).
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Conclusion: We conclude the AI prototype rapidly and accurately identifies significant risk factors for
cardiopulmonary disease on standard screening low-dose chest CT. This information can be used to improve
diagnostic ability, facilitate intervention, improve morbidity and mortality, and decrease healthcare costs. There is
also potential application in countries with limited numbers of cardiothoracic radiologists.

Keywords: Convolutional neural networks, Deep learning, Artificial intelligence, Lung cancer screening, Coronary
artery disease, Cardiothoracic imaging

Background
Atherosclerotic cardiovascular disease (CVD) and lung
cancer are the leading causes of death in the USA with
CVD leading to overall mortality in adults and lung can-
cer causing 25% of all cancer deaths [1, 2]. Effective
screening and early detection are instrumental in redu-
cing morbidity and mortality, as lung cancer can be di-
agnosed earlier and therapy can be initiated for
cardiovascular disease before symptoms manifest.
Low-dose computed tomography (LDCT) imaging is a

well-validated screening tool for lung cancer that signifi-
cantly reduces mortality [3–7]. Patients receiving LDCT
scans typically have major risk factors that predispose
them to coronary artery disease and would be highly ad-
vantageous to concurrently screen for both lung cancer
and assess coronary calcification burden, which is a
well-known marker for subsequent major cardiovascular
adverse events [8–10]. Multiple prior studies have shown
LDCT to be a feasible tool in estimating coronary artery
calcium volume (CACV) using manual or semi-manual
techniques [11–14].
Recently developed artificial intelligence (AI) deep learn-

ing methods using convolutional neural networks (CNN)
have been used for the detection of lung nodules, which
has been shown to improve detection sensitivity and re-
duce reading times [15–17]. Automatic calcium scoring
methods, particularly on non-contrast chest CT scans, can
introduce large margins of error due to motion and cal-
cium location miscategorization; however, newer tech-
niques could compensate for these limitations.
The purpose of this study was to investigate the per-

formance of a fully automated AI convolutional neural
network (CNN, a multi-layered machine learning algo-
rithm which utilizes multiple hidden layers and sequential
output patterns that excel at image) in simultaneously de-
tecting solid pulmonary nodules and quantifying CACV
on routine LDCT scans of the chest when compared
against expert radiologists. In addition, the AI CNN re-
sults were evaluated for patient outcomes after at least a
12-month follow-up to evaluate for prognostic value.

Methods
This retrospective study was approved by the Medical
University of South Carolina’s institutional review board

with a waiver of informed consent and was conducted in
compliance with the Health Insurance Portability and
Accountability Act.

Study population
We evaluated LDCT studies at random that were per-
formed at our institution for patients who underwent
routine lung cancer screening between January 2018 and
July 2019. The exclusion criteria included age < 18 years
old and rejection of the chest CT by AI-RAD due to in-
compatible image parameters (i.e., CT slice thickness >
3 mm, poor image quality). Standard low-dose lung can-
cer screening inclusion criteria were utilized [6]. All 117
subjects were used for lung nodule analysis, and 96 sub-
jects met the CT quality criteria for successful CACV
segmentation, concordance, and outcomes analysis.
For each patient, demographics, including age, sex,

and smoking history, were obtained via chart review.
Clinical history including variables such as hypertension,
hyperlipidemia, and diabetes, as well as clinical out-
comes including major adverse cardiac events, death,
hospitalization, and stroke; lung cancer diagnosis; and
pulmonary hospitalization, were also documented. Major
adverse cardiac event (MACE) was defined as acute cor-
onary syndrome/myocardial infarction hospitalization,
percutaneous coronary intervention, or surgical
intervention.

Image acquisition
Acquisitions were performed using one of four Siemens
scanners: go.Top, Definition AS+, Flash, and Force.
Similar scanning parameters were used for each of the
different scanners following the American College of
Radiology-Society of Thoracic Radiology (ACR-STR)
Practice Parameters [18]. For example, acquisitions using
the third-generation dual-source CT system (SOMA-
TOM Force; Siemens, Forchheim, Germany) were per-
formed from the lung apices through the bases, without
contrast during breath-hold at end-inspiration. Acquisi-
tion parameters included the following: 110 kVp tube-
voltage, 40 eff mAs (which was changed to 120 kVp and
70 eff mAs for patients with body mass index of > 30),
192 × 0.6 mm collimation, gantry rotation time of 0.5 s,
pitch of 0.7, and effective slice thickness of 1 mm.
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Images were reconstructed with both soft body and
sharp body kernels at an axial slice thickness of 1 mm,
according to the standard ACR-STR LDCT guidelines.

