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Abstract

Given the difficulty and effort required to confirm candidate causal SNPs detected in genome-wide association studies
(GWAS), there is no practical way to definitively filter false positives. Recent advances in algorithmics and statistics have
enabled repeated exhaustive search for bivariate features in a practical amount of time using standard computational
resources, allowing us to use cross-validation to evaluate the stability. We performed 10 trials of 2-fold cross-validation of
exhaustive bivariate analysis on seven Wellcome–Trust Case–Control Consortium GWAS datasets, comparing the traditional
x2 test for association, the high-performance GBOOST method and the recently proposed GSS statistic (Available at http://
bioinformatics.research.nicta.com.au/software/gwis/). We use Spearman’s correlation to measure the similarity between the
folds of cross validation. To compare incomplete lists of ranks we propose an extension to Spearman’s correlation. The
extension allows us to consider a natural threshold for feature selection where the correlation is zero. This is the first
reported cross-validation study of exhaustive bivariate GWAS feature selection. We found that stability between ranked lists
from different cross-validation folds was higher for GSS in the majority of diseases. A thorough analysis of the correlation
between SNP-frequency and univariate x2 score demonstrated that the x2 test for association is highly confounded by main
effects: SNPs with high univariate significance replicably dominate the ranked results. We show that removal of the
univariately significant SNPs improves x2 replicability but risks filtering pairs involving SNPs with univariate effects. We
empirically confirm that the stability of GSS and GBOOST were not affected by removal of univariately significant
SNPs. These results suggest that the GSS and GBOOST tests are successfully targeting bivariate association with phenotype
and that GSS is able to reliably detect a larger set of SNP-pairs than GBOOST in the majority of the data we analysed.
However, the x2 test for association was confounded by main effects.
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Introduction

Genome-Wide Association Studies (GWAS) measure hundreds

of thousands of SNPs from thousands of individuals with the aim

of detecting statistical association between individuals’ phenotype

and genotype. SNPs are known to be useful markers for disease

and are typically measured using microarray-based approaches

[1]. The most common GWAS designs are Case-Control studies of

human disease, where the phenotype of each individuals is a

binary label indicating the presence or absence of disease; these

individuals are called cases or controls respectively.

Existing research has identified a number of SNPs that are

believed to confer an increased or reduced risk of disease [2].

However, despite application of numerous methods to GWAS, for

most diseases there remains a gap between the level of association

observed from the SNPs and the total level of genetic heritability

known to exist; this is the problem of ‘‘missing heritability’’ [3].

One hypothesis is that the missing heritability of disease

phenotypes could be further explained by combinatorial analysis

of interactions between SNPs [4]. However, there are few studies

that have demonstrated interactions between SNPs that replicate

across multiple datasets, let alone explaining some portion of the

missing heritability.

Historically, computational complexity has made combinatorial

SNP analysis infeasible. As a typical GWAS study contains over

500,000 SNPs, exhaustive searching for interactions between pairs

of SNPs requires that more than 125 billion pairs are considered.

Since the number of interactions considered grows exponentially

with the size of the interaction, exhaustive interaction analysis is

likely to remain infeasible for more complex interactions of 4th

order or more. However, recent methods have been developed

that are able to perform exhaustive two-way analysis in a

reasonable amount of time [5,6,7,8]. Difficulties with this type of

analysis remain, with recently published data showing that

attempts to use conventional tests of association to select bivariate

effects may be confounded by univariate effects [5], indicating that

statistical issues are also preventing effective use of GWAS for the

understanding of disease biology.

From a machine learning perspective, Case–Control GWAS

studies can be modelled as a binary classification or regression
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problem. The task of identifying meaningful SNPs is essentially a

feature selection task [9], and the search for higher order

interaction amounts to simultaneously finding multiple explana-

tory variables. We compare three approaches for identifying

bivariate features: x2 test of association corresponding to a

traditional feature selection approach, and two recently published

methods GSS [5] and GBOOST [10] corresponding to the binary

classification and regression setting respectively.

The approach we take in this paper is variable ranking, and we

focus on bivariate features. This is a natural extension to the

univariate analysis (studying individual SNPs) that has already

been performed [11,12]. Motivated by recent work on gene

expression data [13,14] and univariate GWAS analysis [15,16]

that identifies stable features as good features, we perform cross

validation to look for bivariate features that are stable when subsets

of individuals are removed from the dataset.

1.1 Stability and replicability
It is hypothesised that networks of interacting alleles are

responsible for some part of individuals’ susceptibility to disease

due to effects on a variety of cellular mechanisms [17]. However,

discovery of such networks is in its infancy. Consequently, we do

not possess a set of known SNP interactions that can be used to

validate multivariate SNP detection techniques.

A common approach to testing interaction detection methods is

to use simulated data, whereby specific causal relationships are

inserted into randomly generated datasets, and methods’ ability to

recover the signal are measured. However, much is unknown

about the structure of GWAS data and making it difficult to know

whether the way in which data has been modelled is representative

of interactions in real data. For example, it is unknown whether

phenotypic consequences occur incrementally or suddenly given

varying subsets of causal variants and the levels of risk these

variants incur [4,18]. While some attempts have been made to

model such complexities, the validity of simulated data is currently

unclear.

Given these concerns, we chose to measure the replicability of

SNP-pair rankings on real GWAS data [19]. While only some

consistently selected SNP-pairs might have a biological relation-

ship with phenotype, any good pair-selection algorithm should

reliably detect SNP-pairs that predict phenotype. Therefore, we

critically investigated the replication results we obtained in an

attempt to characterise the qualities of replicating pairs.

Interacting SNP pairs are commonly referred to as epistatic,

though the precise definition of this term can vary greatly

specifically for epistatic SNP pairs, given the complexity of this

terminology. Instead we search for bivariate association with

phenotype: combinations of SNPs that result in a stronger level of

association than if either SNP were considered independently.

