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Abstract: In oral sciences, chitosan application is of interest due to its antimicrobial and hemostatic
activity. Chitosan coating of dentures and other intraoral devices could be beneficial for treatment of
denture stomatitis or in the management of postoperative bleeding. Disinfection of dentures and
prosthodontic materials is crucial before their use in patients. This study investigated the influence of
chemical disinfectants on chitosan-coated surfaces. A total of 100 specimens were made: 50 of PMMA
(polymethyl methacrylate), and 50 of PETG (polyethylene terephthalate glycol-modified) material
and coated with 2% chitosan acetate solution. In each material, 5 groups (10 specimens each) were
established and disinfected with Printosept-ID (L1), MD 520 (L2), Silosept (L3), or Dentavon (L4),
or stored in distilled water (L0, control group). After disinfection, all specimens underwent abrasion
tests (30,000 cycles in a tooth-brushing simulator). Areas without chitosan coating were measured by
digital planimetry both before and after the disinfection/abrasion procedure and a damage-score
was calculated. Regarding chitosan coating, the statistical analysis showed a significant influence of
the disinfectants tested and significant differences between disinfectants (p < 0.05). Chitosan coating
was most stable on PMMA and PETG after disinfection with MD 520 (L2). Otherwise, active oxygen
containing disinfectants (L3, L4) led to the greatest alterations in the chitosan coating.
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1. Introduction

The biopolymer chitosan (CS, Figure 1) [a (1→4) 2-amino-2-deoxy-β-D-glucan] is a semi-synthetic
aminopolysaccharide derived from chitin by N-deacetylation [1–3]. In nature, chitin is, after cellulose,
the second most common biopolymer and it is synthetized by a wide range of species, for example
crustaceans, insects and fungi [1,2,4]. CS is a linear polymer with reactive amino and hydroxyl
groups [5]. In recent decades, CS has been of interest for many applications as a biomaterial [1,2]. CS is
known to be non-toxic, biocompatible and biodegradable; it shows a range of beneficial biological
activities, among others, as an antimicrobial and hemostatic agent, in wound healing or tissue
engineering [1,5–12].

The properties and activities of CS depend on many factors, for example, molecular weight (MW),
degree of polymerization (DP), degree of deacetylation (DDA), environmental effects, and so on [12].
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The MW of CS can be categorized as follows: high (HMW > 300 kDa), medium (MMW > 190–300 kDa),
low (LMW > 16–190 kDA) and oligo-CS ≤ 16 kDa [12].
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materials with CS. Our previous studies showed that a long-term abrasion stable CS coating can be 
achieved by silicatization of PMMA and PETG material surfaces, subsequent coating with CS acetic 
solution and neutralization with NaOH [19,20]. Due to their excellent CS activities and properties, CS 
coated dental devices can be an alternative to standard therapy for oral diseases and surgical 
complications such as hemorrhage, and denture stomatitis. 

Surgical splints and dentures are commonly prepared in a dental laboratory. To minimize the 
risk of cross contamination all dentures, and prosthodontic materials prepared in a dental laboratory 
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Different applications of forms of CS have been studied, for example as hydrogels, membranes
(films), fibers, sponges, microspheres, and capsules [1,13,14]. Also, coating procedures have been
described [15].

Because of its regenerative and antimicrobial activities, CS is a topic of research in
dentistry [4,16–18]. Moreover, CS is already used as a component in toothpastes, mouth rinses
and dental dressings [16,18]. To develop new approaches to bleeding control management or the
treatment of oral mucosal infections, new ideas for the using CS in dentistry have arisen and these
have been discussed in our previous studies [19,20].

Due to demographic changes, there is an increasing number of elderly people in our society.
Elderly people often have 5 to 10 remaining teeth and wear removable partial or if edentulous total
dentures [21]. Removable dentures can induce denture stomatitis, a common oral mucosal infection
among denture wearers with a prevalence of up to 70%. The etiology of denture stomatitis is unclear,
but it is associated with colonization of the dentures with Candida albicans [22]. Prevention of the
attachment and growth of microorganisms on dentures is one of the important factors in the treatment
of denture stomatitis. [22]. Also, application of intraoral splints after surgical treatment in the oral
cavity is a well-known method to compress the treated tissue and minimize bleeding [23]. For this
purpose, individually prepared surgical splints or existing dentures can be used. Such surgical splints
are commonly made from PETG (Figure 2a) or cold cured acrylic (PMMA, Figure 2b), and dentures of
heat or cold cured acrylic (PMMA).
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Our previous studies introduced a method for the surface coating of surgical splints and dentures
with CS [19,20]. This method enables the abrasion resistant coating of PMMA and PETG materials
with CS. Our previous studies showed that a long-term abrasion stable CS coating can be achieved by
silicatization of PMMA and PETG material surfaces, subsequent coating with CS acetic solution and
neutralization with NaOH [19,20]. Due to their excellent CS activities and properties, CS coated dental
devices can be an alternative to standard therapy for oral diseases and surgical complications such as
hemorrhage, and denture stomatitis.

Surgical splints and dentures are commonly prepared in a dental laboratory. To minimize the risk
of cross contamination all dentures, and prosthodontic materials prepared in a dental laboratory or
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transported between a laboratory and a dental practice, have to be sterilized or disinfected [24–26].
Steam sterilization in an autoclave is a common method for medical/dental devices, but it is
limited to heat and moisture resistant materials. For all other materials, for example polymers,
thermal degradation, decompensation and hydrolysis can be induced [27]. Especially due to the
low thermal stability of thermoplastic materials such as PMMA and PETG and the low ebullition
temperature of the monomers in the PMMA, steam sterilization is not recommended for dentures or
surgical splints [28]. Accordingly, application of chemical disinfectants is an internationally accepted
and recommended method for decontamination of dentures and prosthodontic materials [25,26].
The following minimal requirements are given: bactericidal, levurozide, and limited virucidal activity
or minimum intermediate-level of disinfection [25,26]. In Europe, currently available commercially
manufactured chemical disinfectants for dentures and prosthodontic materials contain for example
glutaraldehyde (GA), quaternary ammonium compounds (QUATs), alkyl amine or active oxygen
(Figure 3a–e).

Glutaraldehyde (GA, Figure 3a) is a broadly used and studied high-level disinfectant [28–31].
GA is a water-soluble, amine-reactive, protein cross-linker with two aldehyde groups. The biocidal
activity of GA is promoted through aldehyde groups due to alkylation reactions of sulfhydryl, hydroxyl,
carboxyl, and amino groups in microorganisms [31]. This reaction leads to alteration of RNA, DNA,
and protein synthesis [31]. GA is not corrosive and does not strongly influence the properties of acrylic
or rubber materials, but has high toxic potential [28,31–33]. GA can cause skin or mucous membrane
irritation [31]. During the disinfection process of dentures or other acrylic appliances, GA can penetrate
into the acrylic resin surface and later cause allergies or inflammations [34].

Quaternary ammonium compounds (QUATs) are also widely used as disinfectants [31].
QUATs are surface-active and water-soluble; they act bactericidally through the inactivation of
energy-producing enzymes, denaturation of essential cell proteins, and disruption of the cell
membrane [31]. QUATs interact ionically with phospholipids in microorganism membranes and
impair membrane permeability [35,36]. N,N-Didecyl-N-methylpoly(oxyethyl)ammonium propionate
(Figure 3b) and alkyl-benzyl-dimethyl-ammoniumchloride (Figure 3c) are examples of QUATs.