Description of AI neural network process: coronary artery
calcium detection
The chest CT calcium detection model was first trained
on native, ECG-gated calcium scoring scans with corre-
sponding radiologist-verified ground truth labels for the
coronary calcifications. The trained model was then re-
fined on a set of non-contrast-enhanced chest CT scans
to obtain the final model. The validation data consisted
of 1261 ECG-gated calcium scoring scans and 579 chest
CT scans from multiple centers across the USA, Europe,
and Asia.
Since the size of the heart can vary substantially from

patient to patient, the model computations were per-
formed in a patient-specific scaled coordinate system, in
which the heart was scaled to have a consistent size. The
training data for the model was used to construct a

likelihood model representing a probability that a given
coordinate belonged to one of the coronary arteries in
the patient-specific coordinate system.
The computational pipeline used for the chest CT cal-

cium detection model is shown in Fig. 1. During model
preprocessing, a heart segmentation model (U-Net
architecture, trained and validated using 660 chest CT
scans) was used to identify and crop the region of inter-
est surrounding the heart. Subsequently, candidate vox-
els were identified in the cardiac region by thresholding
at 130 HU. For each candidate voxel, a small image
patch (32 × 32 pixels in axial plane) surrounding it along
with the corresponding prior likelihood map was used as
image features, and the spatial coordinates of the point
in the patient-specific coordinate system were used as
additional features. The final neural network model
architecture is shown in Fig. 2.
The image features were processed through a convolu-

tional neural network with a ResNet architecture, and
the spatial features were processed using a fully

Fig. 1 a Computational pipeline used for the chest CT calcium detection model. b Architecture of the deep learning chest CT calcium detection
model used for predicting the probability that each candidate voxel belongs to the coronary arteries. CAC, coronary artery calcium; BN, batch
normalization; ReLU, rectified linear unit; Conv, convolutional layer
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connected deep neural network. The outputs from these
two models were concatenated and used in the final
layer to predict the probability of each candidate voxel
being coronary calcifications. In the final stage, an aorta
segmentation model was used to remove any false-
positive aortic calcifications which might have been mis-
predicted by the calcium detection model, to obtain the
final output from the model.

Description of AI neural network process: lung nodule
detection
The lung nodule detection model has both lung nodule
detection and lung lobe segmentation (nodule
localization) capability. Lung nodule detection was per-
formed in a two-step approach including nodule candi-
date generation (NCG) and false-positive reduction

(FPR). The NCG comprises a proposed 3D region net-
work that outputs a few suspicious lesions called “nodule
candidates,” for which probability scores were assigned
[19]. Each nodule candidate and a small sample of voxels
around it were sent to the FPR module, which further
assessed the likelihood of the nodule candidate to be a
true or false positive via updating the scores generated
by the NCG module [20]. Weighted sums of the scores
generated by both modules were used to produce the
final decision (Fig. 3). The lung nodules were then seg-
mented by an algorithm based on region growing.
AI-RAD also performed lung lobe segmentation for

nodule localization. Segmentation masks of the five lung
lobes for a given CT chest dataset were computed,
which inputs the entire 3D CT volume and outputs
probability maps that indicate the likelihood of a voxel

Fig. 2 Pictorial representation of the lung nodule detection neural network used for lung nodule detection (a) and lung lobe segmentation (b).
BN, batch normalization; ReLU, rectified linear unit; Conv, convolutional layer
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belonging to each lobe. A deep image-to-image network
in a symmetric convolutional encoder-decoder architec-
ture was utilized [21]. This AI model for lung nodule de-
tection, localization, and segmentation was previously
trained on 5000 manually curated chest CT scans and
validated against 129 separate CT datasets [22].

AI RAD companion and measurements
All LDCT images were evaluated using an ensemble of
the previously described chest CT calcium detection and
lung nodule detection models in a prototype version of
AI-RAD Companion (VA10A, Siemens Healthineers, Er-
langen, Germany) to assess for lung nodules (AI-LN)
and CACV (AI-CACV). This prototype version of the
software platform provides automatic AI-based multi-
organ image analysis, visualization, and quantification
[22, 23]. AI-LN was asked to report the location and lar-
gest 2D diameter of the five largest nodules present as
well as classify each patient into two groups: nodules
present or nodules absent. The final model output (de-
tected calcium and lung nodules) along with the seg-
mentations of the lungs, the aorta, and the heart is
rendered using a cinematic rendering model in Fig. 4.

Coronary artery calcium volume validation
Manual (semi-automatic) CACV scoring was performed
by an expert radiologist on the axial 1.5-mm soft tissue

(B < 60) reformatted images using TeraRecon (Durham,
NC).