This overlaps with some of the numerous definitions of epistasis

but is potentially inconsistent with others [20]. Regardless of any

underlying biological cause, pairs of SNPs that result in improved

association with phenotype compared to use of these SNPs alone

may improve estimates of heritability [4] and could be useful

markers for clinical prediction of disease.

In this paper, we investigate 2 fold cross-validation where in

each random split, individuals are separated into two equal sized

subsets each containing all SNPs. For each pair of subsets, we

apply a bivariate GWAS approach and determine whether the

rankings of SNP pairs by the given statistic are consistent. This is

motivated by a common approach in biology of replicating studies

in two separate cohorts. Two fold cross validation simulates two

equal sized cohorts of individuals which have had the same SNPs

genotyped. An alternative resampling scheme is the bootstrap [21]

method, however we chose to use cross-validation as it matches

more closely the traditional multi-cohort design. While such an

approach does not simulate the effects of measurement noise or

population stratification between datasets, SNPs that are ranked

differently across folds may be due to some bias in either the

underlying statistical test or within the datasets under examination.

1.2 Genome Wide Interaction Search
Genome-Wide Interaction Search (GWIS) is a fast software

program for detecting statistical association between pairs of SNPs

and a given phenotype in GWAS data [5]. GWIS exploits statistics

such as GSS that are specifically designed to search for an

improvement in bivariate (SNP-pair) association with phenotype over

the univariate association (individual SNPs). Unlike common

regression-based approaches, these tests make no assumptions

about the way in which disease risk is distributed amongst the

genotypes for a given pair.

The GSS method used in this paper uses classification models to

predict phenotype from genotype. For a given SNP pair,

determining the GSS requires solving a non-trivial min-max

optimisation problem (see the Methods section). Solving this

optimisation problem efficiently enough to allow exhaustive

analysis is difficult. Indeed, earlier benchmarks had suggested that

bivariate exhaustive GSS on a typical dataset could take years to

execute, hence Goudey et al. [5] were only able to apply GSS to

top-ranked pairs from a pre-filtering heuristic. However, parallel

implementation on NVIDIA’s CUDA [22] General-Purpose

Graphics Processing Unit (GPGPU) architecture reduced this

runtime to approximately 6 hours, enabling us to perform cross-

validation on GWAS data using the GSS method.

In this paper we further evaluate two existing methods for

bivariate feature selection. The most widespread alternative to

classification is regression, in which genotypes are used as

explanatory variables and phenotype as a dependent variable. A

popular example of such a method is BOOST [10] and its GPU

implementation GBOOST [23].

Like GWIS, BOOST measures the improvement over the

effects of the marginals but the approach is fundamentally

different: BOOST is grounded in traditional statistics and uses a

likelihood ratio test to reject the hypothesis that the interaction

term does not improve the model (i.e., that the SNP-pair does not

improve linear combinations of the marginals). We include

GBOOST in our study as a representative from the family of

regression methods (see the Methods section).

Pearson’s x2 test for association is used as a representative of

simpler statistics that do not explicitly detect interactions. Instead,

the x2 test looks for associations with phenotype that may include

interactions between SNPs.

1.3 Measuring overlap in top-k ranked lists
There are a number of difficulties measuring overlap between

ranked lists, particularly for Case-Control GWAS that have

categorical genotype and phenotype. With the number of

individuals only in the thousands, the potential for tied scores is

significant and ordering of equal scores is at best random. The top

500,000 ranks are likely to contain thousands of SNPs with equal

score, and all tied scores will have an ordering unrelated to their

significance. A good rank comparison algorithm should account

for tied scores. The two common approaches for comparing

ranked data are known as the Spearman’s r (Spearman Rank

Correlation or Spearman’s Rho) and Kendall’s Tau (t).
Most importantly, when considering the ranks of features

computed by variable ranking approaches, only meaningful
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features would be expected to have consistent ranks between

different subsets of the data [24]. Features which do not contribute

to explaining the phenotype would have an arbitrary rank, and

hence would not be stable. Therefore it is desirable that

comparisons between ranked lists of discovered features consider

order stability in addition to the common elements.

Furthermore, ranked SNP-pairs are indefinite and incomplete

lists [25]. The number of SNP-pairs with a causal relationship to

phenotype is unknown, so it is difficult to determine the number of

ranks in which statistical tests should be compared. For example, if

only 30 SNP-pairs have any effect on phenotype, it is inappro-

priate to use the overlap in the top 100 ranked scores as a measure

of test performance. As exhaustive bivariate analysis of a typical

GWAS will examine billions of SNP pairs, it is impractical to

record the rank of every pair. Instead, only a subset of top-ranked

pairs will be recorded. Hence, the resulting list is incomplete as

only a subset of all pairs are included in the ranked results.

In this paper we propose an extension of Spearman’s r which

compares two (incomplete) lists of top ranked objects. This takes

the issues listed above into account and is described in the

Methods section. In addition, we investigate the rank at which

crosses zero (indicating no correlation) which we call Zero Index

Crossing (ZIC), as a way to identify SNP pairs that are stable with

respect to cross validation.

1.4 Related tasks and settings
In this paper we propose an extension of Spearman’s r which

compares two (incomplete) lists of top ranked objects. This takes

the issues listed above into account and is described in the

Methods section. In addition, we investigate the rank at which r
crosses zero (indicating no correlation) which we call Zero Index

Crossing (ZIC), as a way to identify SNP pairs that are stable with

respect to cross validation.

Our choice of Spearman’s r as the metric to measure the

stability between two lists is motivated by the belief that the

ordering is also an important aspect to stability in addition to the

retrieved items. Spearman’s r is particularly attractive as it has a

strong theoretical basis and has been well studied. Other

approaches in the literature such as have been motivated by

specific applications, for example gene expression [26], and are

not applicable in our setting.

Furthermore, there is a closely related problem of rank

aggregation [27] where a set of stable objects are sought. Our

approach does not directly result in informing which objects are

stable, but does suggest what the size of such a set might be.