Alkyl amines such as N-(3-aminopropyl)-N-dodecylpropane-1,3-diamine (Figure 3d) belong to
the non-QUATs cationic tensides and are also widely used as compounds in QUAT disinfectants [37].

Active oxygen such as pentapotassium bis(peroxymonosulfate) bis(sulfate) (MPS, Figure 3e) is
a high-level, water-soluble and biodegradable disinfectant [38]. This oxidizing agent can produce
hydroxyl as well sulfate radicals, which can induce selective oxidation [39]. Generally, oxidation can
affect thiol groups in microorganisms, whereupon hydroxyl radicals attack membrane lipids, DNA and
other essential cell components [31,36].
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Thus, the disinfection of dental prostheses, and prosthodontic materials with chemical
disinfectants is recommended before use. Effective, non-destructive methods for CS coating
disinfection are of high importance and have to be investigated. Otherwise, the use of CS coated
dentures or surgical splints is not feasible for patients.

The aim of this study was to evaluate, using an abrasion test, the influence of commonly used
chemical disinfectants on CS coated surfaces after ageing. The following null hypotheses were stated:

- Chemical disinfectants have no influence on CS coating abrasion resistance.
- There are no differences between the tested chemical disinfectants regarding abrasion resistance

of CS coatings.
- There are no differences between PMMA and PETG materials regarding the abrasion resistance

of CS coatings.

2. Materials and Methods

2.1. Establishing Specimens

Cylindrical PMMA (n = 50) and PETG specimens (n = 50) with a diameter of 12.75 mm were
produced and coated with CS according to the protocol published in our previous study [20]. Ten test
groups with 10 specimens each were established. One hundred PMMA (Palapress, Kulzer, Hanau,
Germany) specimens were prepared according to the manufacturer’s instructions. Ten grams of PMMA
powder was mixed with 7 mL of monomer liquid for 15 s at room temperature (23 ◦C), poured into
a casting mold and polymerized for 20 min at 55 ◦C under 2.5 bar pressure. After polymerization,
the samples were smoothed with 1000 grit sandpaper. To 50 of the PMMA samples PETG disks
of Erkodur clear (Ø 12.75 mm, 2.0 mm thick, ERKODENT Erich Kopp GmbH, Pfalzgrafenweiler,
Germany) were glued (cyanoacrylate glue, Renfert GmbH, Hilzingen, Germany). Chitosan 90/500
(Chitoscience, DDA 87.6–92.5%, MW 200–400 kDa, Heppe Medical Chitosan GmbH, Halle, Germany)
was used for the coating solution. To prepare the 2% CS acetate solution, the CS was dissolved in 2%
acetic acid (UKD Pharmacy, Dresden, Germany) using a magnetic stirrer (RET CV S000, IKA, Staufen,
Germany) at a temperature of 60 ◦C. All specimens were sandblasted with Rocatec Pre (2.8 bar, 110 µm,
20 s, 3 M, Seefeld, Germany), silicatized with Rocatec Plus (2.8 bar, 110 µm, 20 s, 3 M, Seefeld, Germany)
and air blasted for cleaning. The PMMA and PETG specimens were replaced in the casting mold and
coated with 1 mm CS acetate solution followed by drying for 120 min at 45 ◦C in an incubator (B6030,
Heraeus, Hanau, Germany). All specimens were neutralized in 1 mol/L NaOH solution for 10 min
and afterwards washed in distilled water.
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2.2. Disinfectants

Four chemical disinfectants commonly used and verified for disinfection of dentures and
prosthodontic materials were used in this study: Printosept-ID, MD 520, Silosept, and Dentavon
(hereafter, L1, L2, L3 and L4, respectively) (Table 1). All disinfectants were prepared and used
according to directions for use (Table A1, Appendix A).

Table 1. Information about tested chemical disinfectants.

Brand Name ID Manufacturer Group of
Active Agents Active Agents pH

Printosept- ID L1
Alpro Medical,

St. Georgen,
Germany

QUAT,
alkyl amine

N,N-Didecyl-N-methylpoly(oxyethyl)-
ammoniumpropionate,
N-(3-Aminopropyl)-N-

dodecylpropane-1,3-diamine

10.5–11.5

MD 520 L2

Dürr Dental,
Bietigheim-
Bissingen,
Germany

GA, QUAT Glutardialdehyde, Aalkyl-benzyl-dimethyl-
ammonium-chloride ~4.3

Silosept L3
Kettenbach,
Eschenbur,
Germany

active oxygen Pentapotassiumbis(peroxymono-sulphate)-
bis(sulphate) (MPS) 3.71 (1% solution)

Dentavon L4
Schülke,

Norderstedt,
Germany

active oxygen Pentapotassiumbis(peroxymono-sulphate)-
bis(sulphate) (MPS) ~4

2.3. Measurement of Damaged Chitosan Coating Area (DCSCA)

The CS coatings of the PMMA and PETG specimens were examined under a light microscope
by digital planimetry (magnification 31.5×, Leica MZ12, Meyer Instruments, Houston, TX, USA).
The first measurement of the damaged chitosan coating area (DCSCA) was conducted directly after
the coating procedure (baseline, T0) and the second (T1) after disinfection followed by the abrasion
test (Figure 4a,b). DCSCA was defined as the specimen surface without chitosan coating and was
measured in mm2.
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2.4. Disinfection Procedure and Abrasion Test

CS-coated PMMA (n = 40) and PETG (n = 40) specimens were immersed in four different chemical
disinfectants (n = 10 per each) for a time-period according to the manufacturer’s directions for use:
5 min in disinfectant L1 and 10 min in disinfectants L2, L3, and L4 (Table A1, Appendix A).
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After the disinfection procedure, the specimens were rinsed with tap water and air blasted.
The specimens in the control group (L0, PMMA: n = 10, PETG: n = 10) were immersed in distilled
water for 5 min and air blasted afterwards.

To evaluate the abrasion resistance of CS coatings after disinfection procedures, cleaning of the
specimens by brushing was simulated. For this abrasion test, all PMMA and PETG specimens were
placed into a tooth-brushing simulator (Willytec GmbH, Munich, Germany). Long-term use with
30,000 cycles of linear brushing behavior (load 2 N, 2 cycles/s, 32 ◦C) with soft brushes (Elmex Sensitive,
GABA GmbH, Therwil, Schweiz) in artificial saliva (UKD Pharmacy, Dresden, Germany, Table A2,
Appendix A) was simulated. An overview of the study protocol is shown in Figure 5.
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2.5. Scanning Electron Microscopy (SEM)

The morphology of the CS-coated surfaces after disinfection was additionally evaluated using
SEM (XL30 ESEM, Philips Electron Optics, Eindhoven, The Netherlands). One additional specimen
per group was prepared in order to produce SEM images: before and after disinfection. The samples
were coated with gold and the images were captured at a magnification of 120×, at an accelerating
voltage of 20 kV and at a working distance of 7.6 mm.

2.6. Statistical Analysis

For the statistical analysis, the damage-score (DS) was computed by DCSCA at T1 as a percentage
of the difference between the total specimen surface (127.7 mm2) and DCSCA at T0, as shown in
Equation (1):

DS = [100 × (T1 − T0)]/(127.7 − T0) (%) (1)

where T0 is the DCSCA measurement at the baseline and T1 after disinfection/abrasion test.
An Analysis of Variance (ANOVA) was conducted using a linear model to determine the

effects of the disinfectant (L0–L4), the specimen material (PETG, PMMA), and their interaction on
DS. To establish homoscedasticity, a log-transformation was applied on DS. Then, the model was
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fitted using an M-estimator [40] to reduce the effects of potential outliers on the observed data.
Tukey post-hoc comparisons were conducted for all pairs of tested disinfectants within each material
group, and for both materials within each disinfectant group. p-Values < 0.05 were considered to
indicate statistical significant differences. For statistical analysis, R software (R Core Team 2016,
R Foundation for Statistical Computing, Vienna, Austria) was used.