Lung nodule validation
Lung nodule validation was performed on a per-patient
and per-nodule basis with two expert radiologist consen-
sus confirmation as the gold standard. The expert radiol-
ogists validated AI-LN’s reported nodules and assessed
whether each nodule was a true positive (TP), false posi-
tive (FP), true negative (TN), or false negative (FN). TN
cases were defined as AI-LN reports no nodules and ex-
pert radiologists confirmed the lack of any nodules. FN
cases were defined as AI-LN reports no nodules, but ex-
pert radiologist blinded over-read indicated a nodule
was present. A FP nodule was defined as a nodule that
was reported by AI-LN but not by expert radiologists. A
TP nodule was defined as a nodule that was reported by
both AI-LN and expert radiologists to represent a nod-
ule. False-positive nodules were identified, and their true
anatomical identity (i.e., osteophyte, atelectasis) was col-
lected for a false-positive analysis.
The AI-RAD lung nodule detection parameters can be

adjusted based on the need of the end user. The parame-
ters for this study were as follows: detect up to 30 lung
nodules in each chest CT, only detect nodules > 6mm in
the greatest dimension, and report only the largest 5
nodules by the greatest dimension.
Per-patient validation was performed by the presence

of false positives and true negatives. Any patient with no
nodules determined by an expert radiologist panel and
AI-LN was considered to be a true-negative patient. Any
patient with one or more false positives was listed as
false positive for the purpose of per-patient validation.
Only patients with no false positives were listed as a
true-positive patient for the purpose of concordance.

Determining prognostic value
First, univariate statistics of clinical demographics and
risk factors were performed to assess for possible signifi-
cant predictors and confounding variables among all 117
patients. Variables included sex, race, current smoking
status, diagnosis of diabetes, hypertension, hyperlipid-
emia, tuberculosis exposure, asbestos exposure, family
history of lung cancer, chronic obstructive pulmonary
disease, interstitial lung disease, history of cardiac dis-
ease, family history of cardiac disease, stroke/transient
ischemic attack, daily aspirin use, and AI and Expert
CAC Score. Simple logistic regressions were then per-
formed comparing the accuracy of AI-RAD and expert
radiologist reads of CACV and lung nodules for the pre-
diction of cardiopulmonary outcomes. Comparisons of
AI-RAD and expert radiologist reads for negative out-
come predictions were then performed using ROC
curves and log-likelihood test for the logistic models.

Fig. 3 Cinematic volume rendering of the detected coronary
calcium (yellow) and lung nodules (orange) along with the lungs,
pulmonary vessel, aorta, and heart segmentations from a
representative low-dose chest computed tomography
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Individual outcomes were then analyzed by multivariate
partial least-squares regression. Correlation biplots and
ROC curves were calculated to assess for both strength
of correlation and accuracy in the model. Evaluation of
the model fit was performed using both R2 and root
mean square error (RMSE). The individual strength of
predictors was evaluated using correlation and variable
importance in projection (VIP) with the inclusion cri-
teria being VIP > 1 and 95% confidence interval signifi-
cant from zero.

Root analysis of false-positive nodules
Initially, univariate statistics were performed to assess
for confounding variables associated with having at least
one FP nodule per patient. Significant variables were
then analyzed by simple logistic regression for the pre-
diction of FP nodules. Log-likelihood tests were per-
formed to assess for the significance of the model
compared to a null hypothesis of no impact on the pre-
dictor. Logistic regression probability curves were then
generated for any significant models to assess for quanti-
tative impact of the predictor on the detection of any FP
patient. Additionally, each individual FP nodule was

assessed by an expert radiologist post hoc to qualitatively
identify the true anatomical identity of each nodule.
Qualitative results were then reported in tabular format.

Statistical analysis
Demographics, risk factors, summary statistics, and con-
cordance analysis were calculated using XLSTAT 20.1.2
Addinsoft (2020). (XLSTAT statistical and data analysis
solution. New York, USA. https://www.xlstat.com). Con-
tinuous variables were assessed for normality by
visualization and the Shapiro-Wilk test and visualization
by histogram (not reported). Continuous variables were
reported as mean and standard deviation if normally dis-
tributed and median plus interquartile range if non-
normally distributed. Tests for association were assessed
with two-tailed t tests for continuous normal variables
and Mann-Whitney U tests for non-normally distributed
continuous variables. Categorical measures of associ-
ation were assessed using Fisher’s exact tests given the
small counts of some observations. 95% confidence in-
tervals for Cohen’s kappa and screening parameters were
calculated using a normal approximation interval. Intra-
class correlation coefficients were reported along with