1.5 Contributions
The contributions of this paper are: examining stability of SNP-

pairs discovered by exhaustive bivariate GWAS conducted in

cross-validation, including the recently published GSS statistic

compared to two reference methods, x2 and GBOOST; novel

insights into the stability performance of bivariate analysis using

the x2 statistic; an extension to Spearman’s correlation for

incomplete lists; a new summary statistic called Zero Index

Crossing for identifying a threshold; and finally some empirical

evidence that the non-independence of the tests being performed

makes multiple testing correction methods unreliable.

Methods

We review the framework of statistical hypothesis testing for

finding epistatic interactions in GWAS data (section 2.1), and

briefly describe the three statistical tests compared in this paper. In

section 2.2, we describe our cross-validation approach which

allows us to examine the stability of SNP rankings by repeatedly

splitting datasets into two halves. We also propose an extension to

Spearman’s correlation for incomplete lists, and suggest using the

Zero Index-Crossing (ZIC) of Spearman’s correlation to measure

the stability of different datasets and methods.

2.1 Bivariate SNP analysis
This paper compares three statistical tests for association

between genotype and phenotype, namely Pearson’s x2 test for

association, GBOOST [23], and the Gain in Sensitivity and

Specificity (GSS) test [5].

Consider a population split into two disjoint subsets of Controls

P0 and Cases P1 from which we have sampled relatively small

subsets S0 and S1 respectively. We denote each GWAS study as a

collection of SNPs from a cohort of size N samples. We use the

vector Xp to denote the p-th SNP. For diploid organisms,

considered in human GWAS, each SNP can take one of three

genotypes depending on whether the SNP variant occurs on zero,

one or both copies of an individual’s relevant chromosome. We

denote these genotype values as V~0,1,2 respectively, but note

that v[V are categorical values with their value not indicating an

ordinal relationship. When considering a SNP pair between the

p{th and q-th SNP, we denote the resulting SNP pair as Xp,q,

which has genotype combinations in the 9-element space

V~f(0,0),(1,0), . . . ,(2,2)g.
The discrete nature of the data in SNP interaction analysis, with

two possible phenotype values and three possible genotype values

per SNP, allows us to summarise the occurrence of a given SNP

interaction as a contingency table. In table 1, we describe such a

table for an arbitrarily sized SNP interaction. Each cell indicates

the occurrence of a specific genotype combination v[V in either

cases or controls. We use the notation adopted by [28] to describe

the table cells where nij is used to denote the observed count in the

cell (i,j). Marginal counts can be described using a standard plus

convention, e.g., niz~
P

j nij is the occurrence of all genotypes for

a given phenotype, i. The use of contingency table based analysis

is common for GWAS studies as it allows for the application of a

wide variety of statistical techniques [29].

2.1.1 Pearson’s x2 test for association. For both the

univariate and bivariate case the x2 statistic can be evaluated by

comparing the difference between the observed and expected

frequency of Cases and Controls for each possible genotype in V :

Definition 1 (x2

x2~
X
i[0,1

X
j[V

(ni,j{E½ni,j �)2

E½ni,j �

where E i,j ~
niz

:nzj

n
A p-value can be calculated from the score x2 using the

incomplete gamma function C with degrees of freedom d~DV D{1

(i.e., d~8 for the bivariate case) as p(x2)~C(x2,d).
2.1.2 The GBOOST method. The GBOOST [23] method

explicitly searches for interactions between SNPs by ranking

candidate SNP pairs according to a likelihood ratio statistic. A

logistic regression model is used to evaluate the univariate

association of the p-th and q-th SNPs considered in the same

model, known as the main-effects model and described below using

the notation adopted by Agresti [28] and the original BOOST

paper [6].
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Definition 2 (Main-effects model):

log
P(Y~0DXp~i,Xq~j)

P(Y~1DXp~i,Xq~j)
~b0zb

Xp
i zb

Xq
j

Similarly, we can construct a logistic regression model to evaluate

the univariate associations of the p-th and q-th SNPs as well as

their interaction, with the resulting model known as the full model:

Definition 3 (Full model):

log
P(Y~0DXp~i,Xq~j)

P(Y~1DXp~i,Xq~j)
~b0zb

Xp
i zb

Xq
j zb

Xpq
ij

The only difference between equations defn. 2 and defn. 3 is the

inclusion of an additional term in the latter to represent the

interaction between the two SNPs.

The likelihood ratio test compares the association observed in

the two logistic models and can determine whether modelling the

interaction term on top of the univariate effects leads to a

significant improvement in the fit of the resulting model. If no

interaction effects exist, any association with phenotype will be

captured by the main-effects association model.

Due to the computational expense of evaluating logistic

regression models, the BOOST approach described by Wan et

al [6] makes use of log-linear models, which are equivalent to

logistic regression models, that can be derived from a contingency

table of genotype frequencies combined with a two stage

evaluation procedure to further improve runtime. Interested

readers should consult the cited work for full details of the

GBOOST method.

2.1.3 Gain in Sensitivity and Specificity test. The Gain in

Sensitivity and Specificity (GSS) test quantifies the ability of a pair

of SNPs to segregate Cases from Controls compared to the

segregation ability of the two SNPs taken individually. The

classification-based approach is conceptually similar to that of

Multi-Dimensional Reduction (MDR) [30], here using rigorous

statistical tests to quantify the significance of improvement as

opposed to the computationally-expensive cross-validation and

permutation approach taken by MDR.

For each SNP or pair of SNPs, we determine a sample prevalence

mapping, allocating to each sample the ratio of the number of Cases

to the total number of Cases and Controls in the dataset which

carry exactly the same genotype combination as the given sample:

prev(ni) :~
n1i

gzi

:

When examining a given SNP pair, we can derive three such

prevalence mappings, one for the pair and two for the individual

SNPs.