3. Results

The ANOVA revealed a significant main effect related to the disinfectant (F(4,90) = 48.45, p < 0.001)
as well as a significant interaction between disinfectant and material (F(4,90) = 14.85, p < 0.001).

Furthermore, post-hoc tests revealed that of all the disinfectants tested L2 showed the lowest DS
for PETG (1.2% ± 2%) and PMMA (9.3% ± 5.8%).

For PETG, L2 showed significantly lower DS than the other tested disinfectants, including the
control group (L0 z = 7.36, p < 0.001; L1 z = 8.96, p < 0.001; L3 z = −12.72, p < 0.001, and L4 z = −11.14,
p < 0.001). Also for PMMA material, L2 disinfectant demonstrated significantly lower DS compared to
disinfectants L3 (z = −3.31, p = 0.02), and L4 (z = −4.49, p < 0.001) but similar to the control group.

The highest DS was noted for disinfectants L3 and L4 for PETG material (60% ± 15% and
41.8% ± 24.8%).

Comparing both control groups, the DS for PMMA (5.7% ± 4.8%) was significantly smaller than
for PETG (15.4% ± 10%) when tested with artificial saliva (z = 3.7, p = 0.005). Although the L2 caused
the smallest alteration to the CS coating on PETG (1.2%± 2%) and PMMA (9.3%± 5.8%), the alteration
on PMMA was significantly higher than on PETG (z = −5.74, p < 0.001).

The means and standard deviations of DCSCA at T0, and T1 are shown in Table A3, (Appendix A);
the data for DS are shown in Figure 6.

Polymers 2018, 10, x FOR PEER REVIEW  7 of 15 

an M-estimator [40] to reduce the effects of potential outliers on the observed data. Tukey post-hoc 
comparisons were conducted for all pairs of tested disinfectants within each material group, and for 
both materials within each disinfectant group. p-Values < 0.05 were considered to indicate statistical 
significant differences. For statistical analysis, R software (R Core Team 2016, R Foundation for 
Statistical Computing, Vienna, Austria) was used. 

3. Results 

The ANOVA revealed a significant main effect related to the disinfectant (F(4,90) = 48.45, p < 
0.001) as well as a significant interaction between disinfectant and material (F(4,90) = 14.85, p < 0.001). 

Furthermore, post-hoc tests revealed that of all the disinfectants tested L2 showed the lowest DS 
for PETG (1.2% ± 2%) and PMMA (9.3% ± 5.8%). 

For PETG, L2 showed significantly lower DS than the other tested disinfectants, including the 
control group (L0 z = 7.36, p < 0.001; L1 z = 8.96, p < 0.001; L3 z = −12.72, p < 0.001, and L4 z = −11.14, p 
< 0.001). Also for PMMA material, L2 disinfectant demonstrated significantly lower DS compared to 
disinfectants L3 (z = −3.31, p = 0.02), and L4 (z = −4.49, p < 0.001) but similar to the control group. 

The highest DS was noted for disinfectants L3 and L4 for PETG material (60% ± 15% and 41.8% 
± 24.8%). 

Comparing both control groups, the DS for PMMA (5.7% ± 4.8%) was significantly smaller than 
for PETG (15.4% ± 10%) when tested with artificial saliva (z = 3.7, p = 0.005). Although the L2 caused 
the smallest alteration to the CS coating on PETG (1.2% ± 2%) and PMMA (9.3% ± 5.8%), the alteration 
on PMMA was significantly higher than on PETG (z = −5.74, p < 0.001). 

The means and standard deviations of DCSCA at T0, and T1 are shown in Table A3, (Appendix 
A); the data for DS are shown in Figure 6. 

 
Figure 6. Diagram shows damage scores (DS) in tested disinfectant groups (L1–L4) and control groups 
(L0). Significant differences between disinfectants and materials are indicated with: * p < 0.05, ** p < 
0.01, and *** p < 0.001. 

Figure 7a–d shows damaged CS coating on PMMA and PETG surfaces after disinfection 
procedures and abrasion tests. 

Figure 6. Diagram shows damage scores (DS) in tested disinfectant groups (L1–L4) and control
groups (L0). Significant differences between disinfectants and materials are indicated with: * p < 0.05,
** p < 0.01, and *** p < 0.001.

Figure 7a–d shows damaged CS coating on PMMA and PETG surfaces after disinfection
procedures and abrasion tests.



Polymers 2018, 10, 536 8 of 15

Polymers 2018, 10, x FOR PEER REVIEW  8 of 15 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Selected specimens showing damaged CS coating after disinfection/abrasion tests (DCSCA 
at T1 are marked with an arrow): PMMA control group (a); PETG L2 (b); PETG L3 (c); PMMA L4 (d). 

Figure 8a–l presents SEM images of the surface of the CS coated specimens both before (Figure 
8a,g) and after disinfection (Figure 8c–f,i–l). Irrespective of disinfection type, slightly surface 
morphology changes were observed, without noticeable damages after disinfection. 

PMMA PETG 

(a) (b) (g) (h) 

(c) (d) (i) (j) 

(e) (f) (k) (l) 
Figure 8. Scanning electron microscopy (SEM) images showing CS coating: PMMA after coating (a); 
PMMA control group L0 (b); PMMA L1 (c); PMMA L2 (d); PMMA L3 (e); PMMA L4 (f); PETG after 
coating (g); PETG control group L0 (h); PETG L1 (i); PETG L2 (j); PETG L3 (k); PETG L4 (l). 

Figure 7. Selected specimens showing damaged CS coating after disinfection/abrasion tests (DCSCA
at T1 are marked with an arrow): PMMA control group (a); PETG L2 (b); PETG L3 (c); PMMA L4 (d).

Figure 8a–l presents SEM images of the surface of the CS coated specimens both before
(Figure 8a,g) and after disinfection (Figure 8c–f,i–l). Irrespective of disinfection type, slightly surface
morphology changes were observed, without noticeable damages after disinfection.
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Figure 8. Scanning electron microscopy (SEM) images showing CS coating: PMMA after coating (a);
PMMA control group L0 (b); PMMA L1 (c); PMMA L2 (d); PMMA L3 (e); PMMA L4 (f); PETG after
coating (g); PETG control group L0 (h); PETG L1 (i); PETG L2 (j); PETG L3 (k); PETG L4 (l).
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4. Discussion

This study investigated the influence of chemical disinfection of CS coated PMMA and PETG
materials in order to pursue international recommendations and to reduce cross contamination
risks [24–26]. All three stated null hypotheses had to be fully or partly rejected.

Chemical disinfectants used in this study influenced the CS coating significantly in terms
of abrasion resistance. There were also differences in the abrasion resistance of CS coating after
disinfection in different types of disinfectants.