Fig. 4 Concordance statistics for AI determination of CACV. a Correlation of expert and AI-calculated CACV volumes by Spearman’s method. R2 =
0.792. Two-tailed ICC = 0.904 (95% CI 0.857–0.936), p = < 0.0001. α = 0.05. The AI and expert CACV volumes have an excellent agreement that
reliably follows a generalized linear trend with few outliers. b Bland-Altman plot of the quantitative differences between AI and expert
measurements of CACV volume. AI and expert have a mean volume difference of 65.96 for the agreement of CACV volume. The CACV-AI
software accurately predicts the CACV volume within acceptable limits compared to the expert. c Concordance of expert and AI reads of CACV
binned into CACV > 0 and CACV = 0 groups, representing patients with and without CACV, respectively. Expert and AI excellently agree (Cohen’s
kappa = 0.846, 95% CI 0.726–0.965) about CACV status with excellent screening parameters (sensitivity = 0.929, specificity = 0.960). CAC-AI volume,
coronary artery calcium-artificial intelligence volume; CAC-Expert volume, coronary artery calcium-expert volume; SD, standard deviation; PPV,
positive predictive value; NPV, negative predictive value; CI, confidence interval
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Spearman’s R for concordance and reliability of continu-
ous variables. Bland-Altman plots were reported for
assessing the quantitative differences between observers
for continuous variables (CACV values). Bland-Altman
plots were generated using the pyCompare (2018) pack-
age for python 3.6 (DOI: https://doi.org/10.5281/zenodo.
1256204). Univariate statistics were reported with the
same procedure as demographics and risk factors. Bon-
ferroni alpha correction was not applied. Exploratory
simple logistic regression and scatterplot visualization
were performed in R (v3.6.3). Partial least squares re-
gression was performed in XLSTAT for automatic gen-
eration of correlation biplots, ROC curves, and
standardization of viewing.

Results
Neural network architecture
Figure 1 describes the design of the network utilized for
CACV detection. Figure 2 describes the neural network
used for lung nodule connection. Figure 3 demonstrates
the combined cinematic reconstruction of the heart and
lungs simultaneously analyzed by both networks and dis-
playing CACV and lung nodules (see the “Methods” sec-
tion for detailed components of neural network
construction, training, and architecture.

Study population demographics, clinical attributes, risk
factors, and univariate statistics
Demographics of patients evaluated by both the AI algo-
rithm and expert radiologists for automated coronary
calcium scoring and lung nodule detection are reported
in Additional file 1: Table S1. Comparison of risk factors
and clinical attributes between patients with expert
radiologist-determined nodules, AI-determined nodules,
and patients with CACV > 0 and CACV = 0 is reported
in Additional file 1: Table S2. Patients with COPD and a
history of cardiac disease were more likely to have CAC
(p = 0.043, 0.016). Finally, demographics and risk factors
associated with both pulmonary outcomes and cardio-
vascular outcomes were evaluated for the identification
of confounding variables (Additional file 1: Tables S3
and S4). There was a total of 11 patients with ACS/MI
hospitalization, 11 with PCI/surgical intervention, and
13 with MACE. Twenty-seven patients were hospitalized
for pulmonary causes, and 5 patients were diagnosed
with lung cancer. A higher CACV by both expert radi-
ologist and AI was significantly associated with all car-
diac events (p < 0.001).

Coronary artery calcium volume
Figure 4a describes the correlation between the expert
radiologist and AI-RAD measurement of CACV. The
two measurements are highly correlated (R2 = 0.792) and
in excellent agreement (two-tailed ICC = 0.904, 95% CI

0.857–0.936). Figure 4b explores the quantitative differ-
ences in agreement between the two observers (AI-RAD
and expert radiologist), with a mean CACV disagree-
ment of 60.43 mm3. Figure 4c describes the ability of AI-
RAD to correctly identify patients with no coronary cal-
cium versus those with CACV greater than zero. Expert
radiologist and AI-RAD determinations had an excellent
agreement with a Cohen’s kappa of 0.846 (95% CI
0.726–0.965). The sensitivity and specificity were 0.929
and 0.960, respectively. The positive predictive value was
0.985. The overall rate of false positives and false nega-
tives was low (9% combined; 6% FN, 3% FP).
In Fig. 5a, acute coronary syndrome, myocardial in-