Each mapping can be used to construct a ROC curve: the plot

of the true positive rate (TPR) versus the false positive rate (FPR). The

ROC curve is easily computed from the contingency table of

genotype counts for a given SNP pair. Ordering genotypes in

descending order by their prevalence and taking the cumulative

sum, indicates the nine TPR and FPR points corresponding to the

nine thresholds of sample prevalence that have an effect on sample

classification, and hence alter the ROC curve of a given SNP-pair.

This method can be similarly applied to contingency tables for the

SNPs individual to derive ROC curves for individual SNPs.

Let ab denote a pair of SNPs consisting of individual SNPs a

and b. The ROC curve for the SNP pair, ROC(ab) always

dominates both curves for the individual SNPs ROC(a) and

ROC(b) as the number of genotypes is larger, thus a finer

stratification of the data is possible than that allowed by individual

SNPs. For most SNP pairs, this stratification will have little effect

on the ability to separate Cases and Controls but for some the

difference will be significant. This improvement is the effect

measured by GSS.

The area under the convex hull of ROC(a) and ROC(b)
represents the null hypothesis that all Case and Control samples

are drawn from the same distribution given by univariate

association. A p-value PGSS for a SNP-pair ROC curve can be

derived from a Binomial distribution by computing the probability

of observing higher specificity and sensitivity when drawing from

the population represented by the null hypothesis.

The gain of ROC(ab) over ROC(a) and ROC(b) is quantified

by the most significant probability (i.e., the minimum p-value) that

a specificity and sensitivity achieved at any point in ROC(ab) can

be exceeded by random sampling of Controls and Cases from a

population for which the true sensitivity and specificity are in the

convex hull of ROC(a) and ROC(b). This probability is essentially

dependent on the sample sizes DS0D and DS1D and the amount of

association achieved for each single-SNP ROC curve.

A conservative measure of the gain in association can be

computing by solving the following min-max optimisation of two

binomials:

PGSS(ab) :~ min
(x0,x1)

max
(p0,p1)

Xx0

i~0

jS0j

i

 !
pi

0

(1{p0)jS0j{i
XjS1j

j~x1

jS1j

j

 !
p

j
1(1{p1)jS1j{j ,

where min is over all cumulative counts x0 and x1 of Cases and

Controls such that

Table 1. 2|V -contingency table summarising the occurrence of genotype combinations for an arbitrary SNP interaction in a
case-control GWAS study.

Genotype Frequencies

Phenotype 1 2 … V Row Counts

S0 n01 n02 … n0V n0z

S1 n11 n12 … n1V n1z

Col. Counts nz1 nz2 … nzV n

doi:10.1371/journal.pone.0093319.t001
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x0

DS0D
,

x1

DS1D

� �
[ROC(ab)

and the max is over the convex hull of the union of ROC(a) and

ROC(b):

p0

DS0D
,
p1

DS1D

� �
[ROC(a)|ROC(b):

In Goudey et al. [5] we present an efficient framework known as

GWIS for computing all these statistics using commodity

computing resources. In all cases, bivariate contingency tables

are generated as an intermediate representation and the statistics

are computed from the tables. This enables us to efficiently

investigate the stability of bivariate SNP analysis for the first time.

2.2 Cross-validation to evaluate stability
There has been recent work on gene expression data which

supports the idea that features that are ranked consistently over

different cross-validation folds will be more useful than features

which are ranked inconsistently [13,14]. Similar techniques have

been applied to univariate GWAS analysis [15]. Here, we apply

this same idea to bivariate GWAS, computing stability under the

condition of two fold cross-validation, where we partition each

dataset into half and compare the rankings of SNP pairs detected

in each half. This is motivated by the concept of replication in

biological experiments: typically, a particular discovery from one

GWAS study needs to be confirmed by other GWAS studies to be

accepted as a SNP showing a potential association with the given

phenotype.

Given the framework of cross-validation, one still needs a

measure of replication to apply over each of the folds. One

straightforward option is to use the Jaccard index [31], defined as

the cardinality of the intersection divided by the cardinality of the

union. Note that there are many other distance metrics that may

be chosen [32], however the Jaccard index is a good representative

of set based distance metrics as it has been well studied. We

include Jaccard index plots with our results.

The disadvantage of using the Jaccard index is it only takes into

account overlap between sets and ignores the ordering of the lists. As

we are dealing with ordered lists, and as ordering of the pairs is

very important for interaction analysis, a measure incorporating

the ranking of the pairs is desirable.

Measuring correlation is a natural alternative which has many

desirable properties. However, it is complicated in interaction

analysis as we are unable to obtain complete lists of all pairs due to

space limitations. For example, the datasets used in our

experiments contain approximately 500,000 SNPs, and hence

around 125 billion SNP pairs. Assuming 4 bytes of information to

store per SNP pair, this would result in 500 GB worth of

information per dataset. As we are unable to practically store all

evaluated pairs, we are forced to work with ‘‘top-k’’ lists, that is

evaluating stability between two lists of the k most significant pairs

with k a very small fraction of the total number of possible pairs.

Our measure of replication must therefore be applicable to partial

top-k lists. Note that during computation we do not ever store the

scores for all SNP pairs. Instead we store the top-k pairs in a

priority queue of bounded length. In other words we compare

each new pair to the worst stored score. If the new pair score is

better than the worst score, the new pair is added to the top-k list,

causing the pair with the worst score to be discarded.

For our implementation of the GSS and x2 method, we can

calculate the score for any missing pair and so our lists can be

completed by calculating explicitly the score of any pairs missing in

a list. However, the GBOOST software does not allow specifica-

tion of explicit pairs to evaluate, and so we need to consider how to

calculate Spearman’s r for incomplete lists.

2.2.1 Spearman’s r for incomplete lists. Spearman’s r
[33] is a measure of correlation between two ranked lists. Though

Figure 1. Spearman’s r for all three methods (x2, GSS, and GBOOST) on BD dataset. On this dataset, GSS fails to obtain a stable set of pairs
on average. GBOOST and x2 both have similar profiles and show similar ZIC points. Note that while the peaks for GBOOST and x2 occur at
approximately the same number of pairs, the higher r for GBOOST indicates better stability of the ordering within the stable set.
doi:10.1371/journal.pone.0093319.g001
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it requires the two lists to contain the same elements, it measures

the concordance between the two rankings.