The disinfectants with active oxygen such as Silosept and Dentavon contain MPS as an active agent
and produce hydroxyl and sulfate radicals. Both free radicals can alter the CS coating, probably due to
depolymerization reactions and oxidative CS chain scission [41–44]. As shown in previous studies,
the main route in the depolymerization of polymers is scission of the glycosidic bonds in the polymer
chain [41]. The oxidative free radical degeneration of CS is initiated by hydroxyl and/or sulfate radicals
in aqueous solutions [41]. The cationic amino group on the C-2 carbon of the CS electrostatically
attracts the anionic sulfate radicals which can then attack the C-4 carbon in the CS and subtract the
hydrogen from it by transporting the radical to it [42]. This could result in breaking of the glycosidic
bond in the CS main chain [42]. Also, the hydroxyl radicals can cause deamination of CS, as they
abstract hydrogen atoms from C-1 and C-2 carbons leading to chain scission [44]. The degradation
of CS can be restrained through protonation of amino groups [44]. Otherwise, more exposed amino
groups make CS sensitive to chain scission by free hydroxyl radicals [43]. Through the chain scission
and degradation, the molecular weight of CS decreases and CS molecules become water soluble [43,45].

These interactions can explain the decreased abrasion resistance of CS coatings after disinfection
with disinfectants containing active oxygen (MPS).

In contrast, disinfection with GA seems to stabilize the CS coating, especially on PETG material.
After 30,000 abrasion cycles, only about 1% of the initial CS coating was missing. This can be
explained as a process of chemical gelation through crosslinking reactions of CS and GA by ethylenic
double bonds [46,47]. GA is a well-known chemical crosslinker for many biopolymers [47–49].
Two main crosslinking reactions are proposed to explain reactions between CS and GA. One of
these describes Schiff-Base reactions; the second Michael reactions [46]. According to Schiff-Base
reactions, proteins and polymers react with their functional groups with GA [47]. CS also crosslinks
with GA in acetic solutions by forming imine bonds (N=C) stabilized by ethylenic bonds. Through this
interaction, the chemical and physical properties of the crosslinked polymer change. With increasing
GA concentration, the particle size and the crystallinity of the crosslinked polymer decreases [46].
Nevertheless, the main disadvantage of GA as a crosslinker is its free aldehyde groups. These functional
groups are cytotoxic and induce inflammatory reactions [47]. However, the crosslinking of polymers
with GA can produce mechanically stable membranes or scaffolds. Hence, different methods for
GA detoxification, for example, through rinsing with free amine groups, have been described [47].
As mentioned, the main concern about GA as a crosslinker is its cytotoxicity, depending on the
concentration of GA and free aldehyde groups [47,49]. So, beyond the fact that GA is a widely used
crosslinker, the possibility of significant cell toxicity and biohazard activity limits its use in biomedical
products [47]. For this reason, further studies on the release of GA from CS coating, the degree of
crosslinking between GA and CS coating, as well as the biocompatibility of GA modified CS coating
are needed and at the moment no clinical recommendation can be postulated.

Apart from GA, QUATs are also a component of the MD 520 disinfectant. As shown in
previous studies, CS can also interact with QUATs by covalent bonds [50,51]. Quaternary ammonium
salts are often used for synthesis of water-soluble quaternized CS derivatives in the presence of
e.g., aldehydes [51]. Alkyl groups can be introduced into the amine groups of CS by forming Schiff’s
Base intermediates and so N-alkyl CS derivatives can be prepared, which can be later quaternized [51].

Also, interactions between CS and alkyl amines and the formation of N-(aminoalkyl) CS
derivatives have been described. These can be used in drug delivery by forming microspheres [50].
However, on reviewing the literature, the authors did not find studies describing the effects of alkyl
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amines and quaternary ammonium groups on CS membranes or coatings. Possible interactions
between these compounds and a decreased abrasion resistance of CS coating after disinfection with
disinfectants containing QUATs and alkyl amine can be summarized. Further studies are needed to
understand the interaction mechanisms of these disinfectants on CS coatings.

Besides interaction with the different components of the disinfectants, disinfectant pH value
can also influence the CS coating. CS behaves as a weak polybase and its solubility is pH sensitive.
CS dissolves easily at a pH below 6.5 [52]. CS salts such as CS acetate also demonstrate pH-dependent
solubility and lose their positive charge and precipitate at neutral pH [53]. CS films from CS dissolved
in diluted inorganic or organic acids are soluble in water or acidic medium; however, neutralization
can improve the stability of CS films [54]. Kam et al. showed that neutralized CS acetate film is
relatively insoluble in water [55]. The rudimental solubility of neutralized chitosan acetate film in
water can be explained on the basis of residues of acetic acid in the CS film [55].

Apart from Printosept-ID which has a basic pH (containing QUATs and alkyl amines), all the other
disinfectants tested have acidic pH values above 4. The reaction with GA is more favorable at basic
and neutral pH but, as described by Li et al., it is also possible under acidic pH [46]. This acidic pH can
trigger the crosslinking reaction and also contribute to good abrasion stability of CS coating disinfected
in disinfectants containing GA. Under neutral and basic pH, CS is not soluble. The disinfectant with
mixed QUATs and alkyl amines (Printosept-ID) has a basic pH which could also maintain relatively
good abrasion stability of disinfected CS coatings.

Our previous studies describe reliable methods to coat PMMA and PETG with CS [19,20]. Both 2%
and 4% CS acetate solutions can be used for CS coating [20]. In this study, 2% CS acetate solution was
used, because of its better applicability [20]. Through silica coating of PMMA and PETG, their surfaces
are enriched with silica and achieve a hydrophilic character [20]. Furthermore, it has be shown that
the wettability of the surface is the key factor when coating with CS [20]. The presence of silica
in the specimen surface and so its increased wettability before coating is stated to be a key factor
to bond CS to PMMA and PETG [20]. Previous studies have shown a physical association between
glucopyranose rings of CS and silica or silicate, probably through dipole–dipole and hydrogen-bonding
interactions [56].

In our previous study, the remaining CS coating for PETG after abrasion tests was above 95% [20].
This finding is contrary to our present study where the remaining CS coating was about 85%. In the
present study, differences in abrasion resistance of CS coating on PMMA and PETG were also shown.
In contrast to our previous study, the CS coating on PMMA was more abrasion resistant compared to
CS coating on PETG [20]. Nevertheless, in contrast to the present study, our previous study did not
include the immersion of the specimens in distilled water before abrasion tests [20]. The CS coating on
PETG seems to be more sensitive to water storage than PMMA. The CS binding to PETG seems to be
more hydrolysis sensitive. Apart from this, the resistance of CS coating on PETG after disinfection
with disinfectants containing GA/QUATs was excellent. GA crosslinking on PETG seems to be more
effective than on PMMA. Nevertheless, the CS coating loss of less than 10% for PMMA is clinically
negligible. These aspects and chemical interactions need further studies before first application of tests
in a clinical environment.

For this and our previous studies, CS with DDA of 87.6–92.5% and MW of 200–400 kDa was used.
High DDA was chosen as the antimicrobial activity of CS and its solubility in acids increased with
increasing DDA [12,57]. Moreover, CS with high DDA has a greater hemostatic effect; nevertheless, it is
possible for it to deform the erythrocytes [58]. For hemostatic CS bandages, the most preferable DDA
is described as being between 85% and 95% [59]. CS with MW of 200–400 kDa was chosen because
the MMW CS and HMW CS show an equal or even greater effect against bacteria compared to LMW,
and MW of about 300 kDA is described as being the most preferable for hemostatic bandages [12,59].
Moreover, in terms of antifungal activity, HMW CS has been shown to decrease the pathogenicity of
C. albicans for treating oral candidiasis [60]. However, other studies show that LMW is more effective
against fungi [12]. Further studies with LMW CS could also be interesting when using CS coating in
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treatment of denture stomatitis, as it is closely associated with colonization by C. albicans. Nevertheless,
the disadvantage of LMW is its faster degradation than is the case for HMW [61]. This could affect the
effectiveness and longevity of the CS coating.