farction hospitalization (ACS/MI hospitalization),
MACE, and percutaneous coronary intervention/surgical
intervention (coronary artery bypass grafting) were ex-
cellently predicted by a combination of AI-RAD and car-
diovascular risk factors in all three cases (area under the
curve (AUC), 0.900, 0.911, 0.881, respectively). Figure 5b
describes the correlation of each predictor with the out-
come variable for each cardiovascular endpoint. Vari-
ables significant in the PLS model are highlighted in red
while the outcomes are highlighted in blue. Hyperten-
sion, hyperlipidemia, and AI-RAD were significant in
each of the three models (p < 0.05). Figure 5c demon-
strates the model characteristics for each endpoint. All
three endpoint variations are moderately explained by
the significant predictors (McFadden R2 = 0.257 (ACS/
MI), 0.301 (MACE), 0.173 (PCI/Surgical intervention)
with minimal RMSE (0.278, 0.290, 0.294, respectively)),
and all variable importance measured by the PLS-VIP
method (VIP > 1, 95% CI > 0). Additional file 1: Table S5
shows the logistic regression model parameters and odds
ratios for CACV. Logistic regression models were found
to be inferior to PLS regression models in this co-
hort. Additional file 1: Table S6 compares the PLS
model parameters with and without the AI component.
Additional file 1: Figures S1 to S3 demonstrate similar
AUCs for the prediction of cardiovascular outcomes by
expert and AI CACV by simple logistic regression.

Lung nodules
Figure 6a describes the predictive power of these vari-
ables for pulmonary hospitalization and lung cancer at
12-month follow-up (AUC = 0.734, 0.942, respectively)
by multivariate partial least squares regression. Figure 6b
represents the correlation of all predictor variables with
the outcomes. Pulmonary hospitalization was correlated
with White race, pack-years of smoking, and current
smoking status. Lung cancer was correlated with the de-
tection of nodules by the AI, pack-years smoked, and
current smoking status. Figure 6c highlights the model
parameters. McFadden R2 was 0.142 and 0.139 for the
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explanation of pulmonary hospitalization and lung can-
cer, respectively.
Figure 6d demonstrates the per-patient screening pa-

rameters and concordance values for AI-RAD compared
to expert radiologists. AI-expert radiologist interobserver
variability (Cohen’s kappa) was 0.741 (95% CI 0.618–
0.864). The per-patient sensitivity and specificity of AI-
RAD were 1 and 0.708, respectively. Fourteen out of 117

patients (12.0%) were identified as having a false-positive
nodule. Figure 6e describes the per-nodule concordance
and screening parameters for AI-RAD detection of indi-
vidual lung nodules. The per-nodule analysis was sensi-
tive, detecting every nodule (sensitivity = 1), but poorly
specific (specificity = 0.378). There was a total of 56
false-positive nodules identified by the AI software out
of a total of 222 nodules (25.2%).

Fig. 5 Multivariate cardiovascular outcome modeling using clinical risk factors and CACV-AI volume as predictors in partial least squares
regression (PLS). CACV-AI volume was the largest predictor of acute coronary syndrome/myocardial infarction, major adverse cardiac events
(MACE), and percutaneous coronary intervention/coronary artery bypass grafting in 1 year of follow-up (AUC = 0.900, 0.911, 0.811, respectively). a
Receiver-operator curves describing predictive power of individual cardiovascular outcomes. b Correlation biplots describing the magnitude and
direction of associations of predictors with individual cardiovascular outcomes. c Model parameters. Variables with VIP > 1 and 95% CI significant
from zero were considered important in the model. The models have a moderate fit and excellently predict cardiovascular events in 1 year of
follow-up. ACS/MI, acute coronary syndrome/myocardial infarction; MACE, major adverse cardiac event; PCI, percutaneous coronary intervention;
AUC, area under the curve; BMI, body mass index; HTN, hypertension; HLD, hyperlipidemia; VIP, variable importance projection; RMSE, root mean
squared error; CI, confidence interval; CAC-AI Volume, coronary artery calcium-artificial intelligence volume; CAC-Expert volume, coronary artery
calcium-expert volume
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Fig. 6 (See legend on next page.)
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Additional file 1: Table S7 describes the univariate sta-
tistics used for the evaluation of false-positive analysis by
logistic regression. Age is significantly associated with
false-positive nodules (p = 0.01). Additional file 1: Figure
S4A describes the prediction of false positives by nod-
ules by age, which was a significant variable in univariate
analysis (68.7 vs 65.8, p = 0.01). Age is a moderate pre-
dictor of having a false-positive nodule detected by AI
(AUC = 0.666, McFadden R2 = 0.06, Pr > chi (age) = 0.01,
log-likelihood test = 0.007). Additional file 1: Figure S4B
describes the probability curve of having at least one
false-positive nodule as a function of age. There is
roughly a 25% chance of a false-positive nodule at age
64. The mean age in this cohort is 68 years for those
with nodules and 64 years for those without nodules.
Additional file 1: Figure S4C lists the true anatomical
identity of the false-positive nodules. Most false positives
were identified as atelectasis, extrapleural fat, infection,
and protruding osteophytes from thoracic vertebral bod-
ies. Nine false positives were uncategorizable by the
panel of radiologists.