Definition 4 (Spearman’s r) Let A5X be a ranked list with

elements Ai such that rank(Ai)ƒrank(Aj) if and only if ivj. Let B5X
be another such list with the same elements (but of potentially different ranks),

that is A|B~A\B. Spearman’s r is defined as:

r(A,B) :~

P
i

(r
(i)
A {�rrA)(r

(i)
B {�rrB)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

(r
(i)
A {�rrA)2P

i

(r
(i)
B {�rrB)2

r ,

where r (i)
x ~rank(x ) is the rank of the item x in the list x, andi i

�rr :~x Sr (i)
x T is the average rank in the list x.

As we do not have complete rankings over the entire domain

and therefore cannot be directly applied to our top-

k lists, we propose an extension of to handle

The key observation is that any elements in list A that do not

appear in list B must have a rank higher than the number of

elements in B. Since the elements of A are the top-k ranked

elements, the elements in A which are not in B must have a rank

greater than k. The same applies to list B. Using this observation,

we can expand lists A and B to complete rankings over the same

set of elements (the union of the two lists), denoting them as A?
B

and B?
A

respectively. The missing values in the extension are

allocated an average rank to maintain consistent fractional

ranking. The extended Spearman’s r given in defn. 5 extends

these lists assuming missing elements are ranked last.

Definition 5 (Spearman’s r on incomplete lists) Let A5X be a

ranked list with elements Ai such that rank(Ai)ƒrank(Aj) if and only if

ivj, and B5X be another such list. Define extensions A?
B

with the elements

A|B and with ranks:

rank(A?
B

i )~
rank(Ai) : A?

B

i [A

1

2
(DADzDA|BDz1) : A?

B

i A

8><
>:

and B ?
A

similarly. Spearman’s on incomplete lists is then

Ir(A,B) :~r(A?
B

,B?
A

):

Imputing ranks of missing values as
DADzDA|BDz1

2
in defn. 5

has the same average rank �rr as an unambiguous list.

Proposition 1 Let C5X be a list such that its elements are strictly

ordered (rank(ai)vrank(aj)Vivj). Consider a subset A of the ordered list

C, which retains the ordering of C. Let A?
C

be the extended list of A as

defined in defn. 5. Then �rr
A?

C ~�rrC .

Proof. As C is is strictly ordered, we have

�rrC~

P
i r

(i)
C

DCD
~

PDCD
i~1 i

DCD
~

DCDz1

2
:

By definition of extended list A?
C

:

�rr
A?

C ~

P
i

r
(i)

A?
C

DA?
C

D
~

PDAD
i~1 iz(DA?

C
D{DAD)

DADzDA|BDz1

2

DA?
C

D

~
DADz1

2

(DA?
C

D{DAD)
DADzDA|BDz1

2

DA?
C

D
~

DA|BDz1

2
~

DCDz1

2
~�rrC :

Figure 2. Spearman’s r plot – similar to fig. 1 – for CAD dataset. Here, GSS is selecting a much larger stable set of features than x2 and
GBOOST, indicated by the ZIC ocurring at much larger number of pairs. Like BD, GBOOST and x2 have similar profiles with GBOOST exhibiting better
stability in the ordering than x2.
doi:10.1371/journal.pone.0093319.g002
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We refer to the incomplete list extension simply as Spearman’s r
for the remainder of the paper.

2.2.2 Zero Index Crossing. As we are limited to top-k lists,

the question of how to choose k arises. Intuitively, one wishes to

choose a k that maximises the stability of the selected pairs. Given

the correlation measure presented above, a natural point to choose

k is where the correlation drops below zero (NB: negative

correlations are expected under random selection of pairs as the

probability of selecting the same pair twice is very small), which we

denote as the zero-index crossing (ZIC). The ZIC captures the

point when both lists are consistent (i.e., they contain the same

elements), but the ordering is not. Given that our lists are ordered

by statistical significance, this is a good choice as we wish to know

which pairs are (replicably) significant, but the ordering by

statistical significance has little value as it is not a substitute for

effect size. ZIC can also be used as a summary statistic to compare

the stability of different datasets.

Definition 6 (Zero Index-Crossing) Given two lists A and B, the

Zero Index Crossing (ZIC) is given by

Figure 3. Spearman’s r plot – similar to fig. 1 – for RA dataset. Here, GSS selects a significantly larger number of pairs in it’s stable set while
GBOOST selects relatively few. x2 selects a small stable set, like GBOOST, but has curious tail behaviour where the stability increases again with a very
large number of pairs. Furthermore, though GBOOST has better stability in the ordering than x2, it is not significantly better than GSS unlike fig. 2.
doi:10.1371/journal.pone.0093319.g003

Figure 4. Jaccard distance for all three methods (x2, GSS, and GBOOST) on BD dataset.
doi:10.1371/journal.pone.0093319.g004
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zic(A,B) :~arg max
iwt&ri (A,B)ƒ0

ri(A,B)

for some threshold tw0.

Here we have used a threshold t to specify a minimum size.

This is necessary as the stability amongst the first few pairs is

usually low, but rapidly increases after reaching a small size (see

Results section). For all experiments in this paper we have chosen

t~8.

3 Results & Discussion

3.1 Cross-Validation of Exhaustive Bivariate classification
on Case–Control GWAS

Recent efficiency improvements in exhaustive bivariate GWAS

analysis [23,5] allow us to perform a comparative cross-validation

study of exhaustive bivariate analysis on typical GWAS data.