The qualitative assessment of the specimen surfaces under SEM after disinfection did not reveal
noticeable damages in surface morphology. For the measurement of DCSCA, digital planimetry was
chosen, as the CS coating would have been affected and/or potentially destroyed by the electron beam
under SEM analysis.

Nevertheless, a limitation of this study is that no infrared (IR)-analysis or X-ray photoelectron
spectroscopy (XPS) was conducted. This aspect needs further analysis. XPS analyzes of neutralized
chitosan acetate film by other authors suggest the presence of hydrated crystals and crystals of α-chitin
chain segments [55].

A further limitation of this study is that no antimicrobial and hemostatic tests have been conducted.
These activities have been established in many other studies [1,5–12].

The aim of this study was primarily to evaluate the abrasion stability of the CS coating after
disinfection, leading to further in vitro and in vivo tests if a sufficient disinfection/sterilization method
has been established.

Abrasion tests with 30,000 brushing cycles simulate the long-term use of dental appliances and
can be considered a worst-case scenario. About 1000 brushing cycles simulate about one month of
use and brushing of 30,000 cycles simulates about 2 years [62,63]. A treatment for denture stomatitis
can take up to 3 months, the appliances for bleeding control up to 1 week. As shown in the present
study, after simulating for 2 years in most cases a third to a half of the CS coating was present on the
specimens. Further studies simulating shorter periods of use, with lower numbers of brushing cycles,
but higher numbers of disinfection cycles are necessary, as each time a patient consults a practitioner
disinfection could be needed.

As an alternative to disinfection, low temperature sterilization with ethylene oxide (ETO) can be
used. Current recommendations for sterilization of polymer-based implantable medical devices from
PMMA are ETO or hydrogen peroxide (H2O2) and for polyethylene ETO and radiation [27]. ETO is
a low-temperature sterilization method, widely used in healthcare for years. Alkylation is a mode
of the biocidal action of ETO, in which saturated hydrocarbon groups are added to reactive amino,
sulfhydryl, hydroxyl or carboxyl groups [27]. Its long cycle time, high costs and its potential as to be a
biohazard (toxic residues), and human carcinogen are the main disadvantages of ETO [64]. To limit
these disadvantages, aeration of sterilized devices is needed and allowable ETO limits are stated [31].
As an alternative to chemical disinfection, ETO could presumably be used for sterilization of dental
appliances coated with CS such as dentures and surgical splints. In previous studies, sterilization of
CS membranes or coatings with ETO has been studied and recommended, due to its low effect on
CS membrane morphology, on the percentage of CS chain breaks, and the lack of effect of CS layer
bonding to substrate material [14,15]. Nevertheless, the disadvantages of this sterilization method,
including its toxicity, flammability, environmental risks, and possible contamination of the materials
with ETO residues, limits the applicability of this method [14]. Moreover, chemical disinfection is
recommended as an adequate decontamination method for dentures and prosthodontic materials and
sterilization as a higher level of decontamination is not required [26,31].

Although CS has been studied with respect to many biomedical applications, its sterilization
and disinfection is still linked to many problems, such as chemical alteration or possible toxic
residues [65]. The present study shares this conclusion. Further studies are needed to find an optimal
disinfection/sterilization method for CS coated surfaces.

5. Conclusions

Although disinfection with disinfectants containing GA and QUATs seems to stabilize the CS
coating, the possible free aldehyde groups could act as biohazard. Within the limitations of this study,
disinfectants containing QUATs and alkyl amines could be applicable for disinfection of CS coatings,
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as after simulation of long-term use the remaining CS coating can be seen as acceptable. Active oxygen
leads to the greatest alteration to the CS coating, and this effect is material dependent. Further analyses
with IR-spectroscopy or XPS and studies on interactions between disinfected CS coatings and human
tissue, its biocompatibility, toxicity and degradation, are needed before further applications in clinical
trials are justified.
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Appendix A

Table A1. Preparation and disinfection times for tested disinfectants.

ID Brand Name Batch-No Dosage Exposure Time (min)

L1 Printosept-ID 294102 Solution ready to use 5
L2 MD 520 1401207 Solution ready to use 10
L3 Silosept® 1241466 20 g of Silosept into 2 L of lukewarm water (for 2% solution) 10
L4 Dentavon® 1240192 40 g Dentavon into 2 L of lukewarm water (for 2% solution) 10

Table A2. Composition of artificial saliva.

Ingredients %

Aqua dest. 82.93
Hydroxyethyl cellulose 12.5

Sorbitol solution 4.28
Potassium chloride 0.12

Sodium chloride 0.08
Sodium monohydrogenphosphate 12 H2O 0.06

Calcium chloride 2 H2O 0.02
Magnesium chloride 6 H2O 0.01

Preservative Propyl 4-Hydroxybenzoate <0.01

Table A3. Descriptive data for damaged chitosan coating area (DCSCA) at baseline T0 and after
disinfection/abrasion test T1.

Material Disinfectant T0 Mean (mm2) ± SD T1 Mean (mm2) ± SD

L0 0.8 ± 1.5 7.2 ± 6.1
L1 3.1 ± 2.3 27.8 ± 13.5

PMMA L2 3.5 ± 4 11.4 ± 6.8
L3 4.2 ± 2.8 29.9 ± 14.6
L4 2.6 ± 1.3 40 ± 16.1

L0 0.2 ± 0.5 19.7 ± 12.6
L1 0 ± 0 31 ± 24.9

PETG L2 0 ± 0 1.5 ± 2.5
L3 0.1 ± 0.3 75.3 ± 31.6
L4 0.4 ± 1 53 ± 31.1



Polymers 2018, 10, 536 13 of 15

References

1. Dash, M.; Chiellini, F.; Ottenbrite, R.; Chiellini, E. Chitosan—A versatile semi-synthetic polymer in
biomedical applications. Prog. Polym. Sci. 2011, 36, 981–1014. [CrossRef]

2. Chandy, T.; Sharma, C.P. Chitosan-as a biomaterial. Biomater. Artif. Cells Artif. Org. 1990, 18, 1–24. [CrossRef]
3. Kumar, M.N.R. A review of chitin and chitosan applications. React. Funct. Polym. 2000, 46, 1–27. [CrossRef]
4. Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [CrossRef]
5. Dutta, P.K.; Dutta, J.; Tripathi, V. Chitin and chitosan: Chemistry, properties and applications. J. Sci. Ind. Res.

2004, 63, 20–31. [CrossRef]
6. Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state

of the art review. Int. J. Food Microbiol. 2010, 144, 51–63. [CrossRef] [PubMed]
7. Whang, H.S.; Kirsch, W.; Zhu, Y.H.; Yang, C.Z.; Hudson, S.M. Hemostatic agents derived from chitin and

chitosan. J. Macromol. Sci. Polym. Rev. 2005, 45, 309–323. [CrossRef]
8. Dai, T.; Tanaka, M.; Huang, Y.-Y.; Hamblin, M.R. Chitosan preparations for wounds and burns: Antimicrobial

and wound-healing effects. Expert Rev. Anti. Infect Ther. 2011, 9, 857–879. [CrossRef] [PubMed]
9. Jayakumar, R.; Prabaharan, M.; Kumar, P.S.; Nair, S.; Tamura, H. Biomaterials based on chitin and chitosan

in wound dressing applications. Biotechnol. Adv. 2011, 29, 322–337. [CrossRef] [PubMed]
10. Perinelli, D.R.; Fagioli, L.; Campana, R.; Lam, J.K.W.; Baffone, W.; Palmieri, G.F.; Casettari, L.; Bonacucina, G.