Discussion
Value of concurrent automatic detection of lung nodules
and coronary calcium
In this study, our goal was to evaluate the accuracy and
clinical event predictive power of two simultaneous
neural networks when applied to a major screening im-
aging modality (LDCT). While LDCT screening for lung
cancer has been validated across multiple clinical trials,
there is also strong evidence that identification of CACV
burden reduces mortality in this screening population.
The ITALUNG trial screened subjects with 9.3 years of
follow-up for cardiovascular mortality as identified by
CACV from the LDCT lung cancer screening and found
that identification of CACV was associated with a de-
creased cardiovascular mortality, indicating that at-risk
patients were identified and likely treated appropriately
[24]. Jacobs et al. in 2010 conclude that CACV can pre-
dict all-cause mortality from LDCT screenings [12].
Most recently, a study in 2020 evaluated the impact of
significant coronary artery calcification on patient

management and concluded that semi-automated CAC
detection and quantification directly resulted in a change
in management, corroborating the ITALUNG trial find-
ings [25].

Agreement of AI and expert radiologist determination of
coronary calcium volume
In this study, we demonstrate that expert radiologist and
AI-RAD measurements are highly correlated (R2 = 0.792)
and in excellent agreement (two-tailed ICC = 0.904, 95%
CI 0.857–0.936). The mean quantitative difference was
found to be 60.43 mm3; however, much of the quantita-
tive differences were found at CACV > 1000mm3, indi-
cating accuracy for most patients and highlighting the
need for further work on patients with very large cal-
cium burdens. Another important clinical determination
is the absolute presence or absence of coronary calcium.
Expert radiologist and AI-RAD determinations had an
excellent agreement with a Cohen’s kappa of 0.846 (95%
CI 0.726–0.965) for the assignment of patients into these
binary categories.
The sensitivity and specificity were 0.929 and 0.960,

respectively, and represent a highly accurate and reliable
test for this imaging modality. The overall rate of false
positives and false negatives was low (9% combined; 6%
FN, 3% FP). There were a small number of false-positive
reads where the AI-RAD assigned CACV to objects the
radiologist omitted. These readings may be explained by
several potentially calcified structures in the vicinity of
the coronary arteries including the mitral valve annulus,
aorta, and pericardium. The lack of contrast used in
LDCT further exacerbates these findings as coronary ar-
tery segmentation is not possible, an area of improve-
ment needed in the future. We add that false negatives
are particularly susceptible to noise reduction features
and spatial features that are used to optimize results
[26].
While quantitative and binary stratification of CACV

is integral for evaluating the concordance of AI-RAD
with expert radiologists, recently, a new scoring system
(CAC-DRS) has been created that stratifies patients into
discrete categories based on the number of coronary

(See figure on previous page.)
Fig. 6 Multivariate pulmonary outcome performance and concordance analysis. AI-detected lung nodules were not a significant predictor of
pulmonary hospitalization but were a significant predictor for diagnosis of lung cancer in 1 year of follow-up. a ROC curves of prediction of
pulmonary hospitalization (AUC = 0.734) and lung cancer (AUC = 0.942). b Correlation biplots for pulmonary hospitalization and lung cancer
evaluating the magnitude and direction of association of each predictor with the outcome. c Model parameters. Pulmonary hospitalization is
predicted by pack-years, current smoking status, and White race. R2 = 0.142, RMSE = 0.392. Lung cancer is significantly predicted by current
smoking status, pack-years, and presence of AI-predicted nodules. R2 = 0.139, RMSE = 0.188. d By patient AI analysis of nodules is excellently
sensitive and adequately specific for the detection of any lung nodule in a patient (sensitivity = 1, specificity = 0.708). Both AI and expert have a
high concordance of diagnosis of lung nodules in a patient (Cohen’s kappa = 0.741). e The by-nodule analysis was also highly specific and poorly
sensitive with an overall moderate agreement between the expert and AI software (sensitivity = 1, specificity = 0.378, Cohen’s kappa = 0.419). AUC,
area under the curve; BMI, body mass index; HTN, hypertension; HLD, hyperlipidemia; VIP, variable importance predictor; RMSE, root mean
squared error; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value
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vessels involved and the total calcium burden [27]. The
CAC-DRS system has recently been validated for risk as-
sessment on non-ECG-gated chest CT images and pro-
vides greater risk assessment stratification than
standalone CACV. Further study is needed on the or-
dinal concordance validity of AI-RAD detection of
CACV by the CAC-DRS.