These results would have required weeks or months of processing

using earlier methods, but in this study were mostly executed in

only a few days on ordinary desktop computers using Graphics-

Processing Unit (GPU) improved algorithms. This type of GWAS

Figure 5. Jaccard plot for CAD dataset.
doi:10.1371/journal.pone.0093319.g005

Figure 6. Jaccard plot for RA dataset.
doi:10.1371/journal.pone.0093319.g006
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analysis has not previously been reported for exhaustive bivariate

classification due to the excessive computing resources required.

The GSS statistic is significantly more computationally intensive

than x2 and the log-likelihood ratio tests used by GBOOST.

Whereas each x2 cross-validation fold took approximately

15 minutes to execute on a desktop computer, each GSS fold

took approximately 6 hours. To accelerate production of results

for this paper, some GSS cross-validation folds were executed on

the Multi-modal Australian ScienceS Imagine and Visualisation

Environment (MASSIVE) GPU cluster.

The GBOOST statistic [23] was calculated using the GPU

software available for download from the author’s website. Each

cross-validation fold took approximately 50 minutes, meaning

Figure 7. Boxplot of the number of pairs involving a univariately significant SNP (by univariate x2 test) for each dataset and
method. The extreme high counts for CD, RA, and T1D datasets for the x2 test indicate that these datasets are strongly confounded by extremely
large hubs driven by main effects. These datasets also demonstrate the U-shaped tail behaviour of x2 (e.g., fig. 3), indicating the high stability is only
caused by these very large stable hubs. GSS is not shown on the BD or HT datasets as there were no pairs associated with a univariately signifiant
SNP.
doi:10.1371/journal.pone.0093319.g007

Figure 8. Spearman’s r plot for pruned RA dataset – similar to fig. 1. After dataset pruning (by removing SNPs significant under a univariate
x2 test) we see the curious tail behaviour of x2 is gone. The GSS profile remains similar to fig. 3. This suggests the tail effect is caused by main effects
confounding the x2 interaction test.
doi:10.1371/journal.pone.0093319.g008
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GBOOST lies between the two performance extremes of x2 and

GSS.

The Wellcome Trust Case Control Consortium (WTCCC)

datasets were selected because they are publicly available and

already thoroughly studied. We focused on investigating the

stability of the x2, GBOOST, and GSS statistics. The WTCCC

data covers seven different diseases: bipolar disease (BD), coronary

artery disease (CAD), hypertension (HT), rheumatoid Arthritis

(RA), type-1 diabetes (T1D), and type-2 diabetes (T2D).

Each dataset comprises of 449,471 SNPs. The number of

samples vary from 4,686 (CD) to 4,901 (T1D). We computed two

folds for each of ten random splits of every dataset as well as

analysing the entire dataset without cross-validation, i.e., a total of

147 exhaustive bivariate analyses per statistical test. These 147

analyses were performed for x2, GBOOST, and GSS statistics.

For each of the 147 analyses and each test, a ranked list of the most

significant 1 million pairs was produced. Stability of the tests was

analysed by comparison of these ranked lists. During analysis of

our results, we discovered that it was necessary to prune

univariately significant SNPs for the benefit of x2. Thereafter,

our entire analysis was re-run on the pruned datasets for the three

statistics considered in this work. In total, 882 exhaustive bivariate

analyses were completed.

This large number of analyses indicates the high performance

with which exhaustive bivariate analysis of entire GWAS can now

be conducted and should provided an example dispelling the myth

that exhaustive bivariate analysis is a computationally infeasible

procedure [7].

3.2 Results of : x2 Dominated by univariate effects

We first turn to analysing the stability of x2 using cross-

validation. The fig. 1, 2, and 3 show the results from measuring

Spearman’s r between folds using 2-fold cross-validation repeated

10 times (see Methods section) on BD, CAD, and RA. The figs. 4,

5, 6 show the same results but measured with the Jaccard index

instead of Spearman’s x2. There is a very noticeable ‘‘U-shaped’’

artefact in three of the datasets (CD, RA, and T1D, only RA

shown in fig. 3 with the others relegated to the supplementary

materials) whereby the list increases to nearly 100% as the number

of pairs selected approaches the total number of individual SNPs.

This behaviour is also visible with the Jaccard metric (fig. 6).

One hypothesis of the cause of this is that the lists of detected

SNP pairs are being dominated by SNPs with a strong univariate

disease association: when ranked by x2, SNPs with a strong disease

association often pair with every other SNP to form a strong

bivariate pair. In this case, most of the association of the SNP pair

is a function of the association of one SNP. We call the single

strong SNP a ‘‘hub’’, as the degree of this vertex in an interaction

graph would be very high. A hub SNP can also be defined as a

SNP with very high frequency in the ranked pairs lists. To

investigate this hypothesis, we calculated the number of pairs in a

given list that involve a univariately significant SNP. The results

are shown in fig. 7.

Two observations are evident from this figure, the first is that

that the hubs present in the lists are dominated by univariately

significant SNPs, and the second is that simple bivariate x2

association analysis is in general confounded by main effects. Note

that this observation does not necessarily apply to derivatives of

Pearson’s x2 test for association. The first claim is evidenced by the

total connectedness of all pairs with a univariately significant SNP

for the CD, RA, and T1D datasets x2 in fig. 7. The second claim is

supported by the observation that on all datasets has significantly

more pairs associated with univariate SNPs than both GBOOST

and GSS.

To address the first problem, we pruned the WTCCC datasets

using PLINK [34], discarding all univariately significant SNPs

according to a univariate x2 test at the Bonferroni level

(
0:05

449,471

2

� �~4:95|10{13). This resulted in removing 7 SNPs

from BD, 37 from CAD, 71 from CD, 6 from HT, 17 from RA, 87

from T1D, and 27 from T2D. After pruning, we recomputed the

profiles for GSS and x2 on the RA datasets as shown in figs. 8 and 9.

Here we see that while GSS has a very similar profile to before

Figure 9. Jaccard plot for pruned RA dataset.
doi:10.1371/journal.pone.0093319.g009
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pruning (figs. 3 and 6), x2 has changed dramatically and now

produces much longer and more stable list. Furthermore, the U-

shaped tail behaviour observed in figs. 3 and 6 is no longer present.

