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Potential for intermittent stimulation of nucleus basalis of Meynert to impact
treatment of alzheimer’s disease
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ABSTRACT
The brain’s cholinergic arousal pathways decline in parallel with the brain’s executive functions in
aging and Alzheimer’s Disease. The frontline and currently most effective approach to treating
Alzheimer’s disease is the administration of cholinesterase inhibitors, which, in a dose dependent
manner, improve the symptoms of cognitive decline over the first months of treatment before
further decline occurs. We recently showed that intermittent deep brain stimulation of the nucleus
basalis of Meynert improves working memory function in young adult monkeys, and that this
improvement depended on cholinergic function. Within minutes, the monkeys’ ability to remember
stimuli over a delay period improved. Over months, the monkeys performed the working memory
task better even in the absence of stimulation. Here, we show historical data from our monkey
colony in which more than two dozen animals have performed the same behavioral task to
asymptotic performance levels. Using a distribution based on our historical data, we estimate that
the monkeys receiving intermittent stimulation leapt over the performance level of 32–44 percent
of peer animals in the first several months after stimulation was initiated. Implications for a parallel
increase in cognitive function for early Alzheimer’s patients are discussed.
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The cholinergic hypothesis of cognitive deficits related to
age and Alzheimer’s Disease dates to the 1970s, when
scientists began to notice clear correlations between the
losses in cognition and cholinergic function.1–3 Physio-
logical abnormalities observed in Alzheimer’s Disease
include choline transport, acetylcholine release, expres-
sion of cholinergic receptors, neurotrophin support, and
perhaps axonal transport.4,5 Cholinesterase inhibitors
and some cholinergic agonists improve the cognitive def-
icits associated with Alzheimer’s Disease, while some
anticholinergic agents worsen specific cognitive deficits
observed in the dementia. The relationship between cho-
linergic function and cognition are regionally restricted
to the brain’s cholinergic arousal pathways, which nota-
bly include the pedunculopontine and laterodorsal teg-
mental nucleus, the nucleus basalis of Meynert and
substantia innominata, the medial septum, and the diag-
onal band of Broca.6

The frontline treatment for Alzheimer’s Disease is the
administration of cholinesterase inhibitors,7,8 the most

prevalent of which is donepezil (Aricept). Subjects are
typically prescribed 5 mg/day of donepezil, then increase
their dosage, if tolerated, to 10 mg, and finally up to
23 mg. The highest dose leads over 30% of patients to
discontinue use from the side effect profile which most
notably includes nausea, vomiting, and related gastroin-
testinal symptoms.9,10 In patients who tolerate the high-
est dose, cognitive symptoms improve across several
cognitive domains over a three month period. By one
year after treatment, cognitive function has returned to
the baseline that existed before donepezil use, and
declines with aging thereafter.11

We explored the contribution of cholinergic modula-
tion to executive function by combining deep brain stim-
ulation of the nucleus basalis of Meynert with a working
memory task in the Rhesus monkey.12 We found that
concurrent intermittent stimulation boosted working
memory function. Although animals had been trained to
asymptotic levels of performance before initiating stimu-
lation, in the following months their working memory
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improved even in the absence of concurrent stimulation.
The magnitude of the long-term effect was approxi-
mately four times as large as the magnitude of the short-
term effect. However, the changes in performance in
these monkeys could not be easily translated to the pro-
jected impact on a human who could receive the same
treatment.

We therefore compiled a database of working mem-
ory performance of 25 Rhesus monkeys from our colony,
all of which had performed the same task to asymptotic
performance levels for thousands of behavioral trials. For
each animal, we found a working memory delay interval
for which the percentage of correct trials was as close to
80% as possible, and always between 70 and 90 percent
correct, at the conclusion of asymptotic training. We
scaled that delay to estimate the interval at which that
animal would have been correct in 80% of the trials by
interpolation and comparison with memory perfor-
mance in our published work.12 Lastly, we superimposed
the long-term changes in memory performance of our
three animals, using an interval for which they were cor-
rect on 80% of the trials, on this historic distribution. As
can be seen in Fig. 1, the delays changed from 1.5 to 8
seconds, 3 to 10 seconds, and 6 to 30 seconds. These
changes corresponded to percentile shifts of 32, 36, and
44 percent, and spanned a large range of the distribution
of working memory abilities.

The remaining question is how a 30–40 percentile
shift in performance would alter age-related decline.
Cholinergic modulation of cognition is reasonably com-
parable in older and younger subjects.13 In working
memory, a 30 percentile change would make an average
human 65 year old have a superior working memory to

an average 25 year old, thereby erasing all age related
decline in working memory.14 The earliest deficits differ-
entiating an Alzheimer’s Disease patient from a control
are in delayed recall, a measure of episodic memory,15

and the deficit is a little more than one standard
deviation. The question of how intermittent stimulation
could impact such a patient group remains an open one,
with many caveats about the potential pitfalls of
translation. However, the potential to markedly improve
cognition in Alzheimer’s patients is a straightforward
prediction from these studies.
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