CACV outcomes
As noted above, detection of CAC on LDCT imaging
both changes the management of CAD and reduces
mortality in at-risk populations. Partial least squares re-
gression was used to predict cardiovascular outcomes as
many of the predictors associated with CAD are highly
multicollinear and overlap in many patient populations
[28, 29]. Acute coronary syndrome/myocardial infarction
hospitalization (ACS/MI hospitalization), MACE, and
percutaneous coronary intervention/surgical interven-
tion (coronary artery bypass grafting) were excellently
predicted by a combination of AI-RAD and cardiovascu-
lar risk factors in all three cases (area under the curve
(AUC), 0.900, 0.911, 0.881, respectively). Hypertension,
hyperlipidemia, and AI-RAD CACV were significant in
each of the three models, consistent with the known risk
factors of CAD as outlined in Wilson et al. [28]. The
addition of AI-CACV improved the model prediction
compared to models without AI-CACV. The inclusion
of AI-RAD with a few easily obtained cardiovascular risk
factors strongly predicts cardiovascular events within 1
year of LDCT imaging, lending credence to the idea that
AI-RAD is a robust measurement with the potential to
reduce morbidity and mortality.
There were 13 major adverse cardiac events in this

study, which is roughly four times more common than 1-
year outcomes in published claims data (2.99 events/per-
son-year) [30]. This likely represents selection bias either
at a study enrollment or initial LDCT screening level. Our
vascular disease frequency (Additional file 1: Table S2)
was higher than reported claims data (for example, history
of CAD 27.1% vs 16.9%) and likely represents a combin-
ation of a sick population and disproportionate enrollment
of patients; regional variance and referral bias cannot be
excluded. Caution should be exercised when generalizing
the outcomes in this data to unrelated populations. Fur-
thermore, the AUCs > 0.9 represent an excellent explan-
ation of cardiovascular outcomes but overpredict
compared to the literature (~ 0.7 in the 2016 multi-ethnic
study of atherosclerosis); with a low population in the
study cohort and differences in the studied populations,
generalizability cannot be assumed [31].

Lung nodule concordance
About 24% of all LDCT scans in the NSLT 2011 trial
were read as containing lung nodules, but up to 96% of

those nodules were found to be benign. This necessitates
AI software to be highly sensitive as the prevalence is
high in the pre-test population [32]. We found AI-expert
radiologist interobserver variability was excellent
(Cohen’s kappa = 0.741 (95% CI 0.618–0.864), and the
per-patient sensitivity of AI-RAD was indeed excellent
(sensitivity = 1) and moderately specific (specificity =
0.708). These findings indicate that AI-RAD comple-
ments the role of LDCT as a screening modality for a
high-risk population with a high pre-test probability of
lung nodules. Only 14 out of 117 patients (12.0%) were
identified as having a false-positive nodule, a finding that
closely mimics other well-validated screening modalities
such as mammography (11.5% false-positive interpret-
ation rate) [33].
The per-nodule analysis was excellently sensitive, de-

tecting every nodule (sensitivity = 1), but poorly specific
(specificity = 0.378). There was a total of 56 false-positive
nodules identified by the AI software out of a total of
222 nodules (25.2%). There was 0.48 FP/case for AI-
RAD versus 0.33 to 1.39 FP/case reported by a panel of
four thoracic imaging experts in the literature [34]. The
concordance was similarly only mild in strength due to
the rate of false positives (Cohen’s kappa = 0.419). Pos-
sible explanations include the lack of contrast generating
more false positives for a program trained on mixed im-
aging modalities or insufficient number of training
datasets.

Lung outcomes
The NLST trial in 2011 concluded that LDCT screening
reduced mortality in the screening cohort by identifying
cancerous and precancerous lesions and affecting treat-
ment change [4]. Pulmonary hospitalization is ad-
equately predicted by pack-years, current smoking
status, and White race (AUC = 0.734, R2 = 0.142,
RMSE = 0.392). The low R2 and high AUC likely indicate
that while little variability in the outcomes is explained
by the predictors, the data is one-sided and the predic-
tion strength is strong, as evidenced by the low RMSE.
AI-RAD-diagnosed nodules were unable to predict pul-
monary hospitalization, a finding that correlates with the
subclinical nature of early lung neoplasia and highlights
the need for screening. Pack-years, current smoking sta-
tus, and AI-RAD-detected nodules significantly pre-
dicted the diagnosis of lung cancer at 1 year (AUC =
0.942, R2 = 0.139, RMSE = 0.188). Clinically, this corre-
lates with the expected findings as smoking is the largest
risk factor for cancer, and lung nodules represent pos-
sible precancerous lesions.