Although pruning is able to address the domination of the x2

lists by strong univariate SNPs, there is no easy corrective method

that can be applied to reduce the subtle main effect bias observed

earlier. In addition, it is quite possible that SNPs with univariate

association also play a role in bivariate or higher-order interac-

tions. In fact, it may be more likely that these SNPs participate in

interactions, although this is currently unknown. Removing these

SNPs from the dataset prevents these pairs from being properly

evaluated in higher order analysis. To address these issues

completely, alternative statistics are needed that explicitly take

main effects into account. GSS and GBOOST are two such

statistics, results of which are discussed below.

3.3 Stability of GSS and GBOOST
We now turn our attention to the GSS statistic. It is immediately

noticeable that the U-shaped behaviour evident with x2 is non-

existent. This is expected as earlier we demonstrated the U-shape

was due to domination by univariately strong SNPs. As the GSS

explicitly models the gain over main effects such confounding is

not possible. Indeed, fig. 7 verifies this claim as GSS has

significantly smaller hubs connected to univariately significant

SNPs.

GBOOST also does not exhibit the U-shaped behaviour.

Furthermore, fig. 7 shows the size of the univariate hubs are

somewhat similar to GSS and are not large as with. Like GSS,

GBOOST also explicitly models the improvement over main

effects and so is not affected by the main effect bias. These results

show that both GSS and GBOOST successfully discount for

strong univariate effects and target bivariate effects.

3.4 Stability differences between x2, GSS, and GBOOST
To quantify more precisely the comparative stability of both the

three statistics, we calculated the ZIC (see section 2.2.2) for each

x2

on the unpruned RA, T1D and CD datasets, and is no worse than

x2 on any unpruned dataset. Comparing GSS to GBOOST, on

the unpruned datasets we find that GSS has significantly better

stability than GBOOST on the same three datasets. This

consistent selection of significantly more pairs suggests that GSS

is capturing some set of pairs that cannot be detected using the

GBOOST statistics. However, as discussed below, it also seems the

converse is also true and GBOOST detects pairs that are not

detected by GSS.

Second, the ZIC demonstrates clearly that pruning does not

degrade the stability x2 of among the top ranked pairs for any

datasets, and in the case of RA there is a significant increase in

stability. After pruning, the stability of x2 becomes comparable to

GSS, albeit with the limitations already discussed. GSS is still

significantly more stable than for both the RA and CD

x2 for BD.

Third, we observe that both GBOOST and x2 have very similar

stable set sizes for all datasets. This is somewhat surprising as the

two methods are fundamentally different, as GBOOST specifically

Figure 10. The overlap between SNP pairs found by GSS and GBOOST is plotted for various values of k. The vertical axis is scaled by the
size of the union of both sets. The blue, green and red sections show respectively: the percentage of pairs which are found by GSS only, common to
both methods, and found by GBOOST only. The vertical dashed red and blue lines are the ZIC values for GSS and GBOOST respectively. In all 7
datasets the relative size of the intersection set for both methods peaks at a k lower than max(kZIC–GBOOST, kZIC–GSS). Since both methods are intended
to capture a similar type of interaction and do not have a substantial intersection at higher k, this supports the idea that ZIC is a useful heuristic. Over
all values of k for all datasets, the max intersection set size ranges from 0.2 to 0.4. Despite some agreement, the fact that both methods are able to
reliably select independent sets of pairs suggests that there are fundamental differences between the pairs selected by both methods. These
intersection plots are shown for all datasets in the supplement. The result for the CD dataset is shown here as an example.
doi:10.1371/journal.pone.0093319.g010
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dataset on both pruned and unpruned data, with results shown in

table 2. Recall that ZIC is a summary of the stability of detected

SNP pairs with a larger ZIC indicating increased stability. Our

first observation is that GSS has significantly better stability than

x2

datasets, but is significantly less stable than



looks for deviations from the additive model, but does x2 not

discount univariate effects at all.

Given that GBOOST and GSS attempt to quantify the level of

improvement in association of a SNP pair compared to its

individual SNPs, the obvious question is whether they pick the

same pairs. To gain some insight into this question, we plotted the

relative size of the intersection set between top pairs picked by

GSS and GBOOST for various values of k (see fig. 10 for an

example). In all datasets the peak intersection set size was between

20 and 40% of k. Given the very large number of candidate pairs,

this suggests there are types of interaction that are reliably detected

by both methods. However, for all but one dataset, the peak

Figure 11. Comparing multiple testing correction and stability. On the horizontal axis, we have the rank at which the pair falls below the
multiple testing correction threshold. On the vertical axis, we have the rank at which ZIC occurs. The dashed blue line is the diagonal, representing
equal ranks for both ZIC and FWER/FDR. The green dashed line represents the floor for ZIC (we do not search for ZIC lower than this point due to
noise). The scatter plot shows points which are above the diagonal, which means that the number of SNP pairs which are stable is consistently higher
than both FWER and FDR correction.
doi:10.1371/journal.pone.0093319.g011
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intersection size occurs at a lower k than the ZIC values of the two

methods. This suggests that both methods are able to reliably

select pairs of SNPs that are not reliably highly ranked by the other

method, indicating GSS and GBOOST both targeting different

types of interactions. Further analysis and description of the classes

of interactions mutually and uniquely detected by each method is

beyond the scope of this paper.