Chitosan-based nanosystems and their exploited antimicrobial activity. Eur. J. Pharm. Sci. 2018, 117, 8–20.
[CrossRef] [PubMed]

11. Ma, Z.; Garrido-Maestu, A.; Jeong, K.C. Application, mode of action, and in vivo activity of chitosan and its
micro- and nanoparticles as antimicrobial agents: A review. Carbohydr. Polym. 2017, 176, 257–265. [CrossRef]
[PubMed]

12. Verlee, A.; Mincke, S.; Stevens, C.V. Recent developments in antibacterial and antifungal chitosan and its
derivatives. Carbohydr. Polym. 2017, 164, 268–283. [CrossRef] [PubMed]

13. Azad, A.K.; Sermsintham, N.; Chandrkrachang, S.; Stevens, W.F. Chitosan membrane as a wound-healing
dressing: Characterization and clinical application. J. Biomed. Mater. Res. B Appl. Biomater. 2004, 69B, 216–222.
[CrossRef] [PubMed]

14. Marreco, P.R.; Moreira, P.D.L.; Genari, S.C.; Moraes, Â.M. Effects of different sterilization methods on the
morphology, mechanical properties, and cytotoxicity of chitosan membranes used as wound dressings.
J. Biomed. Mater. Res. B Appl. Biomater. 2004, 71, 268–277. [CrossRef] [PubMed]

15. Bumgardner, J.D.; Wiser, R.; Gerard, P.D.; Bergin, P.; Chestnutt, B.; Marini, M.; Ramsey, V.; Elder, S.H.;
Gilbert, J.A. Chitosan: Potential use as a bioactive coating for orthopaedic and craniofacial/dental implants.
J. Biomater. Sci. Polym. Ed. 2003, 14, 423–438. [CrossRef] [PubMed]

16. Wieckiewicz, M.; Boening, W.K.; Grychowska, N.; Paradowska-Stolarz, A. Clinical application of chitosan in
dental specialities. Mini Rev. Med. Chem. 2017, 17, 401–409. [CrossRef] [PubMed]

17. Skoskiewicz-Malinowska, K.; Kaczmarek, U.; Malicka, B.; Walczak, K.; Zietek, M. Application of chitosan
and propolis in endodontic treatment: A review. Mini Rev. Med. Chem. 2017, 17, 410–434. [CrossRef]
[PubMed]

18. Husain, S.; Al-Samadani, K.H.; Najeeb, S.; Zafar, M.S.; Khurshid, Z.; Zohaib, S.; Qasim, S.B. Chitosan
biomaterials for current and potential dental applications. Materials 2017, 10. [CrossRef] [PubMed]

19. Wieckiewicz, M.; Wolf, E.; Walczak, K.; Meissner, H.; Boening, K. Chitosan coating on silica-modified
polymethyl methacrylate for dental applications. Coatings 2017, 7, 168. [CrossRef]

20. Wieckiewicz, M.; Wolf, E.; Richter, G.; Meissner, H.; Boening, K. New concept of polymethyl methacrylate
(PMMA) and polyethylene terephthalate (PET) surface coating by chitosan. Polymers 2016, 8, 132. [CrossRef]

21. Jordan, A.R.; Micheelis (Gesamtbearbeitung), W. Fünfte Deutsche Mundgesundheitsstudie-(DMS V); Institut
der Deutschen Zahnärzte (IDZ): Köln, Germany, 2016; ISBN 978-3-7691-0020-4.

22. Gendreau, L.; Loewy, Z.G. Epidemiology and etiology of denture stomatitis. J. Prosthodont. 2011, 20, 251–260.
[CrossRef] [PubMed]

23. Eichhorn, W.; Burkert, J.; Vorwig, O.; Blessmann, M.; Cachovan, G.; Zeuch, J.; Eichhorn, M.; Heiland, M.
Bleeding incidence after oral surgery with continued oral anticoagulation. Clin. Oral. Investig. 2012, 16,
1371–1376. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.progpolymsci.2011.02.001
http://dx.doi.org/10.3109/10731199009117286
http://dx.doi.org/10.1016/S1381-5148(00)00038-9
http://dx.doi.org/10.1016/j.progpolymsci.2006.06.001
http://dx.doi.org/10.1016/j.progpolymsci.2006.06.001
http://dx.doi.org/10.1016/j.ijfoodmicro.2010.09.012
http://www.ncbi.nlm.nih.gov/pubmed/20951455
http://dx.doi.org/10.1080/15321790500304122
http://dx.doi.org/10.1586/eri.11.59
http://www.ncbi.nlm.nih.gov/pubmed/21810057
http://dx.doi.org/10.1016/j.biotechadv.2011.01.005
http://www.ncbi.nlm.nih.gov/pubmed/21262336
http://dx.doi.org/10.1016/j.ejps.2018.01.046
http://www.ncbi.nlm.nih.gov/pubmed/29408419
http://dx.doi.org/10.1016/j.carbpol.2017.08.082
http://www.ncbi.nlm.nih.gov/pubmed/28927606
http://dx.doi.org/10.1016/j.carbpol.2017.02.001
http://www.ncbi.nlm.nih.gov/pubmed/28325326
http://dx.doi.org/10.1002/jbm.b.30000
http://www.ncbi.nlm.nih.gov/pubmed/15116411
http://dx.doi.org/10.1002/jbm.b.30081
http://www.ncbi.nlm.nih.gov/pubmed/15455369
http://dx.doi.org/10.1163/156856203766652048
http://www.ncbi.nlm.nih.gov/pubmed/12807145
http://dx.doi.org/10.2174/1389557516666160418123054
http://www.ncbi.nlm.nih.gov/pubmed/27087462
http://dx.doi.org/10.2174/1389557516666160418122510
http://www.ncbi.nlm.nih.gov/pubmed/27087464
http://dx.doi.org/10.3390/ma10060602
http://www.ncbi.nlm.nih.gov/pubmed/28772963
http://dx.doi.org/10.3390/coatings7100168
http://dx.doi.org/10.3390/polym8040132
http://dx.doi.org/10.1111/j.1532-849X.2011.00698.x
http://www.ncbi.nlm.nih.gov/pubmed/21463383
http://dx.doi.org/10.1007/s00784-011-0649-1
http://www.ncbi.nlm.nih.gov/pubmed/22160538


Polymers 2018, 10, 536 14 of 15

24. Agostinho, A.M.; Miyoshi, P.R.; Gnoatto, N.; Paranhos, H.D.F.O.; Figueiredo, L.C.D.; Salvador, S.L.
Cross-contamination in the dental laboratory through the polishing procedure of complete dentures.
Braz. Dent. J. 2004, 15, 138–143. [CrossRef] [PubMed]

25. Kohn, W.G.; Collins, A.S.; Cleveland, J.L.; Harte, J.A.; Eklund, K.J.; Malvitz, D.M. Centers for Disease Control
and Prevention. Guidelines for infection control in dental health-care settings-2003. MMWR 2003, 52, 1–68.
[PubMed]

26. Deutscher Arbeitskreis für Hygiene in der Zahnmedizin (hrsg.): Hygieneleitfaden, 11 Ausgabe 2017.
Available online: https://www.bzaek.de/fileadmin/PDFs/za/hygieneplan/hygieneleitfaden.pdf (accessed
on 12 February 2018).