Analysis of false-positive lung nodules
Our study had 56 nodules identified as false positives.
Age was found to be a weak predictor of having a false-
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positive nodule detected by AI (AUC = 0.666, McFadden
R2 = 0.06, Pr > chi (age) = 0.01, log-likelihood test =
0.007). There is roughly a 25% chance of a false-positive
nodule at age 64. Furthermore, the mean age in this co-
hort is 68 years for those with nodules and 64 years for
those without nodules, suggesting that the average pa-
tient screened in our population has a 25% chance of
having a false positive consistent with prior literature
[35].
Most false positives were identified as atelectasis,

extrapleural fat, infection, and protruding osteophytes
from thoracic vertebral bodies. Nine false positives were
uncategorizable by the panel of radiologists. Atelectasis
and infection were commonly misidentified as nodules
likely due to their relative mass-like area of hyperdensity
with adjacent normal or emphysematous lung paren-
chyma. The lobular contour of the extrapleural fat and
protruding osteophytes from thoracic vertebral bodies,
in direct contact with the lung parenchyma, likely led to
their misidentification as nodules. While future study is
necessary to compensate for the presence of these coin-
cident findings, quantification of rates of known false
positives may be useful when using the AI software as
an adjunct tool for diagnosis.

Limitations
Although the AI-RAD platform has been previously
tested and trained on thousands of manually segmented
and curated chest CT scans and validated against separ-
ate CT datasets, application to our single-center study
only reflects the population findings at our institution
with a small number of patients and is not yet
generalizable to larger populations. Findings should be
treated as a proof-of-concept in nature for the dual im-
plementation of neural networks requiring larger multi-
center validations needed to produce generalizable
results.
This study is also underpowered to predict lung cancer

outcomes analysis with only 1 year of follow-up. While
lung nodules were a significant variable in the lung can-
cer multivariate model, the exact predictive contribution
cannot be established yet. However, it should be noted
that multiple large prospective studies have validated
that lung nodules identified on LDCT are predictive of
lung cancer [3–5]. AI-RAD performed admirably by col-
lecting all nodules present in the LDCT scans (sensitiv-
ity = 1), so while multi-year follow-up is needed to
readily quantify the predictive power of AI-RAD de-
tected lung nodules, all pre-cancerous lesions were iden-
tified in this cohort. Similarly, a major limitation is the
rate of false-positive nodules which was higher than ex-
pert radiologist analysis. False-positive nodules induce a
significant burden on the patient in the way of unneces-
sary biopsies and downstream testing. More study is

needed to be able to refine the parameters and provide a
more specific diagnosis.
Finally, the results of this study describe the predictive

power of AI-CACV and AI-LN on outcomes in separate
categories. Additional investigation of the data is needed
to evaluate the potential combined morbidity, mortality,
and cost-benefit of AI-RAD when applied to LDCT pop-
ulations. Importantly, this study has not been validated
by an independent cohort. Future study with longer-
term follow-up data and a larger cohort are needed for
this assessment and is currently being collected.

Conclusion
Overall, this study demonstrated a proof-of-concept
model using two parallel neural networks to diagnose
major contributors to mortality in a high-risk population
within an existing screening framework. Results from
the AI software strongly agree with expert radiologist
determination of both CACV and lung nodule detection.
Diagnosis of lung nodules on a per-nodule basis is highly
sensitive, but poorly specific, with false-positive rates
similar to expert thoracic radiologists. Major contribu-
tors to false positives include age, positing senescent
changes in the lung as a confounder, and object of fur-
ther study.
AI-RAD-detected CACV and lung nodules function to

predict major cardiopulmonary outcomes at 1 year with
excellent predictive power, giving evidence that AI mea-
surements correspond well with their expert-read coun-
terparts. However, the cohort was small and not
generalizable to the general population. Additionally,
major insights into the feasibility of AI-based CACV
quantification in LDCT are presented. To our know-
ledge, this is the first study to evaluate the performance
and predictive power of two separate AI neural networks
in an already validated screening modality. Further stud-
ies are needed to expand the scope anatomically to
maximize risk assessment and reduce health care costs,
avoid false-positive lung nodules, and gain longer-term
follow-up with major cardiopulmonary outcomes.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12916-021-01928-3.

Additional file 1: Table S1. Demographics of patients with and
without lung nodules stratified by the AI and expert as well as expert
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outcomes with and without AI components included in the model.
Table S7. Summary statistics of Patients with False Positive Nodules. Fig-
ure S1. ROC curves for comparison of CAC AI-Volume and Expert-
Volume for prediction of MACE. Expert and AI-Volume both excellently
predict MACE. Figure S2. ROC Curves for comparison of CAC AI-Volume
and Expert Volume for prediction of ACS/MI hospitalization in our study
timeframe. Figure S3. ROC Curves for comparison of CAC AI-Volume
and Expert Volume for prediction of percutaneous coronary intervention
(coronary catheterization or stent placement) or coronary artery bypass
graft operation. Figure S4. Root cause analysis of false-positive nodules.
A. Logistic regression of having one false positive nodule as predicted by
age. B. Logistic regression probability curve of false positive nodules as a
function of age. C. True anatomic identities and relative frequencies of
false positive nodule etiologies.
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