Figure 12. Comparing multiple testing correction and stability. Plot axes are the same as in fig. 11. The x2 hypothesis test exhibits wildly
differing values for FDR in different splits of the dataset, which means that the number of significant SNP pairs cannot be stably determined for this
dataset. Note that we only retain the top 500,000 SNP pairs in our calculations hence the points on the right actually mean that more than 500,000
pairs pass multiple testing correction (which is highly implausible for these datasets). Observe that ZIC has only a small variance between different
splits of the data. Furthermore, observe that the GSS statistic does not exhibit the large variance in multiple testing correction values. a: x2; b: GSS; c:
GBOOST.
doi:10.1371/journal.pone.0093319.g012
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3.5 Multiple Testing Correction
A common way to select significant SNP pairs is to perform

multiple testing correction and to select those pairs above a 95% level

of significance. Correction for family-wise error rate (FWER) is

obtained using the Bonferroni correction, which is considered quite

conservative. When the hypothesis tests are independent, Bonferroni

correction is tight, since any one of the multiple tests may be rejected

with equal probability [35]. However, large correlations between

SNPs are known to exist in GWAS, and hence the conducted tests

will not be independent causing the Bonferroni correction to be

overly stringent. As an alternative, correction for false discovery rate

(FDR) using the Benjamini–Hochberg procedure has been widely

used for high throughput data as it is less stringent at the cost of

allowing a small proportion of false discoveries.

However, in our setting of bivariate SNPs, the hypothesis tests are

highly dependent on each other. In fact, each test is dependent on all

other tests as we consider all pairs in an exhaustive fashion. In this

section, we compare the number of SNP pairs that pass multiple

testing correction with the ZIC, the number of SNP pairs that have

positive value of our extension of Spearman’s r. Hence we

empirically check how many stable SNP pairs are found in the seven

WTCCC datasets, as well as computing the Bonferroni correction

and Benjamini–Hochberg procedure. For each of the 20 subsets of

pairs coming from our two-fold cross-validation conducted 10 times,

we compute the number of SNP pairs that pass multiple testing

correction, i.e., the rank of the SNP pair which is just at the threshold.

For each of the 10 splits, we compute ZIC, and plot it against the

multiple testing correction values. The results for hypertension and

coronary artery disease are shown in fig. 11 and 12 respectively. The

results for the other five diseases are available in the supplement.

As can be seen from fig. 11, our proposed index (ZIC) exhibits

good behaviour (i.e., low variance) and is comparable to using

Bonferroni correction or the Benjamini–Hochberg procedure on

this dataset. This provides evidence that stability is a good criteria

for selecting features. As observed in section 3.4, GSS has

higher ZIC values than x2 , and fig. 11 shows that this effect is

also corroborated by the multiple testing correction methods. As

expected, the Benjamini–Hochberg procedure is less conservative

and selects more SNP pairs compared to Bonferroni correction.

Furthermore, ZIC is consistently above the diagonal all three

statistical tests, which means that the multiple testing correction

approaches are conservative in comparison to the number of

replicable features. This behaviour is to be expected as the

multiple testing correction approaches are close to optimal when

the hypothesis tests are independent, but the bivariate tests that we

consider are not independent.

The results in fig. 12b show similar consistency and overall

improvement for the GSS statistic compared to the multiple

testing correction methods. However, the results in fig. 12a for the

x2 statistic show that FDR wildly varies. This could be due to a

small number of individuals with a particular genotype that are

highly correlated with phenotype. Hence if the split contains these

individuals, it results in many selected pairs.

Conclusions

We investigated the stability of SNP pairs found using bivariate

hypothesis testing. Stability was investigated by repeatedly splitting

the GWAS datasets in half, evaluating and ranking all pairs in each

half and then estimating the correlation between rankings observed

in both halves. These analyses were conducted using GBOOST and

the GWIS platform for x2 and GSS statistics. All processing was

executed on commodity desktop computer hardware with general-

purpose graphics processing units (GPGPU expansion cards).

For the x2 and GSS statistics we were able to compute true

ranks for all SNP pairs in each split and fold of the data. However,

for GBOOST it was necessary to impute ranks for pairs not

assigned a significant score in a particular dataset split or fold. We

proposed an extension to Spearman’s r that computes the

correlation between two partial top-k lists of ranked items without

a common union. This leads to a natural measure of stability when

comparing incomplete ranked outputs of large datasets. Further-

more, we proposed the Zero Index Crossing (ZIC) as a way to

choose k for which the selected putative SNP pairs are considered

to be stable. We suggest that ZIC can also be used as a summary

statistic to compare the stability of different datasets and methods.

Using Spearman’s r and ZIC, we evaluated the stability of x2,

GSS, and GBOOST statistics for ranking bivariate SNP pairs.

We empirically investigated stability using 10 repeats of 2 fold

cross-validation on seven Case–Control GWAS datasets from the

WTCCC. This is the first report of a cross-validation study on

exhaustive bivariate interaction.

We found the x2 test for association rankings were highly

confounded by strong univariate SNPs, resulting in a surprising

‘‘U’’-shaped curve for Spearman’s r. This ‘‘U’’-shaped effect was

reduced when univariately significant SNPs were removed from

the dataset, confirming the source of the confounding factor.

The regression based GBOOST, and the recently proposed

statistical test GSS, were unaffected by univariate bias. Both these

methods explicitly select via the level of improvement in

association for pairs of SNPs, over individual SNPs.

The GSS test was successfully able to rank a larger set of SNP-

pairs with higher or equal stability than both x2 and GBOOST in

both pruned and original datasets, with the exception of the BD

dataset. Comparison of the SNP-pairs detected by GSS and

GBOOST shows that both methods reliably detect a small set of

mutual pairs, i.e., the intersection between the stable sets for GSS

and GBOOST contained a small set of pairs.

By comparing ZIC with the thresholds chosen by multiple

testing correction, we observe, for the GSS and GBOOST

statistics, that ZIC behaves similarly to Bonferroni correction and

the Benjamini–Hochberg procedure. Interestingly, ZIC is consis-

tent for different splits of the data for the statistic but the

Benjamini–Hochberg procedure seems to have large variance,

suggesting that it may be inappropriate for this data. GSS achieved

the largest average ZIC in our benchmark.

We conclude that the x2 test was not able to detect bivariate

effects without additional compensation for univariate effects. In

contrast, tests such as GSS and GBOOST that explicitly model

the improvement over individual SNPs are better able to stably

select candidate pairs for further analysis.
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