27. Tipnis, N.P.; Burgess, D.J. Sterilization of implantable polymer-based medical devices: A review.
Int. J. Pharm. 2017. [CrossRef] [PubMed]

28. Da Silva, F.C.; Kimpara, E.T.; Mancini, M.N.G.; Balducci, I.; Jorge, A.O.C.; Koga-Ito, C.Y. Effectiveness of six
different disinfectants on removing five microbial species and effects on the topographic characteristics of
acrylic resin. J. Prosthodont. 2008, 17, 627–633. [CrossRef] [PubMed]

29. Kotsiomiti, E.; Tzialla, A.; Hatjivasiliou, K. Accuracy and stability of impression materials subjected to
chemical disinfection—A literature review. J. Oral. Rehabil. 2008, 35, 291–299. [CrossRef] [PubMed]

30. Jnanadev, K.; Babu, C.S.; Shetty, S.S.; Kumar, G.S.; Sheetal, H. Disinfecting the acrylic resin plate
using electrolyzed acid water and 2% glutaraldehyde: A comparative microbiological study. J. Indian
Prosthodont. Soc. 2011, 11, 36–44. [CrossRef] [PubMed]

31. Rutala, W.A.; Weber, D.J. Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008. Available
online: https://www.cdc.gov/infectioncontrol/pdf/guidelines/disinfection-guidelines.pdf (accessed on
9 February 2018).

32. Polyzois, G.L.; Zissis, A.J.; Yannikakis, S.A. The effect of glutaraldehyde and microwave disinfection on
some properties of acrylic denture resin. Int. J. Prosthodont. 1995, 8, 150–154. [PubMed]

33. Carvalho, C.F.; Vanderlei, A.D.; Salazar Marocho, S.M.; Pereira, S.; Nogueira, L.; Arruda Paes-Junior, T.J.
Effect of disinfectant solutions on a denture base acrylic resin. Acta. Odontol. Latinoam. 2012, 25, 255–260.
[PubMed]

34. Orsi, I.A.; Andrade, V.G.; Bonato, P.S.; Raimundo, L.B.; Herzog, D.S.; Borie, E. Glutaraldehyde release from
heat-polymerized acrylic resins after disinfection and chemical and mechanical polishing. Braz. Dent. J. 2011,
22, 490–496. [CrossRef] [PubMed]

35. Maris, P. Modes of action of disinfectants. Rev. Sci. Tech. 1995, 14, 47–55. [CrossRef] [PubMed]
36. Denyer, S.P.; Stewart, G.S.A.B. Mechanisms of action of disinfectants. Int. Biodeterior. Biodegrad. 1998, 41,

261–268. [CrossRef]
37. Reuter, G. Disinfection and hygiene in the field of food of animal origin. Int. Biodeterior. Biodegrad. 1998, 41,

209–215. [CrossRef]
38. Matsuoka, T.; Yoshida, S.; Ohashi, K.; Shinoda, Y.; Kato, M.; Mori, T.; Yoshimura, T.; Tanaka, K.; Sato, A.;

Goto, T. Evaluation of efficacy and clinical utility of potassium peroxymonosulfate-based disinfectants.
Can. J. Infect Control 2017, 32, 93–97.

39. Tsiarta, N.; Schuurmans, J.; Matthijs, H.; Antoniou, M. Mode of action of hydrogen peroxide, peroxymonosulfate
and persulfate on microcystis aeruginosa strain pcc 7806. In Proceedings of the 15th International Conference
on Environmental Science and Technology, Rhodos, Greece, 31 August–2 September 2017.

40. Wilcox, R.R. Introduction to Robust Estimation and Hypothesis Testing; Academic Press: Cambridge, MA, USA,
2011.

41. Makuuchi, K. Critical review of radiation processing of hydrogel and polysaccharide. Radiat. Phys. Chem.
2010, 79, 267–271. [CrossRef]

42. Hsu, S.-C.; Don, T.-M.; Chiu, W.-Y. Free radical degradation of chitosan with potassium persulfate.
Polym. Degrad. Stab. 2002, 75, 73–83. [CrossRef]

43. Chang, K.L.B.; Tai, M.-C.; Cheng, F.-H. Kinetics and products of the degradation of chitosan by hydrogen
peroxide. J. Agric. Food. Chem. 2001, 49, 4845–4851. [CrossRef] [PubMed]

44. Qin, C.; Du, Y.; Xiao, L. Effect of hydrogen peroxide treatment on the molecular weight and structure of
chitosan. Polym. Degrad. Stab. 2002, 76, 211–218. [CrossRef]

45. Tian, F.; Liu, Y.; Hu, K.; Zhao, B. Study of the depolymerization behavior of chitosan by hydrogen peroxide.
Carbohydr. Polym. 2004, 57, 31–37. [CrossRef]

http://dx.doi.org/10.1590/S0103-64402004000200010
http://www.ncbi.nlm.nih.gov/pubmed/15776197
http://www.ncbi.nlm.nih.gov/pubmed/14685139
https://www.bzaek.de/fileadmin/PDFs/za/hygieneplan/hygieneleitfaden.pdf
http://dx.doi.org/10.1016/j.ijpharm.2017.12.003
http://www.ncbi.nlm.nih.gov/pubmed/29274370
http://dx.doi.org/10.1111/j.1532-849X.2008.00358.x
http://www.ncbi.nlm.nih.gov/pubmed/18761581
http://dx.doi.org/10.1111/j.1365-2842.2007.01771.x
http://www.ncbi.nlm.nih.gov/pubmed/18321265
http://dx.doi.org/10.1007/s13191-011-0057-x
http://www.ncbi.nlm.nih.gov/pubmed/22379304
https://www.cdc.gov/infectioncontrol/pdf/guidelines/disinfection-guidelines.pdf
http://www.ncbi.nlm.nih.gov/pubmed/7575966
http://www.ncbi.nlm.nih.gov/pubmed/23798071
http://dx.doi.org/10.1590/S0103-64402011000600009
http://www.ncbi.nlm.nih.gov/pubmed/22189645
http://dx.doi.org/10.20506/rst.14.1.829
http://www.ncbi.nlm.nih.gov/pubmed/7548971
http://dx.doi.org/10.1016/S0964-8305(98)00023-7
http://dx.doi.org/10.1016/S0964-8305(98)00029-8
http://dx.doi.org/10.1016/j.radphyschem.2009.10.011
http://dx.doi.org/10.1016/S0141-3910(01)00205-1
http://dx.doi.org/10.1021/jf001469g
http://www.ncbi.nlm.nih.gov/pubmed/11600033
http://dx.doi.org/10.1016/S0141-3910(02)00016-2
http://dx.doi.org/10.1016/j.carbpol.2004.03.016


Polymers 2018, 10, 536 15 of 15

46. Li, B.; Shan, C.-L.; Zhou, Q.; Fang, Y.; Wang, Y.-L.; Xu, F.; Han, L.-R.; Ibrahim, M.; Guo, L.-B.; Xie, G.-L.; et al.
Synthesis, characterization, and antibacterial activity of cross-linked chitosan-glutaraldehyde. Mar. Drugs
2013, 11, 1534–1552. [CrossRef] [PubMed]

47. Oryan, A.; Kamali, A.; Moshiri, A.; Baharvand, H.; Daemi, H. Chemical crosslinking of biopolymeric scaffolds:
Current knowledge and future directions of crosslinked engineered bone scaffolds. Int. J. Biol. Macromol.
2018, 107, 678–688. [CrossRef] [PubMed]

48. Islam, M.A.; Firdous, J.; Choi, Y.J.; Yun, C.H.; Cho, C.S. Design and application of chitosan microspheres as
oral and nasal vaccine carriers: An updated review. Int. J. Nanomed. 2012, 7, 6077–6093. [CrossRef]

49. Silva, R.; Silva, G.; Coutinho, O.; Mano, J.; Reis, R. Preparation and characterisation in simulated body
conditions of glutaraldehyde crosslinked chitosan membranes. J. Mater. Sci. Mater. Med. 2004, 15, 1105–1112.
[CrossRef] [PubMed]

50. Prabaharan, M.; Mano, J.F. Chitosan-based particles as controlled drug delivery systems. Drug Deliv. 2004,
12, 41–57. [CrossRef]

51. Kim, C.H.; Choi, J.W.; Chun, H.J.; Choi, K.S. Synthesis of chitosan derivatives with quaternary ammonium
salt and their antibacterial activity. Polym. Bull. 1997, 38, 387–393. [CrossRef]

52. Bhattarai, N.; Gunn, J.; Zhang, M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug
Deliv. Rev. 2010, 62, 83–99. [CrossRef] [PubMed]

53. Bonferoni, M.C.; Sandri, G.; Rossi, S.; Ferrari, F.; Caramella, C. Chitosan and its salts for mucosal and
transmucosal delivery. Expert Opin. Drug Deliv. 2009, 6, 923–939. [CrossRef] [PubMed]

54. Libio, I.C.; Demori, R.; Ferrão, M.F.; Lionzo, M.I.Z.; da Silveira, N.P. Films based on neutralized chitosan
citrate as innovative composition for cosmetic application. Mater. Sci. Eng. C 2016, 67, 115–124. [CrossRef]
[PubMed]

55. Kam, H.M.; Khor, E.; Lim, L.Y. Storage of partially deacetylated chitosan films. J. Biomed. Mater. Res. 1999,
48, 881–888. [CrossRef]

56. El-Barghouthi, M.; Eftaiha, A.; Rashid, I.; Al-Remawi, M.; Badwan, A. A novel superdisintegrating agent
made from physically modified chitosan with silicon dioxide. Drug Dev. Ind. Pharm. 2008, 34, 373–383.
[CrossRef] [PubMed]

57. Hosseinnejad, M.; Jafari, S.M. Evaluation of different factors affecting antimicrobial properties of chitosan.
Int. J. Biol. Macromol. 2016, 85, 467–475. [CrossRef] [PubMed]

58. Bano, I.; Arshad, M.; Yasin, T.; Ghauri, M.A.; Younus, M. Chitosan: A potential biopolymer for wound
management. Int. J. Biol. Macromol. 2017, 102, 380–383. [CrossRef] [PubMed]

59. McCarthy, S.; Gregory, K.; Morgan, J. Tissue Dressing Assemblies, Systems, and Methods Formed from
Hydrophilic Polymer Sponge Structures such as Chitosan. U.S. Patent 20050147656, 2005.

60. Calamari, S.E.; Bojanich, M.A.; Barembaum, S.R.; Berdicevski, N.; Azcurra, A.I. Antifungal and
post-antifungal effects of chlorhexidine, fluconazole, chitosan and its combinations on candida albicans.
Med. Oral. Patol. Oral. Cir. Bucal. 2011, 16, e23–e28. [CrossRef] [PubMed]

61. Zhang, H.; Neau, S.H. In vitro degradation of chitosan by a commercial enzyme preparation: Effect of
molecular weight and degree of deacetylation. Biomaterials 2001, 22, 1653–1658. [CrossRef]

62. Hermann, C.; Mesquita, M.F.; Consani, R.L.; Henriques, G.E. The effect of aging by thermal cycling and
mechanical brushing on resilient denture liner hardness and roughness. J. Prosthodont. 2008, 17, 318–322.
[CrossRef] [PubMed]

63. Sexson, J.C.; Phillips, R.W. Studies on the effects of abrasives on acrylic resins. J. Prosthet. Dent. 1951, 1,
454–471. [CrossRef]

64. Rutala, W.A.; Weber, D.J. Disinfection and sterilization: An overview. Am. J. Infect Control 2013, 41, S2–S5.
[CrossRef] [PubMed]

65. Crofton, A.; Chrisler, J.; Hudson, S.; Inceoglu, S.; Petersen, F.; Kirsch, W. Effect of plasma sterilization on the
hemostatic efficacy of a chitosan hemostatic agent in a rat model. Adv. Ther. 2016, 33, 268–281. [CrossRef]
[PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/md11051534
http://www.ncbi.nlm.nih.gov/pubmed/23670533
http://dx.doi.org/10.1016/j.ijbiomac.2017.08.184
http://www.ncbi.nlm.nih.gov/pubmed/28919526
http://dx.doi.org/10.2147/ijn.s38330
http://dx.doi.org/10.1023/B:JMSM.0000046392.44911.46
http://www.ncbi.nlm.nih.gov/pubmed/15516871
http://dx.doi.org/10.1080/10717540590889781
http://dx.doi.org/10.1007/s002890050064
http://dx.doi.org/10.1016/j.addr.2009.07.019
http://www.ncbi.nlm.nih.gov/pubmed/19799949
http://dx.doi.org/10.1517/17425240903114142
http://www.ncbi.nlm.nih.gov/pubmed/19637983
http://dx.doi.org/10.1016/j.msec.2016.05.009
http://www.ncbi.nlm.nih.gov/pubmed/27287105
http://dx.doi.org/10.1002/(SICI)1097-4636(1999)48:6&lt;881::AID-JBM18&gt;3.0.CO;2-2
http://dx.doi.org/10.1080/03639040701657792
http://www.ncbi.nlm.nih.gov/pubmed/18401779
http://dx.doi.org/10.1016/j.ijbiomac.2016.01.022
http://www.ncbi.nlm.nih.gov/pubmed/26780706
http://dx.doi.org/10.1016/j.ijbiomac.2017.04.047
http://www.ncbi.nlm.nih.gov/pubmed/28412341
http://dx.doi.org/10.4317/medoral.16.e23
http://www.ncbi.nlm.nih.gov/pubmed/20711160
http://dx.doi.org/10.1016/S0142-9612(00)00326-4
http://dx.doi.org/10.1111/j.1532-849X.2007.00293.x
http://www.ncbi.nlm.nih.gov/pubmed/18266656
http://dx.doi.org/10.1016/0022-3913(51)90031-5
http://dx.doi.org/10.1016/j.ajic.2012.11.005
http://www.ncbi.nlm.nih.gov/pubmed/23622742
http://dx.doi.org/10.1007/s12325-016-0289-6
http://www.ncbi.nlm.nih.gov/pubmed/26833305
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Establishing Specimens 
	Disinfectants 
	Measurement of Damaged Chitosan Coating Area (DCSCA) 
	Disinfection Procedure and Abrasion Test 
	Scanning Electron Microscopy (SEM) 
	Statistical Analysis 

	Results 
	Discussion 
	Conclusions 
	
